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Preface
What	is	mathematics	about?	Is	there	a	world	of	mathematics	in	which	straight
lines	are	infinitely	straight,	are	infinitely	thin,	and	contain	an	uncountable
infinity	of	points?	Or,	on	the	contrary,	is	mathematics	a	purely	formal	system	of

deductions	from	axioms,	a	system	that	is	beautiful	to	some	of	us,	but	boring	and
just	too	difficult	for	the	rest	of	us?	Is	it	devoid,	in	either	case,	of	any	worldly	or
other	worldly	content,	yet

mysteriously	applicable	to	the	world	we	inhabit?	Or,	finally,	contrary	to	the
nearly	universal	range	of	acceptable	academic	views,	is	mathematics	about	the
world?

This	book	is	written	for	people	who	care	about	such	questions,	people	who	are
still	looking	for	answers	and	are	not	satisfied	with	the	standard	suggestions,
people	who	are	open	to	a	common	sense-yet	radical-alternative.

This	is	the	book	I	would	have	loved	to	find	when	I	encountered	abstract
mathematics	in	my	high	school	years	and	later,	in	college,	began	the	process	of
becoming	a	mathematician.

It’s	the	alternative	perspective	I	needed	when	I	read,	also	in	high	school,
Russell’s	Introduction	to	Mathematical	Philosophy.	Though	from	a	far	different
perspective,	like	Russell’s,	mine	is	a	book	on	how	to	think	about	mathematics.

My	own	fascination	with	mathematics	began	with	a	book	by	Irving	Adler
entitled	Magic	House	of	Numbers,	which	I	checked	out	of	the	library	in	sixth
grade	because	of	the	word	“magic”	in	the	title.	Thus	began	a	lifetime	of	interest,
study,	and	for	a	brief	time	research,	in	mathematics.	By	the	end	of	ninth	grade,
with	the	aid	of	old	textbooks	lying	around	the	house,	I	was	learning
trigonometry,	analytic	geometry,	and	the	beginnings	of	calculus.

In	my	sophomore	year	of	high	school,	I	found	a	copy	of	Birkoff	and	MacLane’s
highly	regarded	A	Survey	of	Modern	Algebra	in	my	school	library.	And	I	was
struck	by	the	opening	of	Chapter	III,	“Polynomials”,	which	reads	“Let	D	be	any
integral	domain,	and	let	“x”	be	any	symbol.	Suppose	one	forms	sums,

products,	and	differences	of	x	with	the	elements	of	D	and	with	itself,	subject	to



products,	and	differences	of	x	with	the	elements	of	D	and	with	itself,	subject	to
the	rules	of	ordinary	algebra…”

Now	it	is	true	that	a	polynomial	defines	a	rule	that	can	be	applied	to	any
mathematical	domain	that	employs	a	sensible	notion	of	addition	and
multiplication.	One	can,	for	example,	apply

polynomials	to	matrices	and	even	to	other	polynomials.	So	a

polynomial	has	a	meaning	and	significance	as	a	set	of	rules	that	transcends	any
particular	mathematical	domain	to	which	it	might	be	applied.

But	this	is	not	what	I	took	the	authors	to	mean,	nor	what	they	were	actually
saying.	Instead,	I	heard:	Don’t	think	of

polynomials	as	meaning	anything	in	particular.	Look	at	them	as	manipulations	of
meaningless	symbols.	Well,	I	continued	for	many	more	pages	before	I	returned
the	book	to	the	library,	but	I	got	nothing	out	of	it.	Such	was	my	first	encounter
with	abstract	mathematics!

By	the	end	of	my	junior	high	school	year	I	had	read	about	matrices	and	vector
spaces	from	an	interesting	perspective	that	made	sense	to	me.	Then,	at	some
point	near	the	end	of	that	year	or,	perhaps,	that	summer	I	started	learning	about
“rings”	and	“ideals”

as	an	abstract	study.	I	had	no	idea	why	“ideals”	were	important	or	what	they
were	about.	That	“rings”	were	a	general	framework	for	studying	divisibility	and
factorization	never	occurred	to	me.	But	I	remember	thinking,	“Rings	are	just	a
way	of	thinking	about

numbers,	matrices,	and	polynomials.”	From	that	moment,	I

embraced	mathematical	abstraction.	Yet,	simultaneously,	I

embraced	the	view	that	mathematics	is	about	the	world.	I	had	glimpsed	that
mathematical	abstractions	are	a	way	of	looking	at	things;	neither	a	path	to	a
separate	mathematical	world	nor	a	play	with	meaningless	symbols.

During	my	senior	year	in	high	school	I	started	reading,	with	great	appreciation,
Halmos’	great	text	on	finite	dimensional	vector	spaces,	presented	on	an	abstract



level,	but	very	readable	and	inspiring.	Later,	I	began,	again	with	appreciation,
my	freshman	year	in	college	reading	Dieudonne’s	highly	abstract	Foundations	of
Modern	Analysis.	Both	books	reinforced	my	belief	in	the	power	of	mathematical
abstraction;	neither	deterred	me	from	my	view	that	mathematics	is	about	the
world.

At	some	point	during	my	college	freshman	year,	I	realized	that	neither
mathematicians	nor	philosophers	of	mathematics

shared	my	perspective,	offering	only	the	alternatives	of	formalism	(a	game	of
symbol	manipulation),	Platonism	(a	separate	world	of	mathematics),	or,	as	a
third,	the	Fregean	view	that	mathematics	is	essentially	a	branch	of	logic.	I	could
accept	none	of	these	choices.

However,	I	had	discovered	Ayn	Rand	and	during	the	following	summer	she
began	her	epochal	series	of	articles	on	Objectivist	epistemology.	It	struck	me,
from	her	first	essay	linking	mathematics	and	concept	formation,	that	I	had	found
my	key	to	understanding	mathematics.	In	regards	to	its	specific	application	to
mathematics,	however,	I	also	realized	that	I	was	on	my	own.

The	purpose	of	this	book	is	to	share	my	present	understanding	and	perspective,
to	offer	a	distinctive	view	of	mathematics	that	was	made	possible	for	me	by	Ayn
Rand’s	essays	and	extemporaneous	comments	relating	to	her	theory	of
universals.

And	my	central	message	is	this:	You	do	not	have	to	choose	between
mathematical	abstractions	and	reality.	Mathematical	abstractions	are	a	way	of
understanding	the	world,	of	deepening	and	enriching	one’s	perspective	on	the
world.	One	understands	the	essence	of	a	mathematical	discipline	when	one
grasps	what	it	is	trying	to	measure.	Mathematics	is	about	the	world.

Though	I	accept	neither	alternative,	I	find	an	important	difference	between	the
ways	that	mathematicians	and	philosophers	each	typically	look	at	mathematics.
Mathematicians	in	general,	operating	in	a	world	of	“complex	manifolds”,
“homological

algebra”,	infinite-dimensional	“function	spaces”,	and	“fiber	bundles”	tend	to
believe	in	some	kind	of	Platonic	mathematical	world	suggested	by,	but	distinct
from,	the	world	we	live	in	and	taking	on	a	life	of	its	own.	They	know	that
mathematics	is	hard	work	and	must	involve	something	more	than	arbitrary
symbols	and	rules.	Philosophers,	on	the	other	hand,	generally	dismiss	a	world	of



symbols	and	rules.	Philosophers,	on	the	other	hand,	generally	dismiss	a	world	of
mathematics.	They	differ	on	what	should	take	its	place.	Some	of	the	best,
certainly,	have	attempted	a	naturalistic,	reality-based,	approach	to	understanding
mathematics,	starting	with	ordinary	numerical	concepts	of	the	sort	we	form	in
childhood.	But	they	typically	try	to	incorporate	formal	set	theory	as	it	was
developed	during	the	20th	century	and	consequently,	at	some	point	along	the
way,	they	leave	the	world	behind.

But	is	there	a	third	alternative?	When	I	say	to	someone	who	is	neither	a
mathematician	nor	a	philosopher,	“Mathematics	is	about	the	world,”	the	usual
response	is,	“Of	course!”	But	such	responses	quickly	change	when	I	bring	up
infinitely	straight	infinitely	thin	straight	lines	and,	in	general,	mathematical
infinity.

How	can	there	be	an	infinite	number	of	counting	numbers?	Or,	on	the	contrary,
is	there	a	finite	number?	Is	there	a	point,	a	large	number	“N”	such	that	N	is
meaningful,	but	N	+	1	is	meaningless?

And,	if	so,	what	about	the	immediate	implication	that	the	equation	x	–	1	=	B	has
a	solution	for	B	=	5	or	for	B	=	500	trillion,	but	does	not	have	a	solution	for	this
“largest”	number	B	=	N?	Or	what	about	the	fact	that,	for	this	largest	number	I
am	calling	N,	we	would	not	be	able	to	express	a	length	of	N	feet	in	inches,
because	we	would	have	to	multiply	N	times	12	to	find	the	number	of	inches
resulting	in	a	number	larger	than	N?

It	appears	that	a	number	system,	to	be	manageable,	must	be	open-ended.
Mathematical	infinities	that	involve	numbers,	infinities	that	do	not	exist	in	the
world,

are,

indeed,

an

indispensable	part	of	mathematics.	Similarly,	in	geometry,	the	infinite	precision
of	Euclid’s	geometric	reasoning	is	necessary	to	the	entire	structure	and	the
relationships	that	Euclid	uncovers	must	be	utilized	in	any	attempt	to	measure
degrees	of	imprecision	in	one’s	measurements	of	objects	in	the	world.

In	sum,	it	seems	that	the	more	one	thinks	about	mathematics	and	its	methods



In	sum,	it	seems	that	the	more	one	thinks	about	mathematics	and	its	methods
(and	the	more	advanced	one’s

mathematical	studies)	the	harder	it	becomes	to	maintain,	as	I	nonetheless	do,	that
mathematics	is	about	the	world.	These

paradoxes	are	obvious	and	must	be	answered:	If	mathematical

infinities	do	not	exist	in	the	world,	how	can	a	mathematics	that	includes
mathematical	infinities	be	about	the	world?	Or,	if	all	geometric	measurements
have	finite	precision,	yet	geometric

concepts	and	arguments	are	infinitely	precise,	how	can	geometry	be	about	the
world?

So	this	book	is,	necessarily,	a	defense	of	an	unpopular	viewpoint;	but	more
fundamentally	it	is	a	book	about	how	to	think	about	mathematics.

As	a	pursuit,	mathematics	is	about	discovering	relationships	between	quantities,
about	discovering	and	solving	algebraic	and	differential	equations	or	finding
geometric

relationships.	It	is,	as	Ayn	Rand	put	it,	the	science	of	measurement.

But	why	is	measurement	important?	And	why	do	the	demands	of

measurement	require	the	amazingly	abstract	complex	science	that	mathematics
became	during	the	19th	and	20th	centuries?	Do	all	these	abstractions	really	have
something	to	do	with	measurement?

I	offer	my	affirmative	answer,	in	part,	as	the	key	to	relating	mathematics	to	the
world.	But	I	also	believe	that	the	measurement	viewpoint	is	the	key	to
understanding	the	underlying	purpose	and	the	logical	structure	of	mathematics.

In	this	book,	I	apply	my	viewpoint,	first	to	elementary	and	then	to	more
advanced	mathematical	topics.	I	start	with	elementary	topics	to	show	how
mathematics	begins	with	measurement	and	to	show	how	mathematical	progress
is	driven	by	the	needs	of

measurement.	I	proceed	to	more	advanced	topics	to	indicate,	by	selected
examples,	how	measurement	remains	the	underlying



thread	as	one	ascends	to	higher	and	higher	degrees	of	mathematical	abstraction.

So,	why	is	measurement	important?
It	is	measurement	that	enables	us	to	make	fine	distinctions,

to	specify	differences	among	similar	shared	characteristics.

Measurement	comes	into	play	whenever	we	weigh	alternatives.	It	shows	up	in
daily	life	when	we	ask:	How	far	is	it?	How	fast	am	I	going?	How	long	will	it
take	me	to	get	there?	Can	I	afford	to	buy	that	new	car?	How	much	will	it	cost?
What	will	I	have	to	give	up	or	cut	back	on?	What	size	of	refrigerator	will	fit	in
that	space?	How	high	can	it	be?	How	wide?	What	will	it	hold?	How	much	do	I

weigh?	How	much	weight	should	I	try	to	lose?
Such	questions	occur	whenever	we	want	to	judge

differences,

consider	alternatives,	and	specify

objectives.

Measurements	are	a	way	of	determining	precisely	what	already	is	and	of
specifying	precisely	what	you	want	to	bring	into	existence.

Measurements	specify	relationships,	quantitative	or	causal,	that	exist	or	might
exist	in	the	world.
But	measurement	applies	even	more	broadly	to	the	other

sciences.	When	causal	quantitative	relationships	are	identified	in	general	form,
as	in	physical	laws	of	nature,	they	apply	generically	to	a	broad	range	of	cases.
Based	on	Newton’s	laws	of	motion,	if	I	shoot	a	cannon	ball	at	a	known	angle
and	known	velocity,	I	can	calculate	mathematically	how	high	it	will	rise	and
where	it	will	fall.	In	fact,	I	can	compute,	from	the	starting	angle	and	landing
point,	its	entire	trajectory!	Newton’s	laws	of	motion,	originally	discovered	by
means	of	measurement,	become,	in	turn,	the	means	of	further

measurements.	Measurement	is	one	key	to	understanding	the

world	and	adapting	it	to	our	own	purposes.
But,	given	that	measurement	is	important,	why	do	we	need



But,	given	that	measurement	is	important,	why	do	we	need

a	vast,	complex,	abstract	science	to	help	us	with	our

measurements?
If	I	want	to	measure	my	couch,	I	take	out	a	tape	measure.	If

I	want	to	find	out	what	I	weigh,	I	step	on	a	scale.	If	I	want	to	know	whether	I’m
speeding,	I	check	the	speedometer.	But	how	do	I

measure	the	circumference	of	the	earth	or	the	distance	to	the	sun	or	the	distance
to	the	moon?	How	do	we	discover	the	mass	of	Jupiter	or	the	average	speed	of
Mercury	as	it	orbits	the	sun?	All	of	these	determinations	involve	measurement,
but	in	none	of	these	cases	do	we	simply	measure,	directly,	the	quantity	we	are
trying	to	specify.
Yet,	amazingly,	the	circumference	of	the	earth

was

measured	(within	about	16%)	by	Eratosthenes	in	200	BC,	without	leaving
Alexandria.	He	did	it	by	measuring	the	angle	the	sun’s	rays	made	at	noon	on	the
day	of	the	summer	solstice.	He	made	just	this	one	measurement,	but	relied,	for
his	calculation	on	two	others:	first,	the	distance	of	a	particular	town	to	his	south
and,	second,	the	known	fact	that,	in	that	town,	at	that	time,	and	on	that	day	of	the
summer	solstice,	the	sun	was	directly	overhead,	a	circumstance	manifested	by
the	known	observation	that	the	one	could	see,	at	the	stroke	of	noon,	the
reflection	of	the	sun	at	the	bottom	of	a	very	deep	well.	And	what	made	this
possible?	His	knowledge	of	Euclidean	geometry!
But	this	is	just	a	dramatic	example	of	a	universal	pattern.

Most	of	the	measurements	we	make	are	indirect	in	one	form	or	another.	When
we	step	on	a	scale,	we	rely	on	a	hidden	mechanism,	calibrated	based	on	known
physical	laws	that	required	mathematics	in	both	their	discovery	and	their
application.	Every	gauge,	every	speedometer,	every	mechanical	or	electrical
measuring	device	utilizes	indirect	measurement	to	determine	the	quantitative

relationship	one	is	trying	to	ascertain.
Whether	one	measures	a	shadow	to	find	the	height	of	a

flagpole	or	solves	a	differential	equation	to	discover	the	trajectory	of	a	projectile,
one	is	relying	on	direct	measurements	of	one	set	of	quantities,	in	the	context	of
previously	discovered	relationships,	to	determine,	indirectly,	the	desired



previously	discovered	relationships,	to	determine,	indirectly,	the	desired
measurements	of	a	second	set	of	quantities.	This	is	indirect	measurement.	It	is
the	mathematical	relationships	and	the	physical	laws	discovered	by	their	use	that
make	indirect	measurement	possible.	And	it	is	the	need	for	indirect	measurement
that	explains	the	need	for	a	science	of	mathematics.
Progress	in	mathematics	consists	in	finding	the

connections,	in	finding	the	geometric	and	mathematical

relationships	that	make	indirect	measurement	possible.	Every	geometric
theorem,	every	algebraic	or	differential	equation

expresses	a	relationship	that	can	provide	a	bridge	to	an	indirect	measurement.
But	an	equation	is	also	something	one	needs	to	solve.

Whenever	certain	variables	of	an	equation	are	regarded	as	known,	while	others
are	regarded	as	unknown,	the	challenge	is	to	“solve”

the	equation,	to	discover	the	corresponding	values	of	the	unknown	variables.
And	this	challenge,	the	search	for	solutions	and	for	general	methods	of	finding
solutions,	has	driven	progress	in	mathematics.	Every	mathematical	abstraction
and	every	new

mathematical	relationship	provides	one	more	step	on	this	complex	journey.	In
general,	every	part	of	mathematics,	from	the	most	elementary	to	the	most
abstract,	began	with	a	problem	in	indirect	measurement	and	can	be	better
understood	in	relation	to

measurement.	Indirect	measurement	is	the	heart	of	mathematics,	its	reason	for
being,	and	the	source	of	its	power	to	enrich	our	lives.
I	apply	the	measurement	perspective	throughout	the	book,

providing	a	range	of	examples	that	illustrate	its	applicability	to	both	elementary
and	more	advanced	mathematics.
I	have	written	this	book	for	a	general	audience.	And	I	have

endeavored	to	make	it	accessible	and	interesting	to	philosophers,
mathematicians,	advanced	high	school	students,	and	interested	laymen.	To
philosophers,	I	offer	a	serious,	if	unconventional,	alternative	to	existing	views;	I
offer	a	non-Platonic	form	of	realism	as	a	way	to	look	at	mathematics.	To
mathematicians,	I	offer	an	account	of	just	what	sort	of	thing	they	are	discovering



mathematicians,	I	offer	an	account	of	just	what	sort	of	thing	they	are	discovering
and	why	these	discoveries	are	important.	I	thereby	aim	to	demystify	the	obvious
applicability	of	mathematics,	including	advanced,	abstract	mathematics,	to	the
world.	To	high	school	and	college	students	interested	in	pursuing	mathematics,	I
offer	an	integrating

perspective	that	will	help	them	learn	and	appreciate	the	concepts	and	methods	of
advanced	mathematics.	And,	to	the	educated

laymen,	I	offer	a	new	way	to	think	about	mathematical	concepts	that	will	widen
their	perspective	and	illuminate	their	other	readings	in	mathematics.
The	book	is	organized	into	two	parts.	The	first	part,

consisting	of	five	chapters,	is	elementary,	should	be	accessible	to	high	school
students,	and	discusses	plane	Euclidean	geometry	and	the	real	number	system.
The	first	two	chapters	are	intended	to	be	read	first.	One	can	read	every	chapter
independently	without	getting	lost,	but	the	first	two	chapters	provide	the	best
context	for	the	two	that	follow	and,	indeed,	for	the	rest	of	the	book.
The	last	three	chapters	address	more	advanced	and	more

modern	topics,	namely	set	theory,	point	set	topology,	linear	algebra,	and,	from
an	introductory	perspective,	group

representations.
I	conclude	this	introduction	with	a	brief	summary	of	every

chapter	in	the	book:
Chapter	1	exhibits	all	of	Euclid’s	postulates	as	primitive

measurements,	while	emphasizing	that	all	measurements	of

concretes	are	subject	to	specific	precision	requirements.	Euclid’s	arguments	are
a	form	of	indirect	measurement,	are,	in	essence,	recipes	for	a	series	of
measurements.
The	first	chapter	addresses	questions	such	as:	How	can

Euclid’s	arguments	be	rigorously	valid	if	they	pertain	to	realworld	shapes	and	to
realworld	geometric	relationships?	More	generally,	given	that	all	measurement	is
subject	to	finite	precision	limits,	why,	from	a	reality-based	perspective,	is	it
possible,	meaningful,	and	necessary	for	mathematics	to	be	infinitely	precise?
Chapter	2	analyzes	magnitude,	geometrically,	as	an	object



Chapter	2	analyzes	magnitude,	geometrically,	as	an	object

of	numerical	measurement.	Relationships	between	numbers	reflect	quantitative
relationships	in	the	world	among	the	quantities	that	they	measure.
Chapter	3	further	examines	the	meaning	and	consequences

of	Euclid’s	fifth	postulate,	following	Euclid	to	show	just	how	the	measurement
of	area	and	the	laws	of	geometric	proportion	both	depend	on	the	properties	of
parallel	lines.
Chapter	4	shows	how	irrational	numbers	relate	to	the	world

and	why	are	they	needed	in	mathematics.	It	identifies	the	realworld	meaning	of
convergence	and	completeness	of	the	real	number	system.	It	sorts	out	the
important	mathematical

contributions	from	the	alleged	philosophical	implications	of	two	celebrated
constructions	of	the	real	number	system,

one

by

Dedekind	and	the	other	by	Cantor.
The	fourth	chapter	addresses	questions	such	as:	Why	are

irrational	numbers	needed	in	mathematics,	despite	being

indistinguishable,	in	any	concrete	application,	from	rational	numbers?	In	this
connection,	what	is	the	realworld	meaning	of	convergence	and	of	the
completeness	of	the	real	number	system?
Chapter	5	considers	the

pervasive	role	of	geometric

abstraction	in	mathematics,	as	it	relates	to	measurement.	It	shows	how	geometry
provides	a	conceptual	perspective	to	think	about	actual	objects	and	relationships
in	the	world:	objects	and

relationships	far	beyond	the	classical	confines	of	plane	and	solid	geometry.
Set	theory	has	become	indispensable	to	modern

mathematics.	Yet	the	contradictions	in	the	original	naïve



mathematics.	Yet	the	contradictions	in	the	original	naïve

conception	of	sets	led	to	the	ontologically	meaningless	ZermeloFraenkel	axioms
of	set	theory,	as	a	purported	foundation	of	mathematics.	Chapter	6	provides	an
alternative	realist	account	and	rationale	for	the	use	of	set	theory	in	mathematics,
emphasizing	the	importance	of	a	proper	hierarchy	of	mathematical	abstraction.
Chapter	6	addresses	the	question:	What	are	the	actual

need,	the	proper	context,	and	the	key	function	of	set	theory	in	mathematics?
Chapter	7	explores	the	ways	that	the	measurement

perspective	illuminates	and	integrates	our	understanding	of	vector	spaces	and
linear	algebra.
Chapter	8	examines	a	realm	that	is	often	thought	to	have

little	or	no	relationship	to	quantity,	namely	group	theory.	It	shows	how	groups
arise,	why	they	are	important,	and,	in	just	what	sense	the	symmetry	that	they
measure	sits	at	the	heart	of	the	conceptual	process	itself.
This	last	chapter	asks	and	answers	the	question:	What	do

abstract	groups	have	to	do	with	measurement?
Two	themes	run	throughout	the	book:	The	first	is	that

mathematics	is	about	the	world.	And	the	second	is	that	indirect	measurement	is
the	heart	of	mathematics,	its	reason	for	being,	and	the	source	of	its	power	to
enrich	our	lives.



MATHEMATICS
IS	ABOUT	THE	WORLD

PART	1:	ELEMENTARY



Chapter	1

Euclid’s	Method

It	should	not	be	controversial	to	observe	that	mathematics

is	about	the	world.	But	it	is.
Classical	Greek	mathematics	did	not	end	with	Euclid.	His

successor,	Archimedes,	is	universally	recognized	as	one	of	the

greatest	mathematicians	of	all	time.	Even	so,	Euclid’s	Elements	was	the
culmination	of	all	that	preceded	it	and	the	foundation	of	all	that

followed.	The	pinnacle	of	Greek	mathematics,	Euclid’s	Elements	remained
unsurpassed	for	two	millennia.
But	the	mathematical	confusion	begins	with	Euclid.	“A

point,”	says	Euclid,	“is	that	which	has	no	part.	A	line	is	a

breadthless	length.”1	So	begins	Book	I	with	definitions	1	and	2.	And	then	Euclid
proceeds	to	illustrate	his	propositions	with	points	that

do	have	parts	and	lines	that	do	have	width,	illustrations	that,

accordingly,	are	visible	to	the	human	eye.
So	what	do	his	propositions	mean?	Do	they	pertain	to

relationships	in	the	world	and	to	the	pictures	that	Euclid	draws	for

us?	Or,	on	the	contrary,	are	Euclid’s	pictures	merely	imperfect,

suggestive	renderings	of	ideal	geometric	figures?	And	do	such

geometric	figures	constitute	a	world	of	their	own	consisting	of	ideal

points	that	have	no	extension	and	of	ideal	lines	that	have	no	width?



The	common	fallacy	that	mathematics	pertains	specifically	to	a

mathematical	universe;	that	mathematics	applies	to	the	world,	but	is	not	about
the	world	begins	with	the	first	page	of	Euclid’s	monumental	work.
I	call	it	a	fallacy,	because	I	do	not	share	it.	Mathematics

applies	to	the	world	because	it	is	about	the	world.
But	this	confusion	is	even	older	than	Euclid	and	it	persists

to	this	day.	Today,	it	is	widely	held,	by	philosophers,

mathematicians,	and	educated	laymen,	that	Euclid’s	propositions

are	only	true	for	idealized	figures	in	a	geometric	universe.	And	that

his	arguments	only	apply	rigorously	to	objects	in	that	universe.
This	is	Platonism	and	it	dates	back	to	Plato,	who	preceded

Euclid.	In	the	lexicon	of	today’s	philosophers	of	mathematics	and	among
mathematicians,	it	is	the	so-called	“realist”	view.2Certainly	there	are
alternatives,	but	the	dominant	alternative	to	this	realism

sees	mathematics	as	purely	formal.	This	competing	view	that

mathematics	consists	of	deductions	from	arbitrary	axioms,	goes

back	to	David	Hilbert	in	the	late	19th	and	early	20th	century.3	In	Willard

Quine’s	words,	“…	the	formalist	keeps	classical	mathematics	as	a	play	of
insignificant	notations.”4	Today	the	view	that	either	geometry	or	mathematics	in
general	could	be	about	this

earth,	about	the	world	we	inhabit,	is	generally	regarded	as	untenable.5
As	Plato	puts	it,	“[geometers]	make	use	of	visible	figures

and	discourse	about	them	though	what	they	really	have	in	mind	is

the	originals	of	which	these	figures	are	images.”6	What	are	these	originals?	Plato
here	refers	to	Platonic	archetypical,	idealized

figures,	residing	in	Plato’s	famous	world	of	Forms	or	Ideas,	as



figures,	residing	in	Plato’s	famous	world	of	Forms	or	Ideas,	as

described	in	Plato’s	Republic.	Generally,	Plato	held	that	objects	in	the	world	are
imperfect	reflections	of	the	archetypes	residing	in	his	world	of	Forms.7	And
although	Plato’s	world	of	Forms	is	no	longer	taken	seriously,	the	general
viewpoint,	that	geometric	figures	are

idealizations,	did	not	die	with	the	eclipse	of	Plato’s	heaven.	John

Stuart	Mill,	for	example,	characterizes	geometric	figures	as

something	“painted	in	the	imagination”	to	which	one	compares	the	shapes	of
objects	or	drawings	in	the	world.8	And	in	this	comparison,	as	Plato	had
maintained,	the	world	is	found	wanting.
Platonism	is	not	considered	a	satisfactory	view	today.	But

Penelope	Maddy	speaks	for	the	consensus	when	she	says,	“Let	me

return	now	to	Platonism,	the	view	that	mathematics	is	an	objective

science.”9	And	how	do	modern	philosophers,	characterize	Platonism?	Stewart
Shapiro	summarizes	Plato’s	view,	as	follows:

“some	physical	objects	approximate	Euclidean	figures.	But	geometric	theorems
do	not	apply	to	these	approximations.”10	And	Philip	Kitcher	elaborates,	“...	the
Platonist	thesis:	true

mathematical	statements	are	true	in	virtue	of	the	properties	of	abstract
objects.”11
The	modern	consensus,	then,	is	that	Platonism,	in	a

modern	reincarnation,	provides	the	only	available	viewpoint	of

mathematics	as	an	objective	science.	And,	in	search	of	such

objectivity,	philosophers	such	as	Kitcher,	Maddy,	Shapiro,	Resnik,

and	Parsons	have	made	serious,	sophisticated,	attempts	to	develop

a	third	alternative,	some	kind	of	modified	non-mystical	Platonism.



However,	my	own	viewpoint,	that	geometry	is	about	the	world,	this

world,	has	not	been	in	the	running,	has	been	ruled	out	of	court,	has

not	been	taken	seriously.

The	Paradox	for	a	Proper	Realism

So	what	is	the	difficulty?
The	mathematical	issue	arises	from	the	fact	that	all

measurement	of	continuous	quantities	is	approximate.	We	measure

our	own	height	in	inches	and,	perhaps,	achieve	accuracy	within	a

quarter	of	an	inch.	We	measure	our	weight	in	pounds	and	the

answer	is	usually	accurate	within	half	a	pound.	Within	an

appropriate	context,	more	accurate	measurements	of	length	and

weight	are	possible,	but	one	never	achieves	infinite	precision.	There

is	always	a	limit	to	the	subdivisions	that	one	makes	and	to	the

accuracy	with	which	one	can	apply	them.	All	precision	is	finite.

But	no	acknowledgement	of	such	precision	limits	can	be

found	in	Euclid.	Euclid’s	equilateral	triangles	have	sides	of

absolutely	equal	length	and	angles	that	are	absolutely	equal.	When

he	bisects	a	line	he	treats	the	bisection	as	totally	exact.	Euclid’s

lines	are	totally	straight	and	the	points	on	his	circles	are	all	exactly

the	same	distance	from	its	center,	a	central	point	that	has	no	parts.

In	light	of	the	mathematical	issue,	the	philosophical	issue



is:	How	do	the	concepts	and	relationships	in	Euclid’s	Elements	relate	to	the
world?	Can	one	reconcile	the	infinite	precision	of

Euclid’s	propositions	to	the	finite	precision	of	the	indirect

measurements	that	rely	on	those	very	geometric	propositions?

How?

This	dilemma	can	be	summarized	as	an	apparent	paradox:

Geometry	is	about	the	world.	But:	1)	Geometric	propositions	have

infinite	precision	and	2)	All	of	our	measurements	have	finite

precision.	So	how	can	geometry	be	about	the	world?

Specifically,	how	should	one	look	at	concepts	such	as

straight	line,	circle,	and	triangle?	Are	they	valid,	meaningful

concepts?	In	the	world	we	live	in,	is	there	really	such	a	thing	as	a

straight	line,	a	circle,	or	a	triangle?	How	should	one	look	at

measurements	of	lines,	circles,	and	triangles?	And	what,	if

anything,	do	Euclid’s	propositions	and	his	arguments	for	those

propositions	say	about	the	world?

In	addressing	these	questions,	I	will	maintain	that:

1.

Geometric	shapes,	such	as	lines,	triangles,	and	circles,	are

shapes	that	exist	on	earth.
2.

Euclid’s	propositions	refer	to	shapes	and	relationships	in



the	world.
3.

Euclid’s	arguments	are	valid:	they	reflect	and	capture

relationships	that	exist	in	the	world.
These	are	three	separate,	but	related,	respects	in	which

geometry	pertains	to	the	world.	Each	requires	separate	discussion.

The	last,	especially,	is	the	most	mystifying,	yet	the	most	important.

And,	on	this	point,	to	understand	Euclid’s	implicit	method	is	to

understand	his	arguments,	to	understand	how	those	arguments

relate	to	the	world.	For	despite	Euclid’s	bad	beginning,	his	work	is

fundamentally	sound.
This	chapter	is	not	a	polemic	against	prevailing	views.	If

mathematics	means	anything,	in	any	serious	sense,	it	refers	to	aspects	of	the
world	and	to	relationships	that	exist	in	the	world.	So

the	task	of	this	chapter	is	simply	to	provide	an	account	of,	to

identify,	the	relationship	of	geometric	knowledge	to	the	world,

starting	with	its	base	in	perception.
The	overriding	thesis	of	this	chapter	is	that	Euclidean

geometry	is	the	rigorous	study	of	shapes	and	spatial	relationships

that	exist	on	earth.

Timeline	of	Greek	Mathematicians	and

Philosophers

Euclid’s



Euclid’s

Elements	were	a	culmination	of	a	long	Greek

tradition,	a	tradition	that	was	both	mathematical	and	philosophical.

To	place	Euclid	within	that	tradition,	I	offer	a	timeline,	as	Figure	1,

relating	a	number	of	important	Greek	philosophers	and

mathematicians	during	the	classical	period:12

Figure	1

Though	preceded	by	Thales,	Pythagoras	was	the	first	major

figure	in	Greek	geometry.	Pythagoras	and	his	school	are	most	noted

for	the	celebrated	and	fundamental	Pythagorean	Theorem.	But	this

is	just	one	highlight	of	their	reputed	accomplishments.	Most



significantly,	the	Pythagoreans	are	believed	to	have	developed	a

theory	of	proportion,	entailing	that	the	ratios	of	corresponding

sides	of	“similar	triangles”	(Triangles	having	the	same	angles,	i.e.,	having	the
same	shape)	are	equal.13	The	theory	of	proportion	is	fundamental.	It	provides	the
foundation	of	trigonometry	upon

which	we	navigate	the	earth	and	measure	the	heavens.	It	is	the	cornerstone	of
indirect	geometric	measurement.14

But,	unfortunately,	the	Pythagorean	theory	of	proportion

made	a	critical	assumption	that	turned	out	to	be	false.	The	theory

assumed	that	any	two	given	lengths	are	commensurate,	meaning

that	both	lengths	can	be	expressed	as	whole	multiples	of	some

common	length.	When	the	Pythagoreans	said	that	all	is	number,

they	did	not	have	irrational	numbers	in	mind:	To	the	contrary,

when	they	said	“number”	they	were	speaking	of	positive	integers.

So	when	the	Pythagoreans	discovered	the	existence	of	irrational

numbers,	that	the	diagonal	of	a	square,	for	example,	is

incommensurate	with	its	sides,	their	theory	of	proportion	and	even	their	broader
world	view	became	the	casualties.15

As	Charles	Boyer	observes,	the	natural	way	to	have

salvaged	the	Pythagoreans’	theory	of	proportion	would	have	been

through	a	limiting	process,	but	that	approach	was	shortly

discouraged	by	the	need	to	answer	the	famous	paradoxes	of	Zeno,	all	of	them
involving	infinity.16	For	example,	in	perhaps	the	msot	famous	of	his	paradoxes,



Zeno	argues	that	a	faster	runner	(the

“hare”)	can	never	catch	a	slower	one	(the	“tortoise”);	that	the	hare,	having	given
the	tortoise	a	head	start,	can	never	catch	up.17	The	hare	can	never	catch	up
because,	over	and	over	again,	every	time

the	hare	reaches	a	point	previously	occupied	by	the	tortoise,	the

tortoise	has	moved	on.

The	Greeks	believed	that	such	arguments,	no	matter	how

contrary	to	common	sense,	needed	to	be	answered.	But,	in	Zeno’s

time,	they	had	no	answer.

Nonetheless,	the	Greek	geometric	tradition	continued.

Hippocrates	of	Chios,	credited	with	the	first	attempt	to	systematize

the	“elements”	of	geometry,	was,	perhaps,	the	most	notable

mathematician	in	the	period	following	Pythagoras.	The	efforts	by

Hippocrates	to	“square	the	circle”	(i.e.,	to	determine	its	area)	led	to

some	promising	related	discoveries.	Specifically,	he	was	able	to

square	the	lune,	i.e.	to	measure	the	area	of	the	shape	between	two	intersecting
circles	curving	in	the	same	direction.18

Ultimately	the	classical	Greek	answer	to	the	Pythagorean

dilemma	of	incommensurate	ratios	(in	modern	terms,	irrational

numbers),	as	well	as	the	Greek	approach	to	limits	(the	“method	of

exhaustion”),	was	provided	by	Eudoxus,19	born	after	Plato	but	before	the	birth	of
Aristotle.	Although	none	of	Eudoxus’s	work

survives	in	written	form,	his	work	was	essential	to	the	theory	of



proportion	later	presented	in	Euclid’s	books	V	and	VI,20	as	I	will	discuss	in	later
chapters.21	It	is	a	commonplace	today	that	Eudoxus’s	theory	of	ratio	anticipates
Dedekind’s	approach	to

irrational	numbers,	developed	in	the	19thcentury.22	And	Eudoxus’s	method	of
exhaustion,	exploited	by	Euclid	and,	later,	by

Archimedes23	captures	the	key	insight	embodied	in	the	modern	theory	of	limits,
precisely	defined	for	the	first	time	by	Cauchy	in	the

early	19th	century.

Euclid,	then,	stood	at	the

culmination	of	a

long

mathematical	tradition.	His	Elements	was	the	first	truly	successful
systematization	of	Greek	geometry.	The	Elements	emerged	in	the	wake	of	the
flowering	of	Greek	philosophy,	epitomized	by	the	work

of	Plato	and	Aristotle.	As	one	should	expect,	Euclid’s	work	clearly

reflects	the	influence	of	both	philosophers.

In	that	connection,	to	avoid	any	misunderstanding

regarding	the	Platonic	influence,	when	I	argue	that	Euclid’s

Elements	can	and	should	be	provided	a	non-Platonic	interpretation	and
justification,	I	do	not	argue	that	Euclid	would	have	agreed	with

me	nor	do	I	deny	the	Platonic	elements	in	his	work.	Rather	I

maintain	that	he	should	have	agreed	with	me,	that	the	Platonic	aspects	of	his
Elements	are	not	the	essence	of	Euclid’s	method.

The	final	mathematician	on	this	list	is	Archimedes,

properly	regarded	as	the	most	original	of	the	Greek	mathematicians



properly	regarded	as	the	most	original	of	the	Greek	mathematicians

and,	indeed,	one	of	the	greatest	mathematicians	of	all	time.

Archimedes	was	the	first	to	finally	square	the	circle,	and	he	went	on

from	there	to	determine,	with	modern	rigor,	the	volume	and

surface	area	of	the	sphere	and	the	volume	of	a	cone.	Applying

Eudoxus’s	method	of	exhaustion,	Archimedes’s	methods	in	this

regard	anticipate	the	integral	of	Newton’s	calculus.24

Geometric	Shapes

One	does	not	grasp	the	concept	of	a	“straight	line”	because

someone	has	offered	a	definition.	One	knows	what	straight	lines	are

because	one	has	seen	them,	and	has	isolated	them	conceptually,

say,	by	distinguishing	them	from	crooked	or	curved	lines.	One	has

observed	the	straightness	of	straight	lines	and	one	has	given	them	a

name.	In	pointing	to	the	relevant	distinctions	and	similarities,	one’s

definition	of	straightness	is	ostensive.

Nor	does	one	chronologically	begin	with	lines	drawn	on

paper;	one	begins	with	shapes.	One	begins	with	circles,	squares,

and	triangles;	one	begins	with	balls	and	cubes.	A	straight	line	is	the

edge	of	a	rectangle	(the	shape	of	a	book	or	a	tabletop),	the	shape	of

a	pencil,	or	the	shape	of	a	stretched	string	before	it	reappears	as	a

line	drawn	on	a	sheet	of	paper.	As	one	attends	to	shapes,	one



observes	that	some	shapes	have	straight	edges.	One	recognizes

straightness	perceptually	in	such	contexts.	One	perceives	whether

an	edge	or	a	line	is	changing	direction;	if	it	does,	it	isn’t	straight.	If

it	doesn’t	change	direction,	it	is	straight.25

When	one	forms	concepts	of	triangles,	circles,	and	cubes,

one	is	classifying	actual	shapes	of	actual	objects	within	the

environment,	according	to	similarities	and	differences	that	one

observes	perceptually.

Consider,	for	example,	a	triangular	shape.	Triangles	are

first	recognized	perceptually.	Typically,	triangles	in	our

environment	are	man-made.	They	include	triangular	drawing

instruments,	musical	triangles,	gables,	pizza	slices,	structural

elements	in	certain	bridges	and	electrical	towers,	the	arrangement

of	billiard	balls	at	the	beginning	of	a	pool	game,	and	the	standard

arrangement	of	bowling	pins	in	a	bowling	game.	Finally,	a	drawing

of	a	triangle	is,	itself,	a	triangle.

Perception	is	the	starting	point	and	the	base	of	our

knowledge	about	geometric	shapes	and	relationships.	Euclid’s

Elements	appeal	to	that	base	from	the	very	beginning.	His	Elements	show
pictures	of	triangles,	circles,	and/or	line	segments	on	almost

every	page.	Euclid	appeals	to	our	perception	of	his	figures	as	an	aid	to	grasping
his	arguments.	And	his	propositions	identify



relationships	among	these	figures.	So	the	first	thing	to	understand

is	the	nature	of	these	shapes.	Let	us	continue	to	focus	on	triangles

as	a	geometric	shape	that	is	both	complex	and	relatively	simple.

A	triangle	is	a	closed	plane	figure	with	three	straight	edges.

So	when	does	something	count	as	a	triangle?	Triangular

objects	have	a	multitude	of	characteristics.	Many	triangular	objects,

for	example,	have	various	colors.	Some	are	red,	some	blue.	But

color	is,	obviously,	not	one’s	focus	when	one	considers	triangles:

Not	all	aspects	of	an	object	are	relevant	to	its	shape.	What	makes

something	a	triangle	is	the	straightness	and	the	number	of	its

edges.	Color	doesn’t	matter;	has	nothing	to	do	with	whether	or	not

a	shape	is	triangular.

What	about	the	other	characteristics	of	triangular	objects?

Let’s	take	a	harder	example:

	

Consider	the	following	shape:

	
Is	this	a	triangle?

	



What	if	I	make	it	bigger?

	
Or	still	bigger?

	

At	a	certain	point	of	magnification,	for	this	particular

shape,	one	starts	seeing	a	fourth	side.	So	where	does	that	leave	us?

Arguably,	each	of	these	shapes	has	four	sides.	So,	are	none	of	them



triangles?	Is,	perhaps,	the	first	example	a	triangle	while	the	two

enlargements	are	not?	Is	there	some	a	priori	point	at	which	the

fourth	side	is	simply	too	big	to	ignore?	It	does	us	no	good	to	say,

“No	they	are	all	four-sided	figures,”	if	a	further	magnification	will

reveal	a	fifth	side.

The	question	is	far	from	academic.	First,	any	triangle	will

exhibit	imperfections	if	sufficiently	magnified.	The	edges	will	be

slightly	curved	or	have	slight	knicks.	The	corners	will	be	cut	off,	as

in	this	example.	Ultimately	the	triangles	will	resolve	to	distinct

atoms,	vibrating	in	some	kind	of	stable	equilibrium.	If	any

imperfection,	on	whatever	level	of	magnification,	disqualifies

something,	per	se,	as	a	triangle,	then	there	are	no	such	things	as

triangles.	There	would	be	no	such	thing,	indeed,	as	any	particular

geometric	shape	that	we	are	able	to	name	or	identify.

Now	we	know	that	triangles	exist.	We	formed	the	very

concept	from	our	perceptual	observations	of	them.	Our	knowledge

of	more	complex	figures,	including	the	analysis	of	four-sided

figures,	depends	on	our	knowledge	of	triangles.	Our	ability	even	to

frame	the	question,	even	to	view	a	magnification	of	a	shape	as	a

magnification	of	that	shape,	depends	on	our	knowledge	of

triangles.	If	there	is	no	such	thing	as	a	triangle,	our	attempts	to



analyze	shape,	even	to	criticize,	cannot	get	off	the	ground.

So	when	is	something	a	triangle?	It	depends	on	one’s

standard	of	precision.	In	this	example,	if	the	fourth	side	is	relevant,	it’s	a
quadrilateral	(four	sided	figure).	If	the	fourth	side	is

immaterial,	it’s	a	triangle.	Whether	something	is	a	triangle	depends	upon	one’s
standard	of	precision,	of	materiality.	Since	one’s

standard	depends,	or	should	depend,	upon	one’s	specific	cognitive

purpose,	the	same	figure	may	be	regarded	as	a	triangle	or	as	a

quadrilateral,	depending	on	one’s	standard	of	precision.

One’s	cognitive	purpose,	one’s	standards	of	precision,	one’s

need	to	make	certain	distinctions,	are	all	part	of	the	context	of	one’s

identifications.	Where	there	is	a	continuum	of	possibilities,	such

factors	determine	where	one	will	draw	the	line,	where	one	should	draw	the	line.
In	this	sense,	the	application	of	a	concept,	such	as

“triangle”,	to	concretes	is	contextual;	it	depends	on	one’s	context.26

For	example,	if	one	is	interested	in	the	number	of	calories

in	a	pizza	slice,	one	would	probably	treat	its	shape	as	triangular,

despite	fairly	obvious	differences	between	its	shape	and	that,	say,	of

a	triangular	drawing	instrument.	But,	conversely,	a	drawing

instrument	with	a	broken	corner	would,	as	far	that	corner	is

concerned,	be	unsuitable	for	its	intended	use	as	a	triangular

drawing	instrument.

So	standard	of	precision	is	a	question	of	relevance:	What



So	standard	of	precision	is	a	question	of	relevance:	What

distinctions	do	you	need	to	make?	An	immaterial	imperfection	is

one	that	you	don’t	have	a	reason	to	care	about.	A	material

imperfection	is	one	that	you	do	have	a	reason	to	care	about.	In	either	case,
regardless	of	which	judgment	one	makes,	one	is

identifying	an	objective	fact,	either,	say,	that	the	fourth	side	is

relevant	or	that	it	is	not.	If	a	fourth	side	isn’t	material,	it	is	an

objective	fact	that	the	figure	is	a	triangle	within	one’s	standard	of

precision.	If	a	fourth	side	is	material,	it	is	an	equally	objective	fact

that	the	figure	is	a	quadrilateral,	a	four	sided	figure.	The	difference

between	the	two	cases	is	not	in	the	shape	of	the	object;	that	shape	is

assumed	to	be	the	same	in	either	case.	Rather,	the	difference	is	in

the	context,	in	the	standard	of	precision	appropriate	to	that	context.

In	either	case,	the	standard	of	precision	is	finite.	If	one	regards	the

shape	as	quadrilateral	rather	than	a	triangle,	one	is	just	applying	a

finer	standard	than	the	one	that	saw	it	as	a	triangle.	There	remain

further	microscopic	features	that	remain	irrelevant	to	the	more

demanding	context.

In	sum,	“A	triangle	has	three	straight	sides”	means:

1.

Considered	as	a	shape,	there	are	three	relevant	sides
2.

There	is	no	relevant	bending	of	any	of	the	sides



There	is	no	relevant	bending	of	any	of	the	sides
3.

There	are	no	relevant	discontinuities	in	any	of	the	sides

When	Euclid	treats	the	edges	of	triangles	as	if	they	were

perfectly	straight	and	as	if	they	were	without	width,	his

mathematical	treatment	should	not	be	taken	to	have	metaphysical	implications
about	the	nature	of	physical	triangles,	nor	should	the

objects	of	his	inquiry	be	taken	as	living	in	some	separate

mathematical	universe.	Geometry	is	a	specialized	study	that	focuses

on	certain	attributes	of	objects	considered	in	isolation	from	the

rest,	not	the	study	of	idealized	objects.	“Triangle”	is	not	about

disembodied	shapes	in	some	mathematical	universe,	lacking	color

and	substance,	no	more	than	“red”	is	about	disembodied,	shapeless

hues	occupying	a	separate	color	universe.	Rather,	“triangle”	is	an

abstraction	that	zeros	in	on	certain	attributes	of	actual	shapes	of

actual	objects	and	omits	consideration	of	the	other	attributes	of

those	objects.27	One’s	application	of	“triangle”	does	not	deny	the	reality	of	those
other	attributes.	But	one’s	study	of	triangles	can

ignore	them	precisely	because	one’s	knowledge	about	triangles

applies	to	all	triangular	objects,	regardless	of	the	specifications	of	those	other
attributes.28	All	conceptual	knowledge,	including	knowledge	about	triangles,	is
knowledge	of	the	world.

Unless	one	looks	at	triangles	in	this	way,	one’s	analysis	of

geometric	shapes	cannot	get	off	the	ground.	One	analyzes	the



geometric	shapes	cannot	get	off	the	ground.	One	analyzes	the

complex	in	relation	to	the	simpler.	Simple	shapes	such	as	triangles

are	the	base	for	studying	more	complex	figures.	For	example,	one

derives	the	area	of	a	five-sided	figure	by	applying	the	formula	for

the	area	of	a	triangle.	One	applies	one’s	understanding	of	triangles

to	study	more	complex	figures	insofar	as	they	differ	materially	from

triangles.
But	what	determines	relevance,	materiality,	or	the

appropriate	standard	of	precision?
Suppose	you	are	10	seconds	late	to	a	meeting.	Are	you

really	late?	Are	start-times	for	meetings,	under	normal

circumstances,	even	specified	with	that	kind	of	precision?	If	not,	what	would	it
even	mean	to	be	10	seconds	late?	Consider	that	the

purpose	of	a	meeting	is	to	spend	some	time	pursuing	an	agenda.	To

claim	that	ten	seconds,	according	to	the	watch	of	one	of	the

participants,	were	enough	to	make	someone	late	would	drop	the

context	of	the	purpose	and	specificity	of	the	rendezvous.29	On	the	other	hand
suppose	you	are	10	seconds	late

swinging	a	bat.	If	your	purpose	is	to	hit	an	approaching	ball,	you

are	unbelievably	late.	A	delay	of	one	second	would	be	too	late!	To

say,	“Well,	I	was	only	10	seconds	too	late!”	would	really	be	dropping	context!
The	appropriate	standard	of	precision	depends	on	the

context.	What	is	your	purpose?	What	degree	of	precision	is

required	to	achieve	that	purpose?	Classification	of	a	figure	as	a



required	to	achieve	that	purpose?	Classification	of	a	figure	as	a

triangle	or	as	something	more	complicated	depends	on	one’s

context	and	on	a	standard	of	precision	appropriate	to	that	context.

Now	consider	the	idea	of	a	perfect	triangle.	Any	triangle

has	microscopic	imperfections.	But	if	these	imperfections	are

invisible,	one	normally	says	that	the	triangle	is	a	perfect	triangle.30	But	the	key
point	is	that	any	judgment	of	perfection	involves	and	requires	a	standard	of
perfection.	Normally	visibility	sets	that	standard,	sets	the	required	level	of
precision,	but	not	always.

Sometimes	more	is	needed.	For	example,	a	circular	piston	requires

a	degree	of	precision	greater	than	the	eye	can	distinguish.	The

geometry	of	semiconductors	requires	still	greater	precision	and	we

are	approaching	the	limits	of	what	is	actually	possible.	But,

whatever	the	specific	context,	there	will	always	be	a	limit	to	the

precision	that	is	actually	available	and	the	specific	precision

requirement	in	any	particular	case	will	always	be	finite.	To	ask	for

more	is	to	attempt	the	impossible.

Measuring	Triangles

One	recognizes	triangles	perceptually	as	plane	figures

having	three	straight	edges.	One	distinguishes	them	from	other

shapes	with	crooked	or	curved	edges	and	from	still	other	shapes

that	have	a	different	number	of	straight	edges.	But,	insofar	as	one

focuses	on	the	shape,	one	does	not	distinguish	them	as	to	color.	A



focuses	on	the	shape,	one	does	not	distinguish	them	as	to	color.	A

red	triangle	is	exactly	as	much	a	triangle	as	a	blue	triangle.

Nor	does	one	distinguish	triangles	as	to	material.	A	wooden

triangle	is	simply	a	triangle.	Insofar	as	one	views	it	as	triangular,	it

is	no	different	from	a	plastic	triangle	of	the	same	size	and	shape.

Insofar	as	one	views	them	as	triangles,	the	two	shapes	are	identical.

Any	entity	has	a	multitude	of	attributes	that	all	coexist	with

each	other	and	are	physically	inseparable	from	each	other.	A

triangular	object	must	have	some	color	and	some	material

composition,	but	it	may	have	any.	The	shape,	the	material

composition,	and	the	color	are	all	present	in	every	triangular	object.

But	when	one	studies	triangles,	one	focuses	on	the	shape	and	on	the

measurable	characteristics	of	that	shape.	And	everything	one	learns

about	that	kind	of	shape	applies	equally	to	all	triangles,	regardless

of	whatever	color	and	whatever	material	composition	any	one	of

them	might	have.

If	I	say	that	triangles	do	not	have	color,	I	do	not	mean	that

triangular	objects	don’t	have	color.	I	recognize	that,	generally	speaking,
triangular	objects	do	have	color.	But	the	specific	color

doesn’t	matter,	does	not	affect	one’s	study	of	triangles.	Color	is	one

attribute;	shape	is	another.	The	length	of	the	edges	is	a	measurable



characteristic	of	the	shape;	the	color	is	not.

When	one

studies	triangles,	one	studies	its	measurable	characteristics	as	triangles.	One
ignores	color	and	focuses	on	the

lengths	of	the	sides	and	the	degree	of	the	angles.	When	one	attends

to	color,	one	attends	to	the	measurable	characteristics	of	color,

namely	hue,	saturation,	and	intensity.	One	ignores	the	shape	of

colored	objects.	The	relationships	among	triangular	shapes	do	not

depend	on	color;	the	relationships	among	colors	do	not	depend	on

shape.

But	what	about	the	thickness	of	its	edges,	the	microscopic

or	even	visible	crookedness	of	its	edges,	and	the	microscopic

discontinuities	of	the	edges?	These	are	measurements	of	shape.	But	are	they
measurements	of	triangles?

Now,	in	point	of	fact,	when	we	compare

triangles,	we

compare	the	lengths	of	their	sides	and	the	degrees	of	their	angles.

We	ignore	their	microscopic	or	irrelevant	imperfections.	We	ignore	the
thickness,	slight	crookedness,	and	microscopic	discontinuities

of	the	edges.	Why?

These	imperfections,	were	they	relevant,	would	disqualify

the	shape	as	triangular.	Insofar	as	such	characteristics	relate	to	the

measurement	of	a	triangle,	what	they	actually	measure	is	the	extent



measurement	of	a	triangle,	what	they	actually	measure	is	the	extent

to	which	the

shape	is

not	a	triangle.	They	are	certainly

measurements	of	the	shape.	But	they	are	only	relevant	to	figures

that	do	not	qualify	as	triangles.

We

qualify	shapes	as	triangles	insofar	as	imperfections,

such	as	the	thickness	of	the	edges,	don’t	matter.	And	if	something

doesn’t	matter	then	it	really	doesn’t	matter.	If	it	doesn’t	matter	then

one	doesn’t	measure	it.	The	degree	of	the	imperfection	is	certainly	relevant	to
qualifying	a	shape	as	a	triangle.	But	qualifying	a	shape	as	a	triangle	consists	in
finding	that	its	specific	imperfections	are	irrelevant.	Accordingly,	when	one
compares	two	triangular	shapes,	one	has	already	recognized	that	any
imperfections	in	either	of	the

two	triangles	are	irrelevant.	One	cannot,	without	contradiction	or	context-
dropping,	treat	an	irrelevant	feature	as	if	it	were	relevant.

In	sum,	when	one	studies	triangles,	one	ignores	irrelevant

imperfections	just	as	one	ignores	color.

So	mathematics	studies	the	properties	of	triangles	insofar

as	they	are	triangles,	insofar	as	they	qualify	as	triangles	within	the

applicable	precision	requirements.	Precision	is	not	a	feature	of

triangles,	as	such.	The	Euclidean	study	of	triangles	does	not,	per	se,	include	a
study	of	precision.	On	the	contrary,	Euclid’s	Elements	studies	triangles	insofar



as	precision	is	not	an	issue.	In	the	same

sense	that	Euclidean	triangles	do	not	have	color	and	that	their

edges	do	not	have	width,	Euclidean	triangles	do	not	have	precision.

Within	a	particular	context,	precision	requirements	determine	only

whether	a	particular	shape	counts	as	a	triangle.	But	the	particular

level	of	precision	does	not	constitute	an	additional	element	of	a

triangle,	like	the	lengths	of	the	edges,	that	distinguishes	and

measures	aspects	of	the	triangle	attribute.

In	Ayn	Rand’s	terms	when	one	measures	triangles,	color	is

an	omitted	measurement.	A	triangular	object	must	have	some

color,	but	it	may	have	any.	The	particular	color	doesn’t	matter;	it

does	not	affect	one’s	study	of	shape.	In	the	same	way,	when	one

measures	triangles,	any	microscopic	or	irrelevant	imperfections	of	the	triangle
are	omitted	measurements.	If	these	imperfections	were

relevant,	we	couldn’t	count	them	as	triangles.	But	if	something	doesn’t	matter,
one	doesn’t	measure	it.	One	omits	it	from	one’s

analysis.31

The	operation	of	Ayn	Rand’s	principle	of	measurement

omission	is	ubiquitous	in	mathematics	and	I	will	point	it	out

repeatedly	in	this	book.	Ayn	Rand	introduces	her	concept	of

measurement	omission	when	she	observes:

“In	order	to	form	the	concept	“length,”	the	child’s



mind	retains	the	attribute	and	omits	its	particular

measurements.”32

This	omission	is	a	matter	of	implicit

method.	Omission

does	not	imply	non-existence.	An	abstraction	integrates	one’s

awareness	of	a	class	of	existents,	including	all	of	the	characteristics	of	these
existents.33	To	omit	a	consideration	of	certain	specifications	of	its	units	is	to
apply	a	particular	focus	to	these

units;	it	is	not	to	expel	these	specifications	from	the	abstraction,	to

assign	them	to	oblivion.	As	Ayn	Rand	puts	it:

“Bear	firmly	in	mind	that	the	term	“Measurements

omitted”	does	not	mean,	in	this	context,	that

measurements	are	regarded	as	non-existent;	it

means	that

measurements	exist,	but	are	not

specified.	That	measurements	must	exist	is	an

essential	part	of	the	process.	The	principle	is:	the

relevant	measurements	must	exist	in	some	quantity,	but	may	exist	in	any
quantity.”34

Concepts	apply	to	real	existents,	to	existents	that	have

countless	differences	within	an	essential	similarity.	To	subsume

these	existents	under	a	single	concept	is	to	recognize	and	to	focus

on	characteristics	that	do	not	depend	on	these	differences.



on	characteristics	that	do	not	depend	on	these	differences.

To	return	to	my	discussion	of	precision:	Euclid’s

Elements	does	not	study	precision,	but	there	is	such	a	study.	One	can

quantify	precision	as	a	separate	study.	For	example,	one	can	measure	deviations
from	straightness;	curvature	is	one	such

measure.	One	can	compare	shapes	that	don’t	count	as	triangles	to	other	shapes
that	do	count	as	triangles	and	quantify	the	various	respects	in	which	they	differ.
But	this	is	a	separate	study;	a	shape	that	is	close	to	being	a	triangle,	but	is
materially	different	from	a

triangle,	is	not	a	triangle.	Its	comparison	to	a	triangle	is	not	a

comparison	of	two	triangles;	it	is	a	comparison	of	two	shapes.	And

such	a	study,	even	a	study	of	precision,	is	subject	to	its	own

precision	limits	and	builds	upon	the	study	of	triangles.	Indeed,	the

comparison	on	a	non-triangle	to	a	triangle	presupposes	a	standard

of	precision	in	which	one	of	the	shapes	being	compared	counts	as	a

triangle	and	the	other	one	does	not.

It	may	be	helpful	to	contrast	my	view	with	that	of	John

Stuart	Mill.	Mill	presents	his	perspective	in	the	chapter

“Demonstration	and	Necessary	Truths”	of	his	A	System	of	Logic.

Mill	observes,	for	example,	that,

“There	exist	no	points	without	magnitude;	no	lines

without	breadth,	nor	perfectly	straight;	no	circles

with	all	their	radii	exactly	equal,	nor	squares	with



all	their	angles	perfectly	right.”35

Mill	deals	with	these	observations	by	placing	geometric

objects	in	our	imagination.	He	appeals	to	“one	of	the	characteristic

properties	of	geometric	form–their	capacity	of	being	painted	in	the

imagination	with	a	distinctness	equal	to	reality;	in	other	words,	the

exact	resemblance	of	our	ideas	of	form	to	the	sensations	that	suggest	them.”36
[emphasis	mine]	Concerning	actual	objects,	he	says	“…	we	feign	them	to	be
divested	of	all	properties,	except	those

which	are	material	to	our	purpose,	and	in	regard	to	which	we	design	to	consider
them.”37	He	ends	by	saying	“…	the	conditions	which	qualify	a	real	object	to	be

the	representative	of	its	class	are	completely

fulfilled	by	an	object	existing	only	in	our	fancy.”38

Now	superficially	Mill’s	view	might	be	taken	to	resemble

my	own.	Mill,	in	effect,	acknowledges	that	precision	is	finite	and	he

also	identifies	the	issue	of	materiality.	But	that	is	where	the

resemblance	stops	and	he	has	it	exactly	backwards.

First,	what	is	Mill’s	geometric	object?	Not	something	in	the

world	viewed	from	a	certain	perspective,	but	a	creature	of	the

imagination	that	has	been	suggested	by	objects	in	the	world.

Secondly,	when	Mill	takes	these	objects	in	the	world	to	“exactly

resemble”	the	geometric	objects	of	our	imagination,	he	is

comparing	an	existent	with	an	idea.	But	a	concept	is	not	an	object

to	which	one	can	compare	one	of	its	units.



to	which	one	can	compare	one	of	its	units.

Most	fundamentally,	Mill	completely	misses	the	referential

character	of	concepts.	The	concept	of	a	triangle	does	not	refer	to

something	in	our	imagination	to	which	we	can	compare	external

objects;	it	refers	to	actual	shapes	in	the	world	as	viewed	from	a

particular	perspective,	a	perspective	from	which	one	attends	to	and

measures	certain	characteristics	isolated	by	the	concept.

In	sum,

Mill’s	view	is	characteristic	of	the

representationalism	of	the	British	empiricists	and	it	is	a	secular

form	of	Platonism.	It’s	like	saying	that	horses	in	the	world	can	be

viewed	as	horses	because	they	resemble	your	imaginary	idea	of	a

horse.	Mill	simply	replaces	Plato’s	world	of	Forms	or	Ideas	by	a

world	of	the	imagination.

To	summarize	this	section,	geometry	studies	triangles	and

other	shapes.	It	studies	and	pertains	to	actual	triangles	on	earth,

not	idealizations	of	triangles,	limits	of	triangles,	or	imaginary

triangles.	Its	concepts	pertain	specifically	to	those	shapes.

Geometry	is	a	specialized	study:	One	focuses	on	what	is	relevant

within	a	context	and	treats	the	other	characteristics	of	its	objects	as	omitted
measurements.39	The	rest	of	this	chapter	will	explore	what	geometric
propositions	say	about	those	shapes	and	how	the	proofs



of	those	propositions	apply	to	those	shapes.

Mathematics	as	the	Science	of

Measurement

I	agree	with	Ayn	Rand’s	characterization:	“Mathematics	is

the	science	of	measurement,”40	and	I	believe	that	her	characterization	gets	at	the
heart	of	both	the	nature	and	the

purpose	of	mathematics.

But	this	has	never	been	the	standard	view.	Indeed,	it	will

strike	many	as	extremely	odd,	as	trivializing	an	enormously

abstract	and	complex	subject.	Nonetheless,	a	major	goal	of	this

book	is	to	show	just	how	the	abstract	complexity	of	mathematics

should	be	understood	from	the	measurement	perspective.

As	a	point	of	reference,	it	is	important	to	see	Ayn	Rand’s

characterization	of	mathematics	from	a	historical	perspective.
In	the	Classical	period,	as	I	have	already	indicated,	Plato

held	that	mathematics	was	about	mathematical	entities	living	in	an	abstract
realm,	the	world	of	Ideas.41	Aristotle,	coming	from	a	more	worldly	perspective,
held	that	mathematics	was	the	science	of

quantity.42	Aristotle’s	view	survived	into	the	modern	period	but	began	to	be
challenged	by	both	mathematical	and	philosophical

developments	during	the	nineteenth	century.	As	the	mathematical

developments	seemed	to	progressively	transcend	the	traditional

understanding	of	quantity,	Aristotle’s	view	was	ultimately



understanding	of	quantity,	Aristotle’s	view	was	ultimately

abandoned.43	In	the	words	of	Moritz	Epple,	the	19th	century	witnessed	“the	end
of	the	paradigm	of	the	science	of	quantity.”44
Aristotle’s	view	is	the	closest	to	Ayn	Rand’s	in	any	historical

period.	But	there	is	an	important	difference	between	the	two	views.

Namely,	Ayn	Rand’s	perspective	is	epistemological:	Measurement

involves	a	process	of	establishing	a	relationship,	a	relationship	of

the	attribute	one	is	measuring	to	a	standard.	Measurement	involves

mental	connections,	connections	based	on	quantitative

relationships	observed	in	the	world.	Mathematics	is	not	idle	contemplation;	it
has	a	cognitive	function:	integrating	the

conceptual	and	perceptual	realms,	establishing	quantitative

relationships	to	simultaneously	differentiate	and	connect	the	entire

spectrum	of	knowledge.
In	contrast,	Aristotle’s

perspective	is	metaphysical:

Aristotle’s	quantity	exists	in	the	world	as	a	fundamental	category.	It

is	the	quantities	themselves,	not	their	relationships	to	other

quantities	that	require	special	study.	And	quantity,	for,	Aristotle

and	his	contemporaries	referred	either	to	pluralities	or	to	that	which	was
divisible.45

Mathematicians	during	the	19th	and	20th	centuries

expanded	the	mathematical	field	in	ways	that	the	Greek	civilization

could	not	have	imagined.	These	developments	were	all	driven	by



could	not	have	imagined.	These	developments	were	all	driven	by

the	needs	of	measurement,	of	solving	equations	and	identifying

geometric	relationships.	As	a	pursuit,	mathematicians	continued	as

they	always	had,	devising	new	techniques	and	developing	new

concepts	to	solve	each	new	problem	as	it	rose	from	the	ashes	of

previous	problems	already	laid	to	rest.
Yet	their	investigations	led	in	unexpected	directions:	to

nonEuclidean	geometry,	to	algebraic	structures	such	as	groups	and

rings,	to	entirely	new	disciplines	such	as	algebraic	topology.

Nonetheless,	one	could	have	adapted	the	measurement	paradigm	to

embrace	and	provide	a	perspective,	indeed,	illumination,	on	these

developments.	And	it	would	have	been	possible,	though	harder	and

less	natural	to	similarly	adapt	the	idea	of	quantity.

These

developments	were	driven	by	methodological	considerations,

ultimately	by	the	requirements	of	indirect	measurement,	and	are

profitably	understood	as	such.
But	German	mathematicians,	in	an	environment	shaped

especially	by	Kantian	ideas,	chose	a	different	path,	one	the	rest	of

the	world	soon	followed.	In	this	environment

Aristotle’s

conception,	mathematics	as	the	study	of	quantity	was	easily

abandoned.	Rand’s	conception	of	quantitative	relationships	would



abandoned.	Rand’s	conception	of	quantitative	relationships	would

have	been	easier	to	adapt,	harder	to	abandon,	but,	in	any	event,	was

not	available	as	an	alternative.
In	my	view,	the	study	of	quantity	should	be	pursued	as	a

study	of	quantitative	relationships,	relationships	among	similar	characteristics.
And	this	is	the	key	ingredient	of	measurement.

Aristotle’s	conception	tends	to	divert	one	from	this	point;	Rand’s

definition	of	mathematics	embraces	it.
The	new	conceptions	of	mathematics	that	arose	during	the

nineteenth	and	early	twentieth	centuries	included	David	Hilbert’s

view	of	mathematics	as	the	study	of	formal	systems,46	Frege’s	and	Bertrand
Russell’s	attempt	to	reduce	mathematics	to	symbolic	logic,47	and	the
development	of	set	theory	as	a	purported	foundation	of	mathematics.48	This
latter	set	theoretic	approach	has	many	fathers,	but	a	key	milestone	on	that	path
was	Georg	Cantor’s	conception	of	an	actual,	completed	infinity.49	In	total,	these
developments	go

far	beyond	the	abandonment	of	Aristotle’s

quantity.	They	all	are,	to	one	degree	or	another,	an	abandonment	of

the	view	that	mathematics	is	referential,	that	mathematics	is	about

the	world	and	pertains	to	the	world.	For	further	elaboration	and,

specifically,	for	the	contrast	between	my	own	view	of	sets	and	the

modern	perspective,	see	Chapter	6.
As	already	noted,	realism	in	mathematics	is	taken	today,

among	philosophers	of	mathematics,	as	almost	a	synonym	for	Platonism.50	That
mathematics	might	refer	to	aspects	of	the	world	is	generally	dismissed,	primarily
because	of	issues	involving

infinity,	specifically	in	light	of	the	ubiquity	of	infinity



infinity,	specifically	in	light	of	the	ubiquity	of	infinity

in

mathematics.51
Nonetheless	there	have	been	a	number	of	modern	attempts

to	define	and	defend	various	versions	of	mathematical	realism.	I

applaud	such	efforts,	though	I	cannot	offer	a	survey,	much	less	a

critique,	of	this	work	here.	I	can	only	indicate	a	broad	contrast	to

my	own	approach	and	I	restrict	myself	to	one	illustration.	Namely,

consider	Michael	Resnik’s	Mathematics	as	a	Science	of	Patterns.	As	he	puts	his
thesis,	“The	ontological	component	of	my	realism	is	a

form	of	structuralism.	Mathematical	objects	are	featureless,

abstract	positions	in	structures	(or	more	suggestively,	patterns);	my

paradigm	mathematical	objects	are	geometric	points,	whose

identities	are	fixed	only	through	their	relationships	to	each	other.”52
Much	later,	he	elaborates:

“The	objects	of	mathematics,	that	is,	the	entities

which	our	mathematical	constants	and	quantifiers

denote,	are	themselves	atoms,	structureless

points,	or	positions	in	structures.	And	as	such	they

have	no	identity	or	distinguishing	features	outside	a	structure.”53

In	stating	this	thesis,	Resnik	is	affirming	that,	in	some

abstract	sense,	mathematics	has	an	object.	But,	at	least	in	the	sense

I	intend,	he	is	not	saying	that	mathematics	pertains	to	the	world.



I	intend,	he	is	not	saying	that	mathematics	pertains	to	the	world.

In	my	view,	Ayn	Rand’s	characterization	of	mathematics

gets	to	the	heart	of	the	subject.	I	maintain,	in	this	book,	that	to

understand	how	mathematics	relates	to	the	world,	one	must

understand	how	mathematics	relates	to	measurement.	Indeed,	the

key	to	a	full	understanding	and	appreciation	of	mathematics,	from

both	a	philosophical	and	mathematical	perspective	and	on	all	levels

of	mathematical	abstraction,	is	to	understand	its	concepts,

propositions,	and	demonstrations	in	relation	to	measurement.	In

this	chapter	I	apply	that	perspective	to	Euclid’s	Elements.

What	is	Measurement?

In	Ayn	Rand’s	definition,

“Measurement	is	the	identification	of	a

relationship–a	quantitative	relationship

established	by	means	of	a	standard	that	serves	as	a

unit.”54

The	purpose	of	measurement	is	to	extend	and	objectify	our

grasp	of	the	world	beyond	what	we	can	directly	perceive55	by	identifying
quantitative	relationships	to	what	we	can	directly	perceive.	One	of	those	means
is	the	application	of	a	universal

standard,	a	universal	reference	point	to	which	all	quantities	of	a	particular	kind
relate.56



Establishing	quantitative	relationships,	however,	is

something	more	general	than	measurement	in	Rand’s	sense	and

establishing	a	quantitative	relationship	between	two	quantities	is

possible	without	reference	to	a	standard.	For	example,	“This	pencil

is	longer	than	that	pencil,”	identifies	a	quantitative	relationship	but

makes	no	reference	to	a	standard	and	is	not,	in	this	sense,	a

measurement	according	to	Ayn	Rand’s	definition.	On	the	other

hand,	a	determination	that,	“This	board	is	5	feet	long,”	counts	as	a

measurement	because	it	relates	the	length	of	the	board	to	a

standard,	namely	to	a	foot.

So	what	does	geometry	measure?	It	measures	shapes	and

spatial	relationships.	In	particular,	geometry	measures	triangles,

distances,	directions,	areas,	and	volumes.

Measurement	is	complex.	The	measurement	identification

entailed	in	Ayn	Rand’s	definition	represents	a	culmination	of	a

process.	But	measurement,	in	the	full	sense,	presupposes	that:

1.

Standards	have	already	been	chosen.
2.

Subdivisions	are	available	and	there	is	a	process	in	place

for	making	further	subdivisions.
3.



There	is	an	inventory	of	direct	and	indirect	methods	to

relate	an	object	of	measurement	to	a	standard.
4.

There	is	a	general	way	to	express	the	results	of	a

measurement.

Each	of	these	elements	requires	a	separate	discovery	or,

indeed,	a	series	of	discoveries.	Ayn	Rand’s

definition

of

measurement	pertains	to	the	finished	product	that	embodies	all

these	separate	discoveries.	Euclid’s	Elements,	in	particular,	is	a	systematic	study
and	integration	of	such	discoveries,	of	geometric

relationships	that	can	help	relate	an	object	of	measurement	to	a

standard.

This	chapter	studies	the	roots	of	geometric	measurement	in

Euclid.

Indirect	Measurement

Measurement	begins	by	making	quantitative	comparisons,

relating	differences	in	degree.	For	example	one	judges	that	this

pencil	is	longer	than	that	pencil	or	that	my	right	hand	has	the	same

number	of	fingers	as	my	left	hand.	These	comparisons	do	not

require	measuring	either	pencil	or	counting	the	fingers	on	either



require	measuring	either	pencil	or	counting	the	fingers	on	either

hand.	But	they	do	reveal	quantitative	relationships.	Identifying

quantitative	relationships	is	the	fundamental	underpinning	of

measurement.

Geometry	offers	the	ability	to	transcend	the	limits	of	direct

comparison.	It	provides	powerful	tools	for	establishing	quantitative

relationships	through	indirect	means.	It	provides	an	essential

foundation	for	indirect	measurement.	By	geometrically-inspired

calculations,	Eratosthenes,	in	200	BC,	measured	the	angle	of	the

sun’s	rays	at	noon	to	find	the	circumference	of	the	earth.57	And	we	use	geometry
today	to	measure	the	distances	of	stars	in	space	and

the	arrangement	of	atoms	in	crystals.

In	my	usage,	an	indirect	measurement	is	one	that	is	not,

itself,	a	direct	measurement,	but	derives	from	more	direct

measurements	or	relies	on	measuring	and	calibrating	a	causal

consequence	of	the	attribute	being	measured.58

Simple	addition	is	an	elementary	case	of	indirect

measurement.	If	one	has	12	dimes	in	one	pocket	and	14	in	the

other,	one	does	not	need	to	count	the	aggregate	to	know	that	one

has	a	total	of	26	dimes.	One	uses	the	laws	of	addition,	i.e.,

mathematical	relationships,	to	quantify	the	aggregate.	Because	of

elementary	arithmetic,	a	millionaire	knows	he	is	a	millionaire



elementary	arithmetic,	a	millionaire	knows	he	is	a	millionaire

without	ever	counting	to	a	million.

Arithmetic	starts	as	a	means	of	indirect	measurement,	but

why	do	we	need	indirect	measurement	so	pervasively?	What	is	the

general	pattern?

The	simplest	measurements	involve	direct	perception.	One

counts	to	determine	multiplicity,	uses	tape	measures	to	measure

length	and	distance,	plumb	bobs	to	determine	the	vertical,

carpenters’	levels	to	determine	the	horizontal,	and	protractors	to

measure	angles.

But	consider	the	measurement	of	weight	by	an	electronic

scale,	of	the	speed	of	one’s	car	by	a	speedometer,	of	elapsed	time	by

a	stop	watch,	or	of	the	voltage	difference	in	a	battery	by	a	voltmeter.

These	are	the	sorts	of	measurement	tools	one	needs	once	one	goes

beyond	the	simple	comparisons	available	to	perception.

Measurements	involving	gauges,	such	as	these,	typically	follow	the

following	pattern:	A	causal	sequence	connects	the	attribute	being

measured	with	a	reading	on	a	dial,	a	reading	that	reflects	a

calibration	of	the	effect	of	the	attribute	on	the	measuring	device.

The	causal	sequence,	specifiable	mathematically,	connects	the

attribute	being	measured	with	the	reading	on	the	dial:	Behind	the

machine	stands	physics	and	mathematics.	A	measurement	made	by



machine	stands	physics	and	mathematics.	A	measurement	made	by

a	machine	is	an	indirect	measurement.

This	chapter	will	examine	the

mathematical	underpinning

of	indirect	measurement	and	exhibit	indirect	measurement	as	the

key	to	understanding	both	the	content	of	Euclid’s	propositions	and

the	method	of	his	arguments.	For	every	proposition	in	Euclid’s

Elements	states	something	about	indirect	measurement.	Every	proof	appeals	to	a
series	of	measurements,	measurements	that,

taken	as	a	whole,	suffice	to	indirectly	establish	the	relationship

asserted	in	the	proposition.

As	a	useful	example	of	indirect	measurement,	consider	a

flagpole	depicted	in	Figure	2.	Suppose	that,	at	some	particular	time

of	day,	the	flagpole	casts	a	shadow	ten	feet	long.	Suppose,	further,

that,	at	exactly	the	same	time,	a	nearby	six-foot	man	casts	a	shadow

three	feet	long.	How	high	is	the	flagpole?



Figure	2

Now	one	may	know	that	the	length	of	the	shadow	is

proportional	to	the	height.	One	may,	perhaps,	reason:	“Triple	the

height;	triple	the	shadow.”	So,	one	observes,	the	height	of	the	man

is	twice	the	length	of	his	shadow.	So	the	height	of	the	flagpole	must

be	twice	the	length	of	its	shadow.	The	flagpole’s	shadow	is	ten	feet.

So	the	flagpole	must	be	20	feet.

But	how	does	one	know	that	the	length	of	the	shadow	is

proportional	to	the	height?	It	may	seem	obvious,	but	the	discovery

and	validation	of	this	principle	was	a	high	point	of	Greek

mathematics,	one	with	a	difficult	history.	The	ancient	Greek	school



of	Pythagoras	made	an	early,	not	fully	successful,	effort	to	establish	the
relationship	in	approximately	500	BC.59	A	century	later,	Eudoxus	found	the	key
to	a	fully	successful	demonstration.	Euclid

presents	a	rigorous	account,	based	on	the	work	of	Eudoxus,	in	Books	V	and	VI
of	the	Elements.60

Only	Euclid	didn’t	quite	put	it	that	way.	He	said,	rather,

that	the	ratios	of	corresponding	sides	of	similar	triangles	are

equal.61	Now	to	say	that	triangles	are	similar	is	to	say	that	they	have	the	same
shape,	but	that	one	may	be	bigger	than	the	other.

Triangles	have	the	same	shape	when	they	can	be	matched	up	so

that	corresponding	angles	are	equal.62

So	suppose	two	triangles	have	the	same	shape.	According

to	Euclid’s	proposition,	if	a	side	of	one	triangle	is	twice	the	length	of

its	base,	then	the	corresponding	side	of	the	other	triangle	must	be

twice	the	base	of	its	triangle.

Ok,	where	is	the	triangle	in	my	example	of	the	flagpole?

The	answer	is	depicted	in	Figure	2.	The	man	and	his	shadow	form

two	sides	of	a	triangle.	The	third	side	is	supplied	by	the	rays	of	the

sun:	A	sunray	just	missing	the	top	of	the	man’s	head	will	hit	a	point

just	beyond	the	shadow.	To	put	it	another	way:	A	line	drawn	from

the	tip	of	the	shadow	to	the	top	of	the	man’s	head	points	directly	to

the	sun.	That	line	is	the	third	side	of	the	triangle.	The	angle	at	the

bottom	represents	the	angle	with	which	the	sun’s	rays	are	striking



bottom	represents	the	angle	with	which	the	sun’s	rays	are	striking

the	ground.

In	the	same	way,	the	flag	pole	and	its	shadow	are	also	two

sides	of	a	triangle.	Corresponding	angles	are	equal;	the	sun’s	rays

are	all	parallel	and	both	the	man	and	the	flagpole	are	presumed	to

be	standing	straight.	So	the	triangles	have	the	same	shape.

Therefore,	the	shadow	of	the	flagpole	is	to	the	shadow	of	the	man	as

the	height	of	the	flagpole	is	to	the	height	of	the	man.	From	which	it

follows	that	the	length	of	the	shadow	is	proportionate	to	the	height

of	the	shadow	caster.

I	said	earlier,	in	regard	to	gauges,	that	a	“causal	sequence,

specifiable	mathematically,	connects	the	attribute	being	measured

with	the	reading	on	the	dial.”	These	causal	elements	are	observable

in	the	flagpole	example.	First,	the	brightness	of	the	sunlit	region	surrounding	the
flagpole	shadow	is	caused	by	the	sun’s	rays.	Or,

alternatively,	the	shadow	is	caused	by	the	flagpole	obstructing	the	rays	of	the
sun.	The	contrast	between	the	two	regions,	the	pointer	on	the	dial	upon	which
we	rely	for	our	measurement,	depends

jointly	on	the	nature	of	the	sun	and	the	nature	of	the	flagpole.

Specifically,	the	sun’s	rays	propagate	in	straight	lines.	And	those

rays	that	fall	on	the	earth	propagate	in	parallel	straight	lines,	due	to	the	great
distance	of	the	sun	from	the	earth.	The	flagpole,	for	its

part,	blocks	the	sun’s	rays	and	the	shape	of	the	shadow	is

determined	by	the	shape	of	the	flagpole.



determined	by	the	shape	of	the	flagpole.

As	a	result	of	all	of	these	causal	elements,	the	length	of	the

shadow	is	a	manifestation	of	the	height	of	the	flagpole.	The	shadow

provides	evidence	of	the	height	of	the	flagpole:	the	taller	the

flagpole,	the	longer	the	shadow.	The	shadow	acts	as	a	gauge	of	the

attribute	being	measured:	the	height	of	the	flagpole.

Yet,	so	far,	it	is	a	gauge	without	a	scale.	The	measuring

instrument	is	the	causal	sequence	connecting	the	sun,	the	flagpole,

and	the	ground	upon	which	the	shadow	falls.	But	that	measuring

instrument	has	not	yet	been	calibrated.

For	that,	one	needs	to	compare	the	reading	on	the	ground

with	an	appropriate	standard.	One	needs	a	reference	shadow	for

which	the	corresponding	height	is	already	known.	That	function	is

served	by	the	six-foot	man	with	the	three-foot	shadow.

But	even	that	is	not	quite	enough:	One	still	needs	to	know

how	the	length	of	the	shadow	varies	with	the	height.	Not	all	causal

relationships,	after	all,	are	easy	to	quantify.	But,	in	this	case,

geometry	provides	an	answer	that	has	already	been	noted:	The

length	of	the	shadow	is	proportionate	to	the	height	of	the	shadow

caster.

In	summary,	this	calculation	relies	on	such	physical	factors

as,	first,	that	the	sun’s	rays	propagate	in	straight	lines,	second,	that



as,	first,	that	the	sun’s	rays	propagate	in	straight	lines,	second,	that

the	sun’s	rays	are	parallel,	and,	third,	that	both	the	flagpole	and	the

man	block	the	sun’s	rays.	It	also	relies	on	the	fact	that	one	has

already	measured	the	height	of	the	man	and	the	lengths	of	the

shadows.	But	the	final	step	in	this	measurement	provides	the

mathematical	foundation	that	makes	the	rest	relevant.	That	step	is

the	application	of	the	geometric	proposition	that	when	triangles	are

similar	(have	the	same	angles),	the	ratios	of	corresponding	sides	are

equal.	Taken	as	a	whole,	this	process	is	an	indirect	measurement	of

the	height	of	the	flagpole.

As	this	example	illustrates,	mathematical	relationships

such	as	geometric	relationships	and	quantitative	expressions	of

causal	relationships,	are	an	essential	underpinning	of	indirect

measurement.

The	process	I	have	described	embodies	key	features	of

indirect	measurement	taken	generally.	Like	all	measurement,	it

also	offers	finite	precision:	20	feet	plus	or	minus.	What	are	some	of

the	factors	that	may	limit	its	precision?

There	are	many.	It’s	possible,	for	example	that	the	ground

is	not	entirely	level	or	that	the	flagpole	isn’t	completely	straight	or

completely	vertical.	The	flagpole	may	be	elevated	above	the	general

level	of	the	surrounding	ground.	Measuring	the	length	of	the



level	of	the	surrounding	ground.	Measuring	the	length	of	the

shadow	is	subject	to	various	precision	limits,	including	an

estimation	of	the	point	inside	the	base	of	the	flagpole	from	which

the	measurement	should	start	and	a	second	estimation	of	which

point	on	the	shadow’s	extremity	will	provide	the	most	accurate

measurement.

There	are	also	calibration	issues.	A	six	foot	man	is	not	the

ideal	shadow	caster	for	this	purpose;	a	vertical	six-foot	stick	would

be	better	and	the	narrower	the	stick,	within	limits,	the	better	the

determination.	All	of	the	issues	with	measuring	the	flagpole’s

shadow	apply,	as	well,	to	measuring	the	man’s	shadow.	Finally,	one

last	measurement	is	needed,	subject	to	its	own	precision	limits:	the

man’s	height.

But	there	are	no	mathematical	limitations.	Short	of	human

error,	there	is	no	additional	error	introduced	by	the	mathematical

calculation,	which	can	be	carried	out	to	any	required	precision.

In	simplest	essence,	this	measurement	of	the	height	of	the

flagpole	requires	three	direct	measurements,	specifically	of	the

man’s	height	and	of	the	two	shadows.	And	it	requires	one

mathematical	calculation.	All	three	direct	measurements	are

subject	to	specific	precision	limits.	But	whatever	those	limits	may

be,	the	mathematics	can	derive	the	most	accurate	final



be,	the	mathematics	can	derive	the	most	accurate	final

measurement	that	is	available	under	the	circumstances.	And,	to	the

extent	that	the	respective	precision	limits	of	the	component	measurements	have
been	identified,	the	mathematics	can	calculate

the	precision	of	the	final	result.

The	role	of	geometry	in	the	indirect	measurement	of

physical	quantities	is	not	always	as	transparent	as	it	was	in	the

flagpole	example.	However,	physical	measurements	necessarily

involve	objects	that	are	related	spatially	and	have	a	geometric

structure.	These	geometric	relationships	are	part	of	the	theater	in

which	all	physical	phenomena	takes	place	and	our	knowledge	of

geometry	is	embedded	in	the	mathematics	that	we	apply	to	the

phenomena.	For	example,	the	operation	of	a	balance	scale	reflects

the	way	that	physical	forces	interact,	but	it	also	depends	on	the

geometric	relationship	between	the	lever	arm	and	its	fulcrum.

My	points	about	precision	apply	generally,	as	well.	For	a

balance	scale,	the	lever	arm,	on	a	microscopic	level,	won’t	be

completely	straight.	The	fulcrum	has	a	finite	extension.	And	so	on.

But	the	mathematics,	as	in	the	flag	pole	example,	will	provide,	and

can	quantify,	whatever	level	of	precision	is	needed	within	the

physical	constraints	of	a	particular	context.



Context	and	Precision

As	I	have	discussed,	precision	is	finite	and	the	appropriate

standard	of	precision	is	contextual.	And	a	key	aspect	of	that	context

is	an	answer	to	the	question,	“Why	do	you	care?”	For	example,

suppose	your	intent	is	to	paint	the	flagpole	with	a	very	expensive

paint.	You	want	to	make	sure	you	have	enough	paint,	but	you	don’t

want	to	have	too	much	left	over.	You	may	be	looking	for	an	estimate

of	the	height	within,	say,	six	inches.	Yet	your	measurement	based

on	the	length	of	its	shadow	may	only	be	accurate	within	a	couple	of

feet,	significantly	outside	your	precision	requirement.	But	now

suppose	you	have	a	20	foot	ladder	and	a	25	foot	tape	measure.	In

such	a	case,	the	precision	of	your	initial	estimate	is	more	than

adequate	to	the	task	because	you	have	now	established	that	your

ladder	and	tape	measure	are	all	that	you	need	to	refine	your	initial	measurement
to	meet	your	precision	requirement.	So	your	initial

measurement,	serving	as	an	initial	estimate,	is	perfectly	precise.	It

fully	meets	the	precision	requirement	of	an	initial	estimate	by	establishing	the
feasibility	of	the	subsequent	refinement.

In	general,	if	one	needs	to	refine	a	measurement,	one	may

refine	the	measuring	instrument,	which	would	be	difficult	in	this

particular	example.	Or	one	finds	a	more	accurate	way	of	measuring.

If	a	principle	applies	to	a	concrete,	as	in	this	case,	then	that



If	a	principle	applies	to	a	concrete,	as	in	this	case,	then	that

concrete	is	one	of	the	units	of	the	principle,	part	of	the	meaning	of

the	principle.	There	is	an	exact	parallel	here	to	Ayn	Rand’s

observation	that	the	meaning	of	a	concept	consists	of	its	units.	In

the	same	way,	the	meaning	of	a	principle	consists	of	its	units,	of	the

actual	and	potential	concretes	to	which	it	applies.63

In	general,	mathematics	cannot	guarantee	that	a	desired

level	of	precision	is	achievable.	But	it	can	guarantee	that	if	the

physical	requirements	are	met,	the	desired	precision	will	be	achieved.	In	this
precise	sense,	the	calculation	is	universally	valid.

The	principle	is	that	if	X,	Y,	Z,	etc.	are	all	precise	enough,	then	the

application	of	the	mathematical	principle	will	satisfy	the	precision

requirements	of	the	particular	measurement.

Notice	the	parallelism	between	my	discussion	of	triangles

and	measurement.	In	the	case	of	triangles	and	other	geometric

shapes,	context	determines	relevance.	Context	determines	what

counts	as	an	imperfection,	which	imperfections	are	relevant.	In	the

case	of	measurement,	context	determines	the	precision

requirement,	how	close	your	measurement	needs	to	be	in	order	to

constitute	a	precise	measurement.	The	job	of	mathematics	is	not	to

make	infinite	precision	possible.	It	is	to	accommodate	any

particular	precision	requirement	that	might	be	needed,	some	day,	for	some



reason,	in	any	particular	instance.	A	mathematical

principle	that	meets	this	demand	applies	equally	to	all	qualifying

instances.

Geometric	Propositions:	Meaning	and

Precision

Euclid’s	propositions	are	about	the	world.	In	the	flagpole

example,	I	applied	the	proposition:	Ratios	of	corresponding	sides	of	similar
triangles	are	equal.	Similar	triangles	are	triangles	for

which	corresponding	angles	are	equal.	But	what	does	it	mean	for	two	angles	to
be	equal?

On	the	basis	of	everything	I	have	said,	there	is	only	one

thing	this	could	possibly	mean:	Two	quantities	are	equal	if	there	is

no	material	difference	between	them.	So	Euclid’s	proposition	says	that	if	there	is
no	material	difference	between	corresponding	angles

then	there	is	also	no	material	difference	between	the	various	ratios

of	corresponding	sides.	And	recall,	once	again,	that	a	material

difference	is	a	difference	that	one	has	a	reason	to	care	about.

With	this	understanding,	the	proposition	applies,	as	in	the

flagpole	example,	to	all	pairs	of	similar	triangles	that,	within	their

particular	context,	satisfy	the	criteria	of	the	proposition	within	the

applicable	precision	requirement.	For	example,	suppose	that	the

flagpole	height	needs	to	be	known	within	six	inches.	Addressing



flagpole	height	needs	to	be	known	within	six	inches.	Addressing

this	need	imposes	definite	requirements	upon	how	accurately	one

measures	the	lengths	of	the	shadows	and	the	height	of	the	man.	It

imposes	further	requirements	on	how	similar	the	similar	triangles

need	to	be.	But	if	those	requirements	are	met,	the	final	result	will

have	the	required	accuracy.

The	proposition	applies	to	all	contexts	for	which	the

physical	requirements	of	the	required	level	of	precision	have	been

met.	In	any	such	context,	the	proposition	means	that	the	ratios	are	equal,	equal
within	the	required	level	of	precision.	If	one’s	final

measurement	requires	precision	within	5%,	it	might	be	necessary	to

measure	the	inputs	to	precision	of	1%.	But	some	degree	of	precision	will	suffice
to	meet	the	requirement.

The	mathematics	cannot	guarantee	that	a	desired	level	of

precision	will	be	physically	achievable	in	a	particular	context.	But	it

can	guarantee	that	if	the	physical	requirements	are	indeed	met,	the	final	result
will	be	accurate	within	six	inches,	or	half	an	inch,	or,

indeed,	within	any	specific	finite	precision	one	might	demand	for

the	final	result.

In	sum,	a	geometric	proposition	applies	equally	to	all

situations	of	a	particular	type.	It	applies	to	an	entire	category	of

physical	situations.	In	each	case,	the	proposition	provides	an

answer	that	will	hold	within	the	specific	required	precision



whenever	the	physical	demands	of	that	precision	can	be	met.

To	further	explore	the	issue	of	materiality,	introducing	a

possible	complication,	consider	a	second	example.	A	triangle	is	called	isosceles
when	two	of	its	sides	are	equal.64	Euclid	states	that,	for	any	isosceles	triangle,
the	angles	opposite	the	equal	sides	are

equal.	Conversely,	any	triangle	containing	two	equal	angles	is

isosceles.65

What	does	this	statement	about	triangles	actually	say	about

triangles,	about	actual	physical	triangles?	Do	isosceles	triangles

even	exist?

This	second	question	is	really	no	different	than:	Do

triangles	exist?	The	answer	is	yes.	An	isosceles	triangle	is	a	triangle

for	which,	within	a	specified	particular	context,	there	is	no	relevant

difference	between	two	of	its	sides.

The	statement	says	that	if	there	is	no	relevant	difference

between	the	sides,	then	there	is	also	no	relevant	difference	between

its	angles.	One	can	also	put	it	another	way:	To	the	extent	it’s	a

triangle,	any	difference	in	the	angles	is	attributable	to	a	difference

in	the	sides.	And	a	good	way	to	look	at	either	formulation	is	the	way

I	did	with	the	flagpole	example:	No	matter	how	close	one	requires

the	two	angles	to	be,	one	can	guarantee	it	by	making	the	sides

sufficiently	straight	and	making	the	lengths	of	the	two	opposite



sides	sufficiently	close.

Now	it	might	happen	that	a	difference	in	the	lengths	of	the

sides	would	be	detectable	while	the	difference	in	the	angles	would

not	be	detectable	or	vice	versa.	Lengths	and	angles,	after	all,	are

different	kinds	of	quantities	and	might	be	directly	measurable	with

different	levels	of	precision.	But	in	such	cases,	the	difference,	say,	in

the	lengths	of	the	sides	is	evidence	that	the	angles	themselves	are	unequal	even
when	this	difference	cannot	be	distinguished	by	a

more	direct	measurement	of	the	angles.	Armed	with	Euclid’s

theorem,	the	inequality	of	the	lengths	of	the	sides	provides	an

indirect	measurement	of	the	relationship	between	the	angles.

Now	suppose	that	one	can	directly	measure	the	angles,	but

not	the	sides.	In	this	case	the	proposition	implies	that,	if	the	angles

are	equal,	this	equality	is	evidence	that	the	sides	are	equal.	In	such

a	case,	measuring	the	relationship	of	the	angles	is	the	most	precise	available
measurement	of	the	relationship	between	the	edges.

Without	such	a	warrant,	the	theorem	would	be	useless.	The

very	point	of	relating	angles	and	lengths	is	to	provide	a	way	to

measure	quantities	indirectly	when	one	cannot	measure	them	directly,	by	relying
on	mathematical	relationships	to	quantities	that

one	can	measure	directly.	When	a	sailor	navigates	by	determining	the	directions
from	his	location	to	the	fixed	stars,	he	is	counting	on

various	mathematical	relationships	to	establish	his	position,



mathematical	relationships	that	relate	distances	and	angles.

My	examples	illustrate	how	Euclid’s	propositions	do,	in

fact,	apply	to	the	world,	indeed,	how	his	propositions	have	always

been	applied.	In	practice,	there	has	never	been	a	mystery	in	how

one	applies	geometric	knowledge	and	such	applications	preceded

Euclid’s	brilliant	integration.

I	have	so	far	maintained	that	mathematical	concepts	are

derived	from	reality	and	refer	to	reality.	I	have	discussed	what

geometric	propositions	actually	mean	about	the	world.	But	what

about	Euclid’s	arguments	for	his	propositions?

If	Euclid	appears	to	be	writing	about	ideal	lines,	circles	and

triangles,	how	can	his	arguments	apply	to	real	lines,	circles	and

triangles?	How	can	his	arguments	pertain	to	the	world?	Are	his

logical	arguments	really	still	valid	if	one	applies	those	logical

arguments	to	actual,	real-world	lines,	circles,	and	triangles?

One	cannot	omit	an	answer	to	this	question.	My	thesis

demands	an	account	of	what	the	steps	in	Euclid’s	arguments

actually	mean.	What	do	they	say	about	and	how	do	they	apply	the

world?	To	this	subject	I	turn.

How	does	Euclid	Measure?

The	rest	of	this	chapter	will	pursue	three	basic	questions



The	rest	of	this	chapter	will	pursue	three	basic	questions

concerning	Euclid’s	Elements.	Where	does	he	start?	What	are	his	tools?	How
does	he	use	them?

In	outline,	Euclid	starts	with	“postulates”	and	“common

notions”.	In	my	view,	these	provide	the	tools,	the	primitive

measurements,	to	prove	his	propositions.	I	will	first	examine	these

postulates	and	common	notions	as	they	relate	to	measurement.

And	then	study	their	use	in	proving	the	propositions.

Euclid’s

Elements	embodies	a	highly	stylized,	abstract

approach	to	measurement.	Euclid	does	not	use	yard	sticks	or	tape

measures.	He	does	not	say	things	like:	“Two	sides	of	this	triangle

are	each	5	inches	therefore	they	are	equal.”	Rather,	he	says	things

like,	“Suppose	that	two	sides	of	this	triangle	are	equal.	Then	their

opposite	angles,	whatever	they	might	be,	are	equal,	as	well.”	Such	a

statement	is	an	abstract	formulation	of	a	universal	relationship

applying	to	all	triangles	as	such,	independent	of	their	specific

measurements.

Every	step	of	every	proof	of	every	proposition	in	Euclid	is

an	abstract	measurement	or	is	part	of	one.	Every	construction	is	a

process	of	measurement;	every	proposition	expresses	a

mathematical	relationship:	a	comparison	of	two	or	more	distinct



quantities.	Every	comparison	is	either	a	direct	measurement	or	it	is

an	indirect	measurement.	But	the	indirect	measurements	already

reflect	a	chain	of	direct	comparisons	and	direct	measurements.	In	a

sense	to	be	elaborated,	Euclid’s	method	is	to	present	a	recipe	for	a

series	of	abstract	measurements	that	establish	a	proposition.

Measurement	in	Euclid	consists	in	finding	or	specifying

quantitative	relationships.

Identifying	Quantitative	Relationships

It’s	important	to	understand	the	relationship	of	the	wider

concept,	identifying	quantitative	relationships,	to	measurement	(in	the	full	sense
of	establishing	the	relationship	to	a	unit).

Identifying	quantitative	relationships	can	be	done	without	numbers	or	units	It	is
a	wider	concept	than	measurement;	it

precedes	measurement;	it	is	presupposed,	in	general,	in	the	act	of

finding	a	quantitative	relationship	to	a	standard	(i.e.,	any	act	of	measurement);	it
is	very	often	a	step	in	measurement;	and,	as	used	in	Euclid,	it	is	an	abstract	form
of	measurement.

First,	the	act	of	identifying	quantitative	relationships

neither	requires	nor	presupposes	numbers	nor	units.	Indeed,	we

make	nonnumerical	quantitative	judgments	routinely.	To	judge

visually	that	Tom	is	taller	than	Mary,	that	a	feather	will	feel	lighter

than	a	silver	dollar,	that	one	light	is	brighter	than	another,	or	to

point	in	the	direction	of	a	circling	hawk	are	all	to	make	a	nonnumerical



point	in	the	direction	of	a	circling	hawk	are	all	to	make	a	nonnumerical
quantitative	judgement.

Identifying	quantitative

relationships	without	numbers	or	units	is	an	everyday	activity.

Although	every	numerical	measurement	establishes	a

quantitative	relationship,	the	reverse	is	not	true,	as	the	previous

examples	indicate.	“[I]dentification	of	a	quantitative	relationship”

is	not	the	differentia	of	Ayn	Rand’s	definition	of	measurement;	it	is

the	genus	.

One	identifies	quantitative	relationships	before	one	starts

relating	things	to	standards.	One	compares	multitudes	visually,	or

by	other	means,	before	one	learns	to	count.	One	compares	lengths

before	one	compares	the	length	of	an	object	to	a	tape	measure.	And

any	act	of	establishing	a	quantitative	relationship	to	a	standard

presupposes	a

more	general	ability	to	establish	quantitative

relationships.

The	measurement	of	the	flagpole	by	means	of	its	shadow

relied	on	a	general	quantitative	relationship	relating	similar

triangles.	That	universal	relationship	of	similar	triangles	does	not

depend	on	one’s	choice	of	a	standard	of	measurement	and	the

statement	of	the	principle	makes	no	mention	of	one.	And	this	case



is	typical	of	indirect	measurements.	Indirect	measurements

typically	involve	appeals	to	quantitative	relationships	that	apply

generally,	across	a	wide	spectrum	of	concrete	cases.	Such	an	appeal,

whether	it’s	identified	explicitly	or	is	only	implicit,	is	a	step,	often	a

key	step	in	the	overall	measurement	process.

Finally,	Euclid’s	identifications	of	quantitative

relationships	embody	an	abstract	form	of	measurement.	In	any

Euclidean	argument,	the	specific	standard

units,	numerical

measurements,	and	context	are	irrelevant,	are,	in	Ayn	Rand’s

terms,	“omitted	measurements”.	For	a	Euclidean	argument	applies

to	an	open-ended	range	of	concretes,	regardless	of	the	particular

standards,	numerical	measurements	or	specific	context	of	each

concrete	that	is	included	in	that	range	of	concretes.	Euclidean

propositions	are	all	statements	of	quantitative	relationships	that

transcend	specific	concrete	measurements.

I	have	already	discussed	the	issue	of	finite	precision	as	it

applies	to	the	statements	of	Euclidean	propositions,	to	the	way	one

should	think	of	relationships	of	equality	and	inequality,	and	to	the

way	one	should	view	the	universality	of	these	propositions.	The

same	principles	apply	to	measurement	or	to	a	series	of



measurements.	It	applies	to	abstract	measurement.	And	this	is

important	to	my	broader	argument	because	of	my	contention	that

every	Euclidean	argument,	despite	its	deductive	form,	reduces	to	a

series	of	connected	abstract	measurements.

To	make	that	broader	argument,	the	main	remaining

burden	of	this	chapter	will	be	to	explain	just	how	the	steps	in

Euclid’s	arguments	express	quantitative	relationships,	how	they	constitute
abstract	measurements.	But	one	word	of	warning

regarding	terminology:	Although	the	best	characterization	of	these

steps	is	the	term	“abstract	measurement,”	I	will	frequently,	for

simplicity	of	expression,	use	the	term	“measurement”	to	describe

these	steps.	Whenever	I	do	that,	it	should	be	taken	to	refer	to	the

broader	phenomenon	of	abstract	measurement.

Straight-edge	and	Compass	Constructions

in	Euclid

Neither	straight	edges	nor	compasses	appear	in	the

Elements.	But	when	Euclid	proposes	drawing	a	line	connecting	two	points,	he
appeals	to	the	use	of	a	straight	edge.	When	Euclid

proposes	extending	a	line	that	has	already	been	drawn,	he	appeals

to	the	use	of	a	straight	edge.	When	Euclid	proposes	drawing	a	circle

with	a	given	radius	around	a	point,	he	appeals	to	the	use	of	a



compass.

Euclid	systematically	appeals,	implicitly,	to	the	use	of

straight	edges	and	compasses,	or	at	least	of	some	kind	of	device	to

achieve	the	same	ends.	So	to	appreciate	and	understand	Euclid’s

arguments,	to	understand	their	relationship	to	the	world,	one

begins	by	identifying	the	essential	nature	of	these	constructions.

Euclid	uses	lines	and	circles	in	two	related	respects:	first,	to

construct	geometric	figures	to	various	specifications	and,	second,	to	identify
geometric	relationships	by	means	that	ultimately	appeal	to

the	nature	of	lines	and	circles.	Lines	and	circles,	and	also	angles,

are	Euclid’s	means	of	measurement.

Circles,	Straight	Lines,	and	Angles

Euclid	constructs	circles,	straight	lines,	and,	derivatively,

angles.	What	exactly	do	these	constructions	measure?
First,	what	is	a	circle?	A	circle	is	characterized	by	the	fact

that	every	point	on	its	circumference	has	the	same	distance	from	a

central	point.	When	Euclid	posits	that	a	circle	can	be	drawn	of	any

prescribed	radius	from	any	designated	point,	he	refers	to	the

possibility	of	measuring	out	a	length	of	any	prescribed	amount,	in

any	direction,	from	any	particular	point	in	the	universe.	Circles	do

not	directly	compare	lengths	of	objects	residing	in	different	places.

But	circles	do	provide	a	direct	way	to	compare	a	distance	in	one



But	circles	do	provide	a	direct	way	to	compare	a	distance	in	one

direction	to	a	distance	in	another	direction,	as	long	as	both

distances	start	from	the	same	point.
A	circle,	in	Euclid,	therefore,	functions	as	a	measurement

of	distance.	As	a	measurement,	it	performs	two	essential	tasks:

First,	it	provides	a	visual	indication	of	distance	from	a	central	point.

Second,	it	provides	a	way	of	identifying	a	point	in	any	required

direction	having	that	distance	from	that	central	point.
Second,	what	is	a	straight	line?	A	straight	line	is	a	line	that

does	not	bend	or	curve,	a	line	that	continues	in	a	single	direction.66	The	use	of	an
arrow	to	indicate	a	direction	to	something	is	a	direct

expression	of	where	something	is,	of	where	it	is	in	relation	to	where

you	are	now.	So	a	straight	line,	in	Euclid,	functions	to	specify

direction.	As	a	measurement,	a	straight	line	performs	two	essential

tasks:	First,	it	provides	a	perceptual	identification	of	a	direction

and,	second,	provides	a	way	to	find	other	points	in	that	direction

from	a	point	of	origin.
When	Euclid	says	that	any	straight	line	can	be	extended,67	he	is	saying	that	one
can	continue	moving	in	any	direction	that	one

has	specified	or	chosen.	When	he	says	that	any	two	points	can	be	connected	by	a
unique	straight	line,68	he	is	saying	that	there	is	a	line	of	sight	connecting	any	two
points	in	the	universe;	that	any

point	B	is	related	directionally	to	any	other	point	A.	He	is	saying

that	one	can	go	from	anywhere	to	anywhere	else	by	finding	the

right	direction	and	sticking	to	it.



right	direction	and	sticking	to	it.
Although	Euclid	was	clearly	aware	that	he	was	using	circles

to	measure	distance,	it	is	less	clear,	and	certainly	not	explicit,	that

he	was	using	straight	lines	to	measure	direction.	My	contention	is

that,	nonetheless,	in	the	nature	of	the	case,	he	was,	in	fact,

measuring	direction	and	by	means	of	straight	lines.
But	Euclid	does	not	speak	of	direction	except	in	the

following	restricted	sense:	If	a	point	divides	a	line	segment,	he

speaks	of	the	two	directions	along	the	line	from	the	particular

point.69	In	that	case,	Euclid’s	distinction	is	clear	and	directly	perceptual.	But	he
does	not	use	the	term,	direction,	more	generally.

So,	in	light	of	the	importance	I	place	on	Euclid’s	measurement	of

direction,	this	caveat	should	be	understood	at	the	outset.
What	is	an	angle?	An	angle	consists	in	the	difference	in

direction	of	two	intersecting	lines	at	the	point	of	intersection,	as

manifested	in	the	amount	of	turning	required	to	rotate,	at	that

point,	from	one	direction	to	the	other	direction.	A	small	angle

represents	a	small	amount	of	turning;	a	larger	angle	represents	a

larger	amount	of	turning.	To	continue	turning	in	the	same	direction

is	always	to	increase	the	total	amount	of	turning	from	a	smaller	to	a

larger	degree.	A	rotation	can	be	thought	of	as	a	continuous	change

in	direction.
When	an	amount	of	rotation	is	reflected	in	two	line

segments	that	lay	out	the	starting	direction	and	ending	direction	of



segments	that	lay	out	the	starting	direction	and	ending	direction	of

the	rotation,	the	two	intersecting	straight	lines	provide	a	concrete,

visual	indication	of	the	difference	in	the	two	directions.	In	this

sense,	an	angle	measures	a	difference	in	direction	at	a	point.	When

one	says	that	two	angles	are	equal,	one	identifies	that	they	embody

the	same	amount	of	turning,	the	same	difference	in	direction.70
I	am	not	yet	speaking	of	numerical	measurement	of	angles;

rather,	I	am	speaking	of	angles	considered	as	physical	magnitudes.

However,	it’s	important	to	notice	that	a	direction,	as	such,	is	not	a	magnitude.71
To	measure	direction,	one	needs	to	start	with	a	particular	direction,	with	a
standard	direction	that	has	been	identified	perceptually.	In	effect,	to	indicate	a
particular	direction	you	ultimately	have	to	point.
However,	a	difference	of	two	directions	in	a	plane	is	a	magnitude.	On	the	one
hand,	it	does	not	make	sense	to	say	that	one

direction	is	three	times	a	different	direction.	But	it	does	make	sense

to	say	that	one	angle,	one	amount	of	rotation,	is	three	times	a

second	angle.	Once	one	standard	direction	from	a	point	in	a	plane

has	been	perceptually	identified,	one	can	specify	any	other

direction	(lying	in	the	plane)	from	that	point	by	an	amount	of

rotation	from	the	standard	direction.	One	is	using	a	kind	of

magnitude,	an	angle,	to	specify	or	measure	a	direction,	by

specifying	its	relationship	to	a	standard	direction.	However,	the	use

of	a	magnitude	in	the	process	of	measuring	direction	does	not	make	direction,	as
such,	a	magnitude.
In	sum,	Euclid	appeals	to	our	ability	to	mark	a	distance	by



drawing	a	circle,	to	mark	a	direction	by	drawing	a	straight	line,	and	to	indicate	a
difference	of	two	directions	as	the	angle	between	two	straight	lines.	Marking	a
distance	or	a	direction	is	a	primitive

measurement,	reducing	a	quantitative	relationship	to	perceptual

terms,	the	very	purpose	of	measurement.	Indicating	a	difference	in

direction	is,	likewise,	a	primitive	measurement,	in	the	same	way.

Euclid	uses	lines	and	circles	to	reduce	measurement	to	its

perceptual	base	and	to	expand	from	that	base.
Euclid’s	primaries,	then,	are	the	measurements	of	direction

and	distance	by	means	of	circles,	straight	lines	and,	derivatively,	angles.
Euclid’s	focus	on	measurement	is	not	a	focus	on	numerical	measurement,	but	on
directly	perceptible,	objective	characteristics

of	objects.	For	example,	this	distance	is	greater	than	that	distance,

these	two	angles	are	equal,	or,	finally,	this	line	intersects	that	circle.
Finally,	notice	that	Euclid	focuses	on	the

means	of

measurement,	not	the	objects	of	measurement.	He	focuses	on	lines	and	circles,
his	means,	as	opposed	to	the	implicit	objects	of	his

measurements:	direction	and	distance.	This	focus	on	means,

without	explicit	reference	to	the	object	toward	which	these	means

are	directed,	is	an	unfortunate	tendency	in	Euclid.	I	will	return	to

this	point	in	the	next	two	chapters.

Euclid’s	Postulates	and	Common	Notions

Euclid’s



Elements	is	presented	as	a	deductive	system.	He

starts	with	certain	basic	axioms	or,	as	he	calls	them,	postulates	and

a	second	set	of	axioms,	which	he	calls	common	notions.72	The	postulates	all
express	something	specific	to	the	subject	matter,

geometry,	while	the	common	notions	express	more	general	truths.

These	axioms	are	not	to	be	proven	but	are	to	be	taken	as

true	from	the	very	beginning	of	the	enquiry.	Euclid,	implicitly,	held

them	to	true	and	to	be	inherent	in	our	observations	of	the	world.

But	he	left	it	up	to	the	reader,	based	upon	his	understanding	of	the

statements	and	reflection	upon	his	own	experiences	to	either	assent

to	them	or	to	abandon	the	enquiry	as	pursued	by	Euclid.	These

axioms	should	be	regarded	as	fundamental	observations	about	the

subject	of	the	enquiry.	They	formulate	the	perceptually	given.

Having	appealed	to	observation	to	support	Euclid’s	short

list	of	postulates	and	common	notions,	everything	else	in	the

subject,	every	geometric	truth,	is	to	be	deduced	from	these	axioms.

Euclid	organizes	our	geometric	knowledge	of	the	world	by	reducing

one’s	reliance	on	direct	experience	to	a	few	basic	judgments	and,	in

an	orderly	stepwise	fashion,	deduces	everything	else	in	the	subject

from	these	few	basic	judgments.

That	so	much	can	derive	from	so	little	is	already

remarkable	and	mysterious.	But	there	is	a	greater	mystery.	For	how



remarkable	and	mysterious.	But	there	is	a	greater	mystery.	For	how

can	such	a	system,	based,	it	seems,	on	perfectly	straight	lines	and

exact	equalities	even	apply	to	a	world	in	which	all	of	our

measurements	have	finite	precision;	to	a	world	in	which	no	line	is

infinitely	straight,	infinitely	circular,	or	infinitely	thin?	How	can

one	ever	say	that	two	distances	are	ever	equal	if	equality	requires

infinite	precision?	If	straight	line	means	infinitely	straight,	then

there	is	no	such	thing	as	a	straight	line.	So	it	can’t	be	possible	to

draw	a	straight	line	connecting	two	points.	And	then	Euclid’s	first

postulate,	along	with	all	of	his	concepts,	become	floating

abstractions,	vindicating	the	Platonic	interpretation	that	he	himself

may	have	held.	Euclid’s	deductive	system	becomes	a	world	onto

itself.

If	Euclid’s	postulates	do	not	apply	to	the	world,	then	his

conclusions	do	not	apply	to	the	world	either.	So,	to	vindicate

Euclid’s	propositions,	one	needs	to	start	by	identifying	how	his

postulates	actually	do	apply	to	the	world,	what	they	actually	mean.

One	needs	to	understand	what	Euclid	is	implicitly	saying	about	the

lines	and	circles	that	actually	exist	on	earth,	taking	into	account	the

fact	that	all	measurements	have	finite	precision.

Yet,	to	reiterate,	I	do	not	claim	that	Euclid	actually	or

consciously	held	the	interpretation	I	offer	herein.	Rather	I	aim	to



consciously	held	the	interpretation	I	offer	herein.	Rather	I	aim	to

make	sense	of	Euclid	insofar	as	he’s	saying	something	about	the

world.	I	contend	that,	in	the	nature	of	the	case,	there	is	no	other

earthly	meaning	to	his	work.	And,	finally,	my	interest	is	not	in	what

Euclid	may	have	meant	or	understood	about	his	own	work,	but	on

what	he	should	have	meant.	My	interest	is	in	what	Euclid	can	teach	us	about	the
world.

In	what	follows,	I	will	discuss	each	postulate	in	turn.	I	will

show	in	what	way	each	of	the	five	postulates	formulates	the

perceptually	given,	identifies	and	captures	our	ability	to	make

certain	perceptual	judgments	that	are	essential	to	the	measurement	of	distance	or
direction,	and	identifies	certain	basic,	primitive

measurements,	underpinnings	of	more	complex	measurements.

The	postulates	are	about	measurement,	but	none	of	them

presuppose	or	require	numerical	measurement.	On	the	contrary,

they	provide	the	foundation	for	indirect	numerical	measurement.

Finally,	all	of	them	are	subject	to	contextual	precision	limits	and	are

universally	valid	within	the	appropriate	contexts.

Euclid	is	famous	for	providing	a	deductive	system.	But

what	makes	it	work	is	the	fact	that	every	argument	in	that	system	is

a	chain	of	abstract	measurements.	As	we	shall	see,	regarding

Euclid’s	postulates	as	primitive	measurements	lays	bare	their

purpose	and	is	the	key	to	understanding	and	defending	Euclid.



purpose	and	is	the	key	to	understanding	and	defending	Euclid.

The	Five	Postulates

Euclid’s	five	postulates	read:73

1.

To	draw	a	straight	line	from	any	point	to	any	point.
2.

To	produce	a	finite	straight	line	continuously	in	a	straight

line.
3.

To	describe	a	circle	with	any	center	and	distance.
4.

That	all	right	angles	are	equal	to	each	other.
5.

That,	if	a	straight	line	falling	on	two	straight	lines	make	the

interior	angles	on	the	same	side	less	than	two	right	angles,

the	two	straight	lines,	if	produced	indefinitely,	meet	on

that	side	on	which	are	the	angles	less	than	two	right	angles.

At	first	glance,	these	five	postulates	must	seem	enormously

puzzling.	The	first	three	are	incomplete	sentences.	The	fourth	is	a

complete	sentence	but	its	meaning	and	import	is	unclear.	And	the

fifth	is	simply	a	mouthful.	Taken	together	they	must	seem	a	motley

assortment,	an	unlikely	foundation	for	building	a	system	of

geometry.



geometry.

Understanding	the	postulates	as	primitive	measurements

provides	the	key	to	understanding	the	meaning	of	each	one	taken

separately	and	understanding	the	interrelationships	among	all	of

them.	But,	first,	there	is	an	important	distinction	separating	the

first	three	postulates	from	the	last	two.

Suppose	a	carpenter	wants	a	two-foot	board.	He	begins	by

measuring	a	number	of	boards.	One	is	20	inches,	one	is	four	feet,

and	a	third	one	is	30	inches.	When	he	ascertains	the	length	of	the

third,	for	example,	he	has	performed	a	measurement	in	the	sense	of

identification.	The	board,	prior	to	his	measurement,	was	already	30

inches.

But	the	carpenter

wants	a	24-inch	board.	So	he	selects	the

30-inch	board	and	measures	out	24	inches	on	it.	In	this,	he	is	not	determining	the
length	of	something;	rather	he	is	finding	a	position	at	a	specified	distance	from
one	end	of	the	board.	Having	marked

the	length	he	is	looking	for,	he	cuts	the	board	at	the	point	of	his

marking	to	obtain	his	two-foot	board.	Measuring	out	and	then

cutting	off	the	excess	is	measurement	in	the	sense	of	meeting	a	set

of	specifications	or	constructing	something	to	a	set	of

specifications.

Of	the	five	postulates,	postulates	1,	2,	and	3	all	call	for



Of	the	five	postulates,	postulates	1,	2,	and	3	all	call	for

constructions.	Euclid	indicates	this	grammatically	by	starting	each

of	them	with	infinitives,	such	as	“to	draw”	or	“to	describe”.	On	the

other	hand,	postulates	4	and	5	are	identifications	of	geometric

relationships.

The	proofs	of	Euclid’s	propositions	generally	rely	on	a

series	of	abstract	measurements	that	include	both	types:	both

constructions	and	identifications.	His	constructions	are	the

measuring-out	steps.	They	provide	the	measuring	apparatus,	or	set	up	the
relationships,	needed	to	support	the	subsequent

identifications	that	establish	the	proposition.

Postulate	1:	“To	draw	a	straight	line	from	any	point
to	any	point”74

The	first	postulate	may	be	restated:	A	straight	line	can	be

drawn	from	any	designated	point	to	any	other	designated	point.
The	postulate	calls	for	a	construction,	but,	in	so	doing,

makes	an	assertion	that	the	construction	can	be	accomplished.	And

how	might	one	do	this,	in	practice?	If	the	points	are	close	together,

one	follows	classical	Greek	practice:	One	uses	a	straight	edge,	first,

to	connect	the	points	and,	second,	to	draw	the	line	indicated	line.

For	points	that	are	a	somewhat	greater	distance	apart,	one	stretches

a	string	between	them.	For	an	even	greater	distance	apart,	one



a	string	between	them.	For	an	even	greater	distance	apart,	one

typically	lines	them	up	by	sight.	One	stands	near	one	point	and

finds	the	direction	for	which	the	two	points	line	up.	For	increased

precision,	and	distance,	one	uses	a	scope.	This	process	is	usually

referred	to	as	finding	a	“line	of	sight”.	Where	these	methods	are

unavailable,	less	direct	methods	are	required,	but	methods	of	this

sort	are	the	foundation	of	the	less	direct	methods.	Whatever	the

method,	it	is	important	to	grasp	and	take	seriously	that	Euclid

himself	is	not	prescribing,	or	at	least	need	not	prescribe,	how	the	construction
should	be	accomplished	or	what	physical	form	the	line

must	take.
By	common	assent,	Euclid	actually	meant,	and,

subsequently,	requires,	a	slightly	stronger	statement,	namely:
A	straight	line	(and	only	one	straight	line)	can	be	drawn	from	a	point	to	any
other	designated	point.75
Putting	this	particular	qualification	another	way,	two

straight	lines	cannot,	in	Euclid’s	geometry,	enclose	a	space.76	To	see	why	this	is
important,	consider	that,	on	the	earth,	one	could

consider	longitudinal	lines	running	north	and	south	as	the	closest

available	equivalent	to	straight	lines	on	the	face	of	the	earth.

Indeed,	on	the	perceptual	level,	and	on	the	perceptual	scale,	longitudinal	lines
are	straight,	straight	within	the	precision	that	the	human	eye	can	detect.	Yet	such
lines	intersect	at	both	the	North

and	South	Poles	and	any	two	of	them	enclose	an	area	on	the	Earth’s

surface.
More	generally,	connecting	any	two	points	on	the	earth,



More	generally,	connecting	any	two	points	on	the	earth,

there	is	a	“great	circle”	that	represents	the	shortest,	and	straightest,

path	available	on	the	Earth’s	surface	to	connect	the	points.	The

more	general	mathematical	term	that	embraces	both	straight	lines

and	great	circles	is	“geodesic”.	A	geodesic	is	a	line	that	looks	like,	is

indistinguishable	from,	a	straight	line	on	a	sufficiently	small	scale,

within	a	pre-specified	precision	limit.	In	general,	a	geodesic	is	the

nearest	equivalent	to	a	straight	line	when	that	line	is	constrained	to

remain	on	a	surface.	A	geodesic	is	a	line	that,	on	a	sufficiently	small

scale,	does	not	bend	or	curve.
In	particular,	a	great	circle	can	be	characterized	as	the	path

that	one	takes	when	one	continues	to	walk	in	what	one	takes	to	be	a

straight	line.	The	first,	weaker	form,	of	Euclid’s	first	postulate	is

satisfied,	in	general,	by	geodesics,	and,	in	particular,	by	great

circles:	There	is	at	least	one	great	circle	on	the	earth	connecting	any

two	points.	The	stronger	form,	that	the	connecting	geodesic	be

unique,	is	satisfied	by	straight	lines,	but	is	not	satisfied	by	great

circles.
This	is	where	a	discussion	of	the	first	postulate	would

normally	end.	We	now	understand	what	the	first	postulate	means,

how	it	relates	to	our	experience,	what	Euclid	actually	had	in	mind,

and	how	it	applies	to	the	Earth’s	surface.
But	my	purpose	requires	a	little	more:	What	does	Postulate



1	say	about	measurement?
We	already	know	that	a	straight	line	determines	direction.

To	connect	two	points	by	a	line,	by	whatever	means,	is	to	establish

and	mark	the	direction	of	the	second	point	from	the	vantage	point

of	the	first.
Notice	that	one	can	specify	a	direction	without	drawing	a

line,	just	by	specifying	two	points.	“From	here	to	the	moon,”

establishes	a	particular	direction.	But	drawing	a	line	(e.g.,	finding	a

line	of	sight)	measures	the	direction	in	the	following	sense:	First,	it	provides	us
with	a	perceptual	grasp	of	a	particular	direction:	it

marks	a	direction.	Secondly,	it	provides	a	way	to	find	other	points	in	same
direction:	any	point	on	the	line	lies	in	the	same	direction

from	the	point	of	observation	as	any	other	point	on	that	side	of	the

line	from	the	point	of	observation.	And,	finally,	it	helps	distinguish

points	that	lie	in	the	specified	direction	from	those	that	do	not.
For	example,	a	carpenter	laying	out	the	foundations	of	a

house	will	stretch	a	string	tightly	between	two	nails	attached,

respectively	to	two	stakes.	Using	the	string	as	a	guide,	the	carpenter

will	drive	in	further	stakes,	as	needed,	at	various	points	along	the

string.
But	does	specifying	two	points	really	suffice	to	specify	a

particular	direction?	Is	there	one	and	only	one	straight	line	that	can

be	drawn	connecting	the	two	points?	Postulate	1	says	the	answer	is

yes.	So	when	I	said	that	one	can	specify	a	direction	simply	by



specifying	two	points,	I	was	relying	on	Postulate	1.	In	sum,

Postulate	1	says	you	can	always	find	and	mark	a	unique	direction

from	one	point	to	another	point;	that	any	point	lies	in	a

determinate	direction	from	a	point	of	observation.	Euclid	measures

that	determinate	direction	by	drawing	the	line	that	specifies	the

direction	between	the	two	points.

Postulate	2:	“To	produce	a	finite	straight	line
continuously	in	a	straight	line.”77

Postulate	2	can	be	restated	as:	A	straight	line	can	be

extended,	as	needed,	in	either	direction.
Whereas	Postulate	1	says	that	one	can	find	a	direction

between	two	points;	postulate	2	says	that	one	can	keep	going	in	a

particular	direction.	Both	are	separate	aspects	of	measuring

direction.	Postulate	2	implies	that	finding	a	line	of	sight	is	sufficient	for	finding
any	required	point	in	a	specified	direction	from	a	point

of	observation	and	distinguishing	points	that	lie	in	that	direction

from	points	that	do	not.
But	why	is	this	important?	Why	extend	a	line?	Typically,

Euclid	extends	lines	to	intersect	some	other	geometric	object	such

as	a	line	or	a	circle.	Because	that	intersection	point	is	on	the	line,	it

lies	in	the	direction	of	the	line.	The	intersection	finds	an	object,

indeed	a	particular	point	on	that	object,	lying	in	the	specified



direction.	Extending	the	line,	in	this	fashion,	is	a	measurement	of

the	intersected	object:	It	determines	which	part	of	that	object	lies	in

a	particular	direction.
Euclid	relies	on	intersections	constantly;	they	are	the

lifeblood	of	his	entire	system.	Intersections	are	important	because

an	intersection	is	a	point	that	satisfies,	simultaneously,	two

different	conditions	by	dint	of	being	part	of	two	different	geometric

objects.
Euclid	speaks	of	drawing	a	line	because	that	is	the	way

directions	are	indicated	in	his	pictures.	But	the	line	he	draws	serves

as	a	visual	abstraction	that	covers	a	stretched	string,	the	edge	of	a

straight	edge,	a	line	of	sight,	or	the	straight	path	that	one	might

take	from	one	point	to	another.	Once	again,	Euclid’s	concern	is	not,

or	need	not	be,	with	the	particular	means	chosen	in	each

circumstance,	but	with	the	fact	that	it	can	be	done,	that	he	can

appeal	to	this	ability	within	a	geometric	argument.	Insofar	as	the

line	determined	by	one	of	these	methods	is	regarded	as	straight,	it

is	a	straight	line,	i.e.,	covered	by	Euclid’s	abstraction.78
In	this	sense,	when	Euclid	speaks	of	drawing	a	line,	he	is

specifying,	but	not	actually	making	the	corresponding

measurement.	Euclid	does	provide	pictures	of	the	relationships	he

treats.	But	it’s	like	writing	a	recipe	for	making	something	to	eat.



The	recipe	specifies	a	process	of	mixing	and	cooking	without	actually	doing	the
mixing	and	the	cooking.	In	the	same	fashion,

Euclid	specifies	the	measurement	process	that	would	be	required	to

establish	the	quantitative	relationships	asserted	by	his

Propositions.
To	recap,	Euclid’s	first	postulate	is	taken	to	mean	that	only

one	straight	line	can	be	drawn	connecting	any	two	points,	that	the	second	point
lies	in	a	specific	and	specifiable	direction	from	the

first.	The	second	postulate	states	that	any	direction,	as	specified	by

a	straight	line,	can	be	continued	indefinitely.

Postulate	3:	“To	describe	a	circle	with	any	center	and
distance.”79

Postulate	3	can	be	restated:	Given	any	center	and	a	second

point,	some	distance	from	that	center,	a	circle	can	be	drawn

consisting	of	all	points	having	that	distance	from	the	center.

Drawing	a	circle	measures	distance:	It	provides	a	way	to

mark	the	distance,	to	find	other	points	the	same	distance,	but	lying	in	a	different
direction,	from	the	central	point,	and	to	distinguish

the	points	that,	thus,	lie	on	the	circle	from	all	other	points	that	do

not.

This	is	the	only	direct	way	to	compare	distances	that	Euclid

wants	to	assume,	as	his	starting	point,	to	be	possible.	So	his	system	does	not	rely
on	the	assumption	of	tape	measures	or	other	portable	standards.	He	does	not



assume	an	ability	to	compare	distances	at	different	locations.	Rather,	he	assumes
only	the	ability	to	compare	distances	from	a	fixed	point,	regardless	of	direction.

How	do	we	draw	circles?	For	short	distances,	we	use	a

compass.	So	did	the	Greeks,	although,	unlike	ours,	their	compasses

did	not	keep	their	radius	after	the	circle	was	complete.	One	could,

in	one	act,	find	all	the	points	of	distance	D,	from	a	center	C.

However,	there	was	no	direct	way	to	draw	another	circle	of	that	same	radius	D
from	a	second	center	E.	As	for	the	first	circle,	one	typically	specified	a	distance
D,	by	specifying	a	particular	point

distinct	from	the	center	C	and	then	using	the	circle	to	identify	all	of

the	other	points	having	the	same	distance	from	C.

Viewing	the	matter	physically,	it	takes	two	points	to	specify

a	distance.	(Keep	in	mind	that	we	are	not	talking	here	about	numerical	measures
of	distance.)	For	any	distance	so	specified,

drawing	a	circle	was	Euclid’s	way	of	specifying	all	the	other	points

having	the	same	distance	from	the	point	chosen	as	the	center.	It	is

in	this	sense	that	Euclid	uses	circles	and,	implicitly,	the	compass	to

provide	his	measure	of	distance	or	of	length.

Because	Euclid	starts	with	the	circle	as	his	only	means	of

measuring	distance,	he	will	have	to	construct	a	means	to	compare	a

distance	between	one	set	of	points	with	a	second	distance	between	a

second	set	of	points.	Euclid	will	need	a	number	of	constructions	to

do	so.	Indeed,	following	Euclid’s	statements	of	the	postulates	and



common	notions,	establishing	the	ability	to	compare	lengths

generally	will	be	the	first	order	of	business	in	his	first	propositions.

By	the	third	proposition	Euclid	has	established	the	ability	to

compare	any	two	distances	anywhere.

Postulate	4.	“That	all	right	angles	are	equal	to	each
other.”80

Suppose	someone	on	Mars	tried	to	duplicate	a	yard	stick.

Without	having	some	point	of	comparison,	such	as	the	distance,	in

yards,	of	Mars	from	the	sun,	this	would	be	impossible.	One	needs	a

place	to	start.	It	would	do	no	good	to	know	that	there	are	three	feet

in	a	yard	and	12	inches	in	a	foot,	if	one	cannot	determine	the	length

of	a	yard.

But	suppose	someone	on	Mars	wanted	to	duplicate	a

protractor.	The	only	thing	that	one	would	need	to	know	in	order	to

build	a	protractor	is	how	to	subdivide	the	arc	that	contains	the

degrees.	The	angle	that	needs	to	be	subdivided,	depending	on	one’s

perspective,	is	either	the	straight	angle	that	forms	the	base	of	the

protractor	or,	alternatively,	half	of	a	straight	angle,	namely	a	right

angle.	Once	the	Martian	knew	how	many	equal	subdivisions	to

make,	he	could	take	his	finished	protractor	to	Earth	and	line	it	up

against	a	protractor	built	on	Earth:	They	would	exactly	match.



against	a	protractor	built	on	Earth:	They	would	exactly	match.

What	is	a	right	angle?	Start	with	any	straight	line	and

distinguish	a	point	on	it.	Draw	a	second	straight	line,	perpendicular

to	the	first	through	the	point.	That	is,	draw	a	straight	line	through

the	selected	point	that	makes	the	same	angle	with	both	sides	of	the

given	line.	That	angle	is	a	right	angle.

Anyone	anywhere	can	determine	a	right	angle	without

comparing	it	to	any	other	right	angle	because	a	right	angle	is	one

half	of	a	straight	angle.	“Right	angle”	has	an

independent

determinate	meaning	at	any	point	in	the	universe.

Postulate	4	can	be	restated:	The	right	angle,	half	a	straight

angle,	is	the	objective	standard	for	measuring	differences	in	direction.	It	can
serve	as	that	standard	because	right	angles	constructed	independently	in	different
places	will	match	when	they

are	superimposed.

On	the	basis	of	Postulate	4,

recognizing	a	universal

standard,	one	can	compare	angles	at	different	places.	Because	an

angle	represents	a	difference	in	directions,	Postulate	4	is	the	first

postulate	about	differences	in	directions.

Once	the	standard	has	been	set,	any	other	angle	can	be

measured	or	specified	as	a	specific	fraction	or	multiple	of	a	right



measured	or	specified	as	a	specific	fraction	or	multiple	of	a	right

angle.

Postulate	4	is	needed	because	one	cannot	compare	angles

on	Mars	to	angles	on	Earth	without	recognizing	or	acknowledging

that	a	right	angle	on	Mars	is	the	same	angle	as	a	right	angle	on	Earth.	Later	on,
in	Proposition	11,	Euclid	offers	a	construction	to

create	a	right	angle.	By	use	of	this	construction,	right	angles	are

constructed	independently,	though	by	the	same	recipe,	at	any	two

points.	Having	been	constructed	independently,	it	is	a	separate

identification	to	state	their	equality.	And	it	is	also	a	separate	fact	that	two	angles,
constructed	in	different	places,	but	by	the	same

recipe,	will	match	when	brought	into	direct	comparison.	That

identification	and	that	fact	is	Postulate	4.

Contrast	Proposition	4	to	Proposition	3.	In	the	case	of

length,	Euclid	provides	a	means	of	comparing	distances	in	two

different	directions	from	a	central	point.	He	will	shortly	deduce	a

basis	for	comparing	two	distinct	lengths	at	two	different	locations.

But,	in	the	case	of	angles	at	different	locations	he	takes	a	different	tack,
reflecting	a	unique	fact	about	differences	in	direction.	The

result	is	the	fourth	postulate.

Postulate	4	provides	an	objective	standard	for	measuring

relative	direction,	from	a	point.	But	it	does	not	provide	a	way	to	compare
directions	general,	from	different	points.	For	example,	to



compare	the	axes	of	rotation	for	Mars	versus	earth	would	require

comparing	directions	at	different	points.

The	fourth	postulate	is	explicitly	about	measurement,

offering	the	right	angle	as	the	basic	standard	for	comparing	angles.

What	are	Parallel	Lines?

Euclid	offers	the	following	definition	of	parallel	lines:

“Parallel	straight	lines	are	straight	lines	which,	being	in	the	same

plane	and	being	produced	indefinitely	in	both	directions,	do	not

meet	one	another	in	either	direction.”81

In	contrast	to	the	first	four	postulates,	Euclid’s	defining

criterion	for	parallel	lines	does	not	appeal	to	something	that	one

directly	perceives;	one	does	not	perceive	that	two	lines	never	meet.

So,	on	the	face	of	it,	one	has	no	reason	to	believe	that	parallel	lines

exist	or	can	be	identified	as	such.	However,	Euclid	should	be

presumed	to	be	aware	of	this	gap	and	a	reader	should	be	looking	for

him	to	fill	it.	In	effect,	Euclid’s	supposed	definition	is	promissory;

Euclid,	in	enunciating	it,	has	promised	to	establish	the	existence	of

parallel	lines.

Nonetheless,	Euclid’s	definition	is	not	devoid	of	perceptual

motivation	even	if	Euclid	does	not	provide	such	motivation.	It	is



reasonable	to	ask:	What	do	we	recognize	perceptually?	And	this	question	has	an
answer.	First,	one	observes	perceptually	that	two

lines	can	point	in	the	same	direction.	One	observes	that	the

opposite	sides	of	a	rectangular	table	are	pointing	in	the	same

direction,	as	opposed	to	two	sides	meeting	at	a	corner,	which	point

in	different	directions.	Secondly	when	lines	point	in	the	same

direction,	one	observes	that	they	are	neither	converging	nor

diverging;	we	would	not	say	that	two	converging	or	diverging	lines

are	pointing	in	the	same	direction.	Finally,	while	we	may	not	be	in	a

position	to	observe	that	two	lines	running	in	the	same	direction

never	intersect,	one	does	observe	the	converse.	One	observes	lines

that	do	intersect.	And	when	lines	intersect,	they	point	manifestly

point	in	different	directions.

Accordingly,	two	lines	that

continue,	no	matter	how	far

they	are	extended,	to	point	in	the	same	direction	will	never

intersect.	This	much,	at	least,	is	given	in	perception.

Despite	one’s	justifiable	first	impression,	there	is	a	reason

for	Euclid’s	definition.	Euclid,	in	fact,	appeals	as	directly	as	possible

to	perception.	Intersections	are	directly	perceivable;	measuring

angles,	for	example,	is	not.	For	to	compare	two	angles	at	different

points	requires	a	chain	of	comparisons,	appealing	ultimately	to	the



points	requires	a	chain	of	comparisons,	appealing	ultimately	to	the

fourth	postulate.

Euclid	will	ultimately	provide	a	criterion	for	two	lines	to	be

parallel	and	his	criterion	will	consist	in	comparing	angles.82	But	he	is	still	one
Postulate	and	26	Propositions	shy	of	being	able	to	do

that.

The	perceptual	meaning	of	parallel	lines	is:	two	lines	that	point	in	the	same
direction.83	And	one	should	take	this	concept	to	extend	beyond	immediate
perception.	For	example,	someone	in	the

living	room	can	be	looking	in	the	same	direction	as	someone	in	the

kitchen,	whether	or	not	they	can	see	each	other	and	whether	or	not

anyone	else	is	in	a	position	to	see	the	two	of	them.

I	have	stressed	the	fact	that	all	measurements	are	subject	to

precision	limits	and	this	principle	certainly	applies	to	the	first	four

postulates.	All	of	Euclid’s	postulates	are	identified	in	a	perceptual

context	and	are	subject	to	precision	limits.	However,	recognizing

precision	limits	and	context	is	particularly	critical	in	regards	to

parallel	lines.	To	say	that	two	specific	straight	lines,	pointing	in	the

same	direction	will	never	meet	is	to	make	an	impossible	claim.	In	particular,	it	is
to	say	that	one	has	measured	the	directions	of	the

two	lines	with	infinite	precision,	since	the	slightest	difference	will

result	in	eventually	meeting.	Two	straight	lines	pointing	at	the

North	Star	are	pointing	in	the	same	direction	to	an	extremely	high

degree	of	precision,	but	they	will	eventually	meet	at	the	North	Star.



degree	of	precision,	but	they	will	eventually	meet	at	the	North	Star.

Secondly,	to	say	that	the	lines	never	meet	is	to	say	that	the	two	lines

are	infinitely	straight,	since	the	slightest	bending	of	either	line

would	point	them	in	different	directions.	Even	the	presumption

that	two	lines	are	in	the	same	plane	is	unrealistic	when	infinity

becomes	the	standard.	If	two	lines	are	ever	so	slightly	skewed	and

fail	to	fall	into	the	same	plane,	they	point	in	different	directions.	Yet

they	will	never	meet;	for	if	they	did	and	were	“perfectly”	straight,

they	would	lie	in	the	same	plane	because,	taken	together,	two

intersecting	lines	determine	a	plane.

So,	one	cannot	meaningfully	take	Euclid’s	definition	to

require	infinite	precision;	not	if	geometry	is	about	the	world.	One

needs	to	understand	“same	direction”	as	meaning	“no	relevant

difference	in	direction”.	Within	any	context	one	needs,	at	least

implicitly,	a	threshold	distance	beyond	which	intersections	are	no

longer	relevant	to	parallelism,	beyond	which	they	do	not

correspond	to	a	material	difference	in	direction.	Depending	on	the

context,	that	threshold	distance	might	be	100	feet,	five	miles,	the

distance	to	the	North	Star,	or	the	distance	to	a	distant	galaxy.

Euclid’s	definition	should	be	taken	as	a	formulation	of	the

fact	that,	on	any	scale	and	standard	of	precision	for	which	two



distinct	straight	lines	lie	in	the	same	plane	and	point	in	the	same

direction,	they	will	never	meet	within	the	relevant	threshold

distance,	within	the	threshold	applicable	to	a	particular	context.

Euclid,	of	course,	does	not	acknowledge	this	limitation,	but

such	an	interpretation	is	implicit	and	is	presupposed	in	any

application	of	the	concept,	parallel,	to	the	world.	Parallel	applies
unambiguously

within	the	context	of	a	particular	scale	and

precision	standard.

I	will	have	more	to	say	about	this	in	Chapter	3.

Postulate	5:	The	“Parallel	Postulate”

Postulate	5	is	often	referred	to	as	the	parallel	postulate,

even	though	it	says	nothing	about	parallel	lines	or	their	existence.

But	it	does	complete	the	required	foundation	to	support	Euclid’s	eventual
criterion	for	two	lines	to	be	parallel.

The	formulation	of	a	set	of	postulates	providing	such	a

foundation	was	a	turning	point	in	Greek	geometry.	Greek	geometry

has	a	long	tradition	going	back	to	Thales	and	Pythagoras,	but,	as

Aristotle	attests,84	geometers	prior	to	Euclid	were	guilty	of	circular	reasoning	in
their	demonstrations	concerning	parallel	lines.	Euclid

was	the	first	to	offer	a	postulate	capable	of	breaking	the	vicious

circle.85



Postulate	5	states:	“That,	if	a	straight	line	falling	on	two

straight	lines	make	the	interior	angles	on	the	same	side	less	than

two	right	angles,	the	two	straight	lines,	if	produced	indefinitely,

meet	on	that	side	on	which	are	the	angles	less	than	two	right

angles.”86

Postulate	5	states	a	criterion	for	two	lines

not	being

parallel,	a	criterion	for	their	intersection,	a	criterion,	therefore,	for

pointing	in	different	directions.

Since	the	statement	itself	is	a	mouthful,	the	best	way	to

understand	it	is	to	look	at	a	picture.	Accordingly,	in	Figure	3,	X	and

Y	are	the	two	straight	lines	in	question;	the	unnamed	line	is	the	line

“falling	on”	the	two	straight	lines.	The	interior	angles	are	labeled	A

and	C.	I	take	the	sum	of	these	angles,	A	+	C,	to	be	less	than	two

right	angles	(in	modern	terms,	less	than	180	degrees).	Postulate	5

says	that	the	two	lines	X	and	Y	will	eventually	meet	on	the	right.

In	perceptual	terms,	the	Postulate	is	saying	that	if	two

straight	lines	in	a	plane	are	pointing	towards	each	other,	are

converging,	then	they	will	ultimately	intersect.

Euclid	states	a	condition	on	the	interior	angles	A	and	C.	But

it	seems	more	directly	obvious	to	me	that	if	angle	B	is	greater	than



angle	A,	then	line	Y	is	pointing	toward	line	X	on	the	right	and	that

they	will	meet	on	the	right.	In	any	case,	the	two	criteria	are

equivalent,	as	the	argument	in	the	diagram	demonstrates.

Figure	3

Recall	that	Euclid’s	Postulate	1	implicitly	includes	the

statement	that	two	lines	can	intersect	in	only	one	point	–	that	there

is	a	unique	straight	line	connecting	any	two	points.	Postulate	5,	by	contrast,
provides	a	criterion	for	when	two	lines	do	intersect.	Euclid	requires	both
Postulate	5	and	the	implicit	portion	of	Postulate	1	to

later	adduce,	in	Propositions	27	and	29,	a	necessary	and	sufficient

criterion	for	two	straight	lines	in	a	plane	not	to	intersect,	that	is	to	be	parallel,
that	is	to	point	in	the	same	direction.87	Namely,	referring	to	Figure	3,



Proposition	27	says	that	if	angle	A	equals

angle	B,	lines	X	and	Y	will	not	intersect,	i.e.,	are	parallel.

Proposition	29,	in	contrast,	elaborates	Postulate	5.	In	sum,	X	and	Y

are	parallel,	i.e.,	will	never	meet,	if	and	only	if	angle	A	=	angle	B.

Euclid’s	most	important	innovation	was	to	find	a	set	of

postulates	sufficient	to	establish	this	criterion.
By	this	means,	Postulate	5	provides	a	way	to	compare	the

directions	from	two	distinct	points	of	observation.	Two	directions,

from	two	distinct	points	of	observation,	run	in	the	same	direction	precisely	when
their	respective	lines	of	sight	are	parallel.
In	this,	Postulate	5	moves	beyond	Postulates	1,	2,	and	4.	It

says,	in	effect,	that	two	converging	lines	will	continue	to	converge,

ultimately	intersecting

and	thus	manifesting	a	difference	in

direction.	The	Parallel	Postulate	makes	it	possible	to	say	that	two

straight	lines	in	different	places	are	pointing	in	the	same	direction

or,	alternatively,	to	say	that	those	directions	differ	by	an	angle,	say,

of	35	degrees.	By	virtue	of	the	Parallel	Postulate,	one	can	compare

the	directions	of	two	straight	lines	in	a	plane	by	measuring	the

angle	that	each	line	makes	with	a	chosen	reference	line.	And	this	is

the	import	of	Propositions	27	and	29.
Postulate	5	and	its	consequences	have	sweeping

implications	in	Euclid’s	system.	As	a	first	example,	the	idea	of



similar	triangles,	that	shapes	are	scalable	is	a	consequence	that

makes	blueprints	possible.	If	the	Parallel	Postulate	did	not	hold,	the

angles	of	a	triangle	would	change	when	one	changed	its	scale;	it

would,	for	example,	no	longer	be	the	case	that	the	angles	of	an

equilateral	triangle	would	each	be	60	degrees	or	independent	of	the

size	of	the	triangle.	Secondly,	Euclid’s	discussion	and	measurement

of	areas	and,	later,	of	volumes	is	entirely	dependent	upon	the

Parallel	Postulate,	as	I	shall

trace	in	Chapter	3.

Finally,

astronomical	measurements	rely	on	the	properties	of	parallel	lines,

even	when	such	measurements	require	relativistic	corrections.	As

an	early	example,	Eratosthenes	relied	upon	the	properties	of	parallel	lines	to
estimate	the	Earth’s	circumference.88	More

generally,	astronomical	measurement	requires	the	use	of

trigonometry,	the	study	of	the	relationships	between	the	sides	and

the	angles	of	triangles.	But	the	development	and	application	of

trigonometry	requires	all	five	postulates	as	its	base.
Modern	textbook	treatments	of	geometry	do	not	generally

follow	Euclid’s	development.	Instead,	they	typically	jump	directly	to

a	formulation	given	by	Playfair,	namely	that:	“Through	a	given

point	one	and	only	one	line	can	be	drawn	parallel	to	a	given	straight



line.”89
In	perceptual	terms,	Playfair’s	version	can	be	stated:	At	any

point	there	is	a	unique	straight	line	pointing	in	the	same	direction

as	a	given	straight	line.
Also	in	perceptual	terms,	Euclid’s	Postulate	5	can	be

restated:	Two	converging	lines	will	ultimately	intersect,	manifesting

a	difference	in	direction.
Both	Euclid’s	and	Playfair’s	postulates	reflect

the

observation	that	lines	in	a	plane	that	don’t	point	in	the	same	direction	intersect
each	other.	And,	conversely,	that	lines	that

intersect	point	in	different	directions	at	the	point	of	intersection.

From	either	perspective,	direction	is	the	fundamental	attribute

measured	by	Postulate	5.
There	is	a	long	history	of	failed	attempts	to	prove	Postulate

5	from	the	other	postulates,	an	attempt	that	culminated	in	the

discovery	in	the	nineteenth	century	that	these	attempts	were	all

doomed	to	failure.	And	this	culmination	included	the	development

of	nonEuclidean	geometries.	Hitherto,	across	millennia,	Euclidean

geometry	had	provided	the	recognized	foundation	of	mathematics.

This	discovery,	and	the	eventual	interpretation,	of	nonEuclidean

geometries	occasioned	the	search	for	an	alternative	foundation	of

mathematics.90
It	is	not	my	purpose	to	recount	this	history.	However,	my



general	thesis	does	require	further	discussion	of	the	status,	the

relevance,	and	the	importance	of	the	parallel	postulate.

Accordingly,	I	return	to	this	subject	in	Chapter	3.
In	sum,	Postulates	1,	2,	4,	and	5	are	related	in	the	following

way:

1.

Postulate	1	says	that	one	can	find	a	direction	between	two

points.
2.

Postulate	2	says	that	one	can	find	any	point	lying	in	a

particular	direction.
3.

Postulate	4	says	that	one	can	compare	relative	directions

(angles)	measured	at	two	different	points.
4.

Postulate	5	implies	that	one	can	compare	directions,

without	qualification,	between	two	different	points.

These	four	postulates	capture	four	separate	aspects	of	what

one	recognizes	perceptually	in	forming	the	concept	of	direction.

Perception	is	the	Base

In	the	case	of	triangles,	one’s	understanding	of	triangles	is

needed	to	understand	more	complex	figures.	The	same	principle

applies	to	the	Postulates.	For	example,	the	study	of	geometry	on	the



applies	to	the	Postulates.	For	example,	the	study	of	geometry	on	the

surface	of	the	earth,	of	the	relationships	between	places	and

distances	on	the	earth,	requires	Euclidean	geometry	as	its	base.

This	is	also	true	for	astronomical	measurements	and	remains	true

even	insofar	as	measurement	across	astronomic	distance	is	nonEuclidean.	As	I
will	elaborate	in	Chapter	3,	Euclidean	geometry,	the	geometry	of	the	perceptual
level,	remains	the	frame	of	reference	of

one’s	geometric	measurements	and	provides	the	benchmark	to

which	all	relativistic	corrections	must	relate.

Both	cases,	then,	exemplify	the	same	principle:	that	all

conceptual	knowledge	must	be	related	to	the	perceptually	given.

Numerical	measurement	is	meaningful	because	it	specifies	a	quantitative
relationship	to	something	we	can	perceive.

Common	Notions

Euclid	distinguished	five	common	notions,91	namely:

1.

Things	which	are	equal	to	the	same	thing	are	equal	to	each

other
2.

If	equals	be	added	to	equals,	the	wholes	are	equal
3.

If	equals	be	subtracted	from	equals,	the	remainders	are

equal
4.



4.

Things	which	coincide	with	one	another	are	equal	to	one

another
5.

The	whole	is	greater	than	the	parts

The	first	three	of	these	constitute	ways	to	deduce	equalities

from	other	equalities.	Although	these	notions	apply	to	quantity

generally,	Euclid’s	interest	is	to	apply	them	to	geometric	properties.

By	contrast,	the	fourth	common	notion	applies	specifically	to

geometric	figures.	It	is	important	because	it	provides	an	abstract

statement	of	what	we	do	when	we	compare	objects	by	bringing

them	into	close	proximity.	The	final	common	notion	provides	a	way

to	judge	that	one	thing	is	greater	than	another	thing.

All	five	common	notions	provide	for	making	comparisons

of	equality	or	disparity,	which	is	the	essential	underpinning	of

measurement.

Measurement	and	Euclid’s	Propositions

In	reviewing	some	of	Euclid’s	propositions,	my	focus	will	be

on	Euclid’s	arguments	for	those	propositions.	I	am	interested	in	the
mathematical	arguments	insofar	as	understanding	the

mathematics	helps	identify	Euclid’s	method.	But	Euclid’s



propositions	are	also	steps	in	his	later	arguments:	each	proposition,	once
demonstrated,	becomes	available	to	condense	its	argument	for

later	propositions.	So,	even	as	regards	Euclid’s	method,	one	should

ask,	for	each	of	Euclid’s	propositions,	“What	does	it	accomplish?”

My	discussion	of	the	postulates	showed	the	measurement

implications	of	each	postulate,	identifying,	for	each,	the	primitive

measurement	it	embodies.	For	Euclid’s	arguments	the	key	question

is,	“What	is	the	role	of	measurement?”	I	ask	this	question	not	only

about	the	arguments	for	the	propositions,	but	also	about	their	content.	Euclid’s
propositions	are	abstract	statements	of

quantitative	relationships	and	are,	themselves,	abstract

measurements.	A	series	of	abstract	measurements,	taken	as	a	whole,	is	an
abstract	measurement.	To	ask,	and	answer,	what	a

proposition	accomplishes	is	to	understand	its	measurement

implications.

Finally,	the	philosophical	interest	in	Euclid’s	method	is	to

appraise	the	validity	of	Euclid’s	system,	to	understand	just	how	the

statements	of	his	propositions	and	the	arguments	for	them	apply	to

the	world.	So	the	ultimate	question	for	each	proposition	is,	“Why	are	the
proposition	and	its	argument	valid	as	applied	to	real	shapes	and	geometric
relationships?”

In	discussing	the	postulates,	I	pointed	out	that	Euclid’s

measurements	are	not	numerical,	expressing	quantitative

relationships	to	universal	standards	such	as	meters	or	kilograms.



relationships	to	universal	standards	such	as	meters	or	kilograms.

They	are	more	abstract	than	that.	Every	step	in	a	Euclidian

argument	either	prescribes	(constructs)	or	identifies	a	quantitative	relationship.
And	every	proposition	either	prescribes	(constructs)	or	identifies	a	quantitative
relationship.

A	Euclidean	argument	is	an	extended	chain	of	abstract

measurements	that	combines	into	an	indirect	measurement

establishing	the	quantitative	relationship	stated	in	the	proposition.

But	Euclid	does	not	actually	make	these	measurements.	Rather,	he

offers	a	recipe,	a	series	of	measurement	instructions.	A	recipe,	like	a	Euclidean
argument,	is	a	series	of	instructions	that	provides	a

method	to	reach	a	desired	result.	In	the	case	of	a	recipe	for	food,

one	has	to	carry	out	the	instructions	and	then	taste	the	food	to

appreciate	the	result.	In	contrast,	to	follow	a	Euclidean	argument	is

to	understand	the	result	of	each	step	and,	thereby,	to	apprehend	the

outcome	of	the	argument.

Finally,	because	the	argument	is	abstract,	both	the

argument	and	its	conclusion	apply	universally,	in	same	way,	to	an

open-ended	range	of	concretes.	They	apply	whenever	the	set	of

instructions,	or	any	version	of	those	instructions	that	has	the

desired	effect,	can	be	performed	to	a	degree	of	precision	meeting

the	requirements	of	the	context.	I	will	return	to	this	point	during

my	discussion	of	Proposition	1.



Proposition	1.	On	a	given	finite	straight

line	to	construct	an	equilateral	triangle.

Proposition	1	in	Book	1	asks	for	a	geometric	construction.

Euclid	prescribes	a	quantitative	relationship	and	asks	for	a	series	of

steps	that	will	realize	the	prescribed	relationship.	Specifically,	he

asks	for	an	equilateral	triangle,	a	triangle	for	which	all	three	sides

are	equal,	starting	from	a	given	base.

Propositions	that	call	for	constructions	follow	a	typical

pattern,	namely:

1.

Some	information	is	regarded	as	being	given.
2.

That	information	is	specified	geometrically.
3.

The	Proposition	requires	the	construction	of	a	geometric

object	to	the	specifications	provided	by	the	given

information.

Step	three	succeeds	only	if	one	can	show	that	the

specifications	have	been	met.	Success	requires	that	each	step	in	the

construction	constitute	a	valid	measurement.	It	requires	that	the

steps	provide	a	series	of	quantitative	comparisons	between	the

original	geometric	specification	and	the	completed	geometric



original	geometric	specification	and	the	completed	geometric

object.

Proposition	1	reads:	“On	a	given	finite	straight	line	to	construct	an	equilateral
triangle.”92	The	given,	here,	is	the	finite	straight	line.	The	other	two	sides	of	the
finished	triangle	are

required	to	have	the	same	length	as	the	given	line.	So	those	lengths

will	need	to	be	measured	out	in	the	appropriate	directions.	To

measure	out	lengths	one	needs	to	draw	circles.	To	identify	a

direction	from	a	point	requires	finding	at	least	one	other	point	in

the	required	direction.

The	construction	is	accomplished,	in	three	steps,	in	Figure

4.	One	draws	a	circle	around	each	endpoint	with	radius	equal	to	the

finite	straight	line.	Each	circle	measures	out	the	required	lengths	of

the	other	two	sides.	The	intersections	of	the	two	circles	consist	of

those	points	that	are	simultaneously	the	required	distance	from

each	end	point.	Whichever	intersection	one	selects	finds	the

required	direction	in	which	the	two	additional	sides	of	the	triangle

need	to	point	and	determines	where	these	line	segments	need	to

end.



Figure	4

One	says	that	the	sides	are	equal	“by	construction,”

referring	to	the	act	of	measurement	performed	by	the	use	of	a

compass	to	draw	the	circles.	The	sides	are	equal	because	one	has

used	the	compass	to	measure	them.	The	sides	can	be	compared

because	they	have	been	measured.

Euclid’s	measurement	is	an	abstraction.	It	is	not	a	concrete

measurement	of	a	single	concrete	instance,	but	a	prescription	or

recipe	that	can	be	applied	to	any	and	every	concrete	instance.	It

applies	to	an	open-ended	range	of	concretes.	Every	such	instance,

within	each	specific	context,	will	require	a	specific	finite	level	of



precision.	And	Euclid’s	process,	if	carried	out	with	sufficient

precision,	will	produce	an	equilateral	triangle	within	that	required

precision.	It	is	not	necessary	to	actually	carry	out	these	steps	to

know	what	they	would	achieve.	And	subsequently	observing	that

the	proposition	applies	to	a	particular	case	is	an	act	of	discovery	in

the	following	sense:	The	fact	that	the	proposition	applies	does	not

depend	on	someone	actually	realizing	that	applicability.	Euclid’s

process	applies	indifferently	to	each	and	every	such	physical

situation.	Euclid	has	specified	a	process	of	abstract	measurement

applying	to	actual	and	potential	concretes	that	exist	on	earth,	in	the

world	that	we	inhabit.

In	treating	these	measurements	as	totally	precise,	what

Euclid	is	actually,	perhaps	unintentionally,	implying	is	that	they

can	be	applied	to	every	physical	situation,	regardless	of	the

required	precision	level,	provided	that	each	step	in	the	process	is

carried	out	with	sufficient	precision.

In	applying	Euclid’s	recipe,	it	is	not	necessary	to	actually

draw	circles,	just	to	accomplish	in	some	way	what	Euclid

accomplishes	by	drawing	his	circles,	i.e.,	finding	the	third	vertex	of

the	required	triangle.	For	example,	imagine	that	the	remaining	two

sides	have	already	been	measured	out	and	attached	with	hinges	to



the	two	sides.	One	would	then	swing	these	remaining	sides	together

until	the	two	ends	meet.	Necessarily,	the	ends	of	the	two	sides	will

come	together	at	the	required	third	vertex	of	the	equilateral

triangle.

So	what	has	been	accomplished?
Euclid’s	full	intent	in	proving	Proposition	1	becomes	clear

in	his	proof	of	Proposition	2.	Proposition	1	is	a	first	step	towards

more	general	measurement	of	distance	and	constitutes	a	first

building	block	toward	that	end.	From	this	point	on	Euclid	can

simply	ask	for	the	construction	of	an	equilateral	triangle	whenever

it	will	help	establish	a	quantitative	relationship	or	provide	a	step	in

a	required	construction.	Postulate	3	only	provided	a	way	to

compare	distances	in	different	directions	from	a	central	point.	Any

comparability	of	distances	or	lengths	beyond	that	point	remained	to

be	determined.	Proposition	1	goes	a	step	beyond	Postulate	3.

Considering	the	circle	on	the	left,	Proposition	1	finds	a	line	segment

that	is	not	in	that	circle	yet	is	known	to	have	the	same	length	as	all

the	radii	of	that	circle.	This	is	a	first	small	step	toward	being	able	to

compare	lengths	generally.	The	importance	of	that	first	step	will

become	clear	in	the	construction	of	Proposition	2.
I	have	said	that	the	construction	called	for	by	Proposition	1

is	an	abstract	measurement.	So	is	every	step	in	the	argument	for	Proposition	1.



Drawing	the	circles	measures	out	the	given	line

segment	in	every	possible	direction	from	each	respective	end	point

of	that	segment.	Connecting	those	end	points	to	one	of	the

intersections	finds	the	directions	in	which	each	of	the	required

sides	of	the	triangle	must	point.	Identifying	that	the	resulting

triangle	is,	indeed,	an	equilateral	triangle	is,	ipso	facto,	an	identification	of	a
quantitative	relationship	based	upon	one’s

understanding	of	what	a	circle	is.
The	argument	applies	to	the	world	because	indirect

measurement	applies	to	the	world.	A	series	of	measurements	is	an

indirect	measurement.	A	series	of	measurements	achieves

a

required	finite	degree	of	precision	providing	that	the	steps	in	that

measurement	are	sufficiently	precise.	It	applies	to,	and	is	valid	in,

any	concrete	instance	for	which	the	required	precision	is,	in	fact,

achievable.	The	recipe,	itself,	is	an	abstract	specification	of	what

would	be	needed	in	any	concrete	instance.	The	specific	precision

requirement	is	left	open,	is	what	Ayn	Rand	refers	to	as	an	omitted

measurement.93
The	applicability	of	the	proposition	is	subject	to	physical

limits.	Its	context	is	determined	by	the	applicability	of

the

postulates.



postulates.

The

applicability	of	the	proposition	is	limited	to

situations	to	which	such	a	series	of	measurements	would	make

sense.	The	process	offered	in	the	argument,	like	any	recipe,	has

specific	limits,	but	these	physical	limits	are	left	open,	not	specified

in	Euclid’s	statement	or	demonstration,	left	as	omitted

measurements.	Such	limits	pertain	to	the	scope	of	its	applicability,	but	not	to	its
universal,	open-ended	applicability	of	the	proposition

within	that	scope.

Euclid	and	Abstraction

It	may	be	helpful	to	contrast	the	way	that	I	look	at	Euclid’s

treatment	of	Proposition	1	to	the	way	that	Plato	would	have	looked

at	it.	First,	we	know	what	Plato	has	to	say	about	the	diagram	that

Euclid	uses:	that	the	diagram	is	an	imperfect	representation,	an

image,	of	something	residing	in	his	world	of	Forms.94	What	that	something
might	be	is	less	than	clear	because	the	diagram	itself	is

complex.	Presumably	there	is	a	Form	of	an	equilateral	triangle,	a

Form	of	a	circle,	and	a	Form	of	the	line	segment.	But,	are	there	a

separate	Forms	for	each	circle	and	separate	Forms	for	each	of	the

two	constructed	line	segments?	And	what	about	the	entire	network

of	relationships	embodied	in	the	diagram?	Does	that	have	a	Form,



of	relationships	embodied	in	the	diagram?	Does	that	have	a	Form,

as	well?	And	what	about	the	temporal	character	of	the	construction:

first	do	this;	then	do	that,	etc.?	Plato’s	world	of	Forms	has	a

specifically	a-temporal	character.95	While	it	may	seem	clear,	at	first	glance	and
in	a	general	way,	what	a	Platonic	mathematical	universe

might	mean,	there	is	certainly	a	devil	in	the	details.

By	contrast,	I	maintain	that	the	diagram	is	simply	an

example	to	show	how	one	might	follow	the	recipe	provided	in	Euclid’s
argument.	The	example	helps	one	grasp	the	principles,	the

specific	steps	in	his	argument/recipe.	In	effect	one	is	expected	to

view	the	example	from	an	abstract	perspective,	as	a	concretization

of	an

abstraction.	The	diagram	helps	one	see	how	Euclid’s

argument	applies	to	each	particular	case.

What	is	the	proposition	about?	Plato	would	say	that	the

argument	pertains	to	some	Universal	Truth	residing	in	his	world	of

Forms,	a	truth	that	is	only	imperfectly	realized	in	the	concretes	on

this	earth.	Whereas	I	have	maintained	that	the	proposition	is

specifically	about	those	concretes;	that	the	proposition	applies

precisely	to	all	of	those	concretes	that	fall	within	the	required

precision	limits	set	by	each	specific	context	within	its	scope.

Finally,	Plato	would	have	to	regard	Euclid’s	argument	as

expressing	a	timeless	relationship	among	Ideas,	among	Ideas



expressing	a	timeless	relationship	among	Ideas,	among	Ideas

residing	in	his	world	of	Forms.	Whereas	I	maintain	that	Euclid’s

argument	is	a	recipe,	a	specification	of	a	series	of	measurements,

abstract	measurements	identifying	specific	quantitative

relationships,	that,	when	performed	in	sequence,	establish	the

proposition.	And	I	maintain	that	Euclid’s	arguments	apply

universally	because	they	apply	to	each	concrete	case,	regardless	of

the	specific	precision	requirements	of	each	case.	And	if	Euclid	does

not	specify	either	precision	requirements	or	the	specific	means	of

carrying	out	his	steps,	the	right	way	to	regard	these	omissions,	again	in	Ayn
Rand’s	terms,	is	as	omitted	measurements.96

Use	of	an	Intersection

The	third	vertex	of	the	equilateral	triangle,	the	intersection

of	two	circles,	is	simultaneously	the	required	distance	from	each

end	of	the	given	line	segment.	The	use	of	intersections	is

everywhere	in	Euclid;	it	is	the	lifeblood	of	his	system.	What,

generally,	is	the	role	of	intersections	in	Euclid?

Consider	Figure	5:

	



Figure	5

As	Figure	5	makes	clear,	an	intersection	is	a	point	that

simultaneously	satisfies	two

different

measurements.	In	this

particular	example,	the	two	intersection	points	are	simultaneously

points	that	lie	in	a	specified	direction	from	the	point	of	observation

labeled	A	and	that	are	also	a	distance	of	5	feet	from	the	point

labeled	C.	Finding	a	point	of	intersection	is	Euclid’s	equivalent	to,	is

completely	analogous	to,	solving	two	simultaneous

algebraic

equations.



Considering	the	importance	of	intersections	in	Euclid,	it	is

important,	though	a	commonplace,	to	point	out	that	Euclid’s	set	of

postulates	is	not	complete.	For	example,	there	are	no	postulates

that	cover	the	intersection	of	a	circle	and	a	line	or	the	intersection

of	two	circles.	Euclid,	without	acknowledgement,	appeals	to

perception	of	his	figures	whenever	the	need	arises.	While

important,	this	lapse	on	Euclid’s	part	in	no	way	affects	my	broader

point	on	the	role	of	measurement	or,	specifically,	of	intersection,	in

Euclid.

Proposition	2.	To	construct	a	line	segment	at	A	equal
to	BC

Proposition	2	reads:	“To	place	at	a	given	point	(as	an

extremity)	a	straight	line	equal	to	a	given	straight	line.”97	Proposition	2	is	a
major	step	toward	comparing	distances	or

lengths	of	lines	at	different	locations.	The	setup	is	shown	in	Figure

6.

Before	presenting	Euclid’s	construction,	it	is	helpful	to	see

what’s	really	behind	his	construction.	That	is	the	specific	purpose	of

Figure	6.

The	first	steps	in	Euclid’s	construction	are	what	one	might

expect,	given	the	construction	in	Proposition	1.	Euclid	begins	by



connecting	A	to	B	and	exploiting	Proposition	1	to	construct	an

equilateral	triangle	on	the	line	AB.	But	how	this	will	help	is	far	from

obvious.	Somehow,	one	needs	to	leverage	this	equilateral	triangle.

One	can’t	physically	move	BC,	but,	as	illustrated	in	Figure

6,	one	can	do	something	very	much	like	it.	First,	imagine	that	BC	is

connected	by	a	hinge	to	B.	Accordingly,	rotate	BC	at	B.	Stop	the

rotation	when	it	lines	up	with	DB	and	lock	the	rotated	line	into

alignment	with	line	DB.	Now	imagine	that	the	rotated	line,	together

with	attached	line	DB,	is	attached	by	a	hinge	at	D.	Rotate	the	entire

line	at	D	until	it	lines	up	with	the	line	AD.	In	the	course	of	this

rotation,	the	point	at	B	goes	to	A.	So,	in	two	steps,	the	original	line

BC	has	been	moved	to	A.

That’s	the	idea	behind	Euclid’s	proof.	The	equilateral

triangle	has	provided	the	pivot	point	to	rotate	the	required	line

segment	to	the	point	A.	Euclid	doesn’t	use	hinges,	but	he	uses

circles	to	the	same	effect,	taking	his	warrant	from	Postulate	3.



Figure	6

Euclid’s	actual	proof	is	conceptually	no	different	from	the

construction	of	Figure	6;	Euclid	draws	a	circle	where	I	have	rotated

hinged	line	segments.	And	he	finds	an	intersection	where	I	have

locked	rotated	line	segments	into	place.	The	construction	is

depicted	in	Figure	7.



Figure	7

This	entire	construction	should	be	viewed	as	a	sequence	of

abstract	measurements,	as	follows:

1.

Joining	A	to	B	is	finding	the	direction	from	A	to	B.
2.

Constructing	the	equilateral	triangle	(building	on

Proposition	1)	required	finding	a	point	simultaneously	of

distance	AB	from	both	A	and	B.	In	the	proof	of	Proposition

1,	this	required	drawing	two	circles	and	finding	their

intersection.
3.



Extending	DA	and	DB	required	continuing	a	line	in	a

particular	direction,	finding	other	points	in	the	same

direction.
4.

Drawing	a	circle	around	B	is	finding	a	point	on	DF	of

distance	BC	from	B.
5.

Drawing	a	circle	around	D	is	finding	a	point	on	the	line	DE

of	distance	DG	from	D.

To	identify	the	fact	that	the	construction	succeeds,	one

needs	to	identify	the	nature	of	each	step	and	appeal	to	known

relationships.	For	example,	the	argument	that	AL	=	BC	requires	use

of	the	common	notions.	AL	=	BG	because	DA	=	DB	and	because

equals	subtracted	from	equals	(namely	DL	and	DG)	are	equal.	AL	=

BC	because	things	that	are	equal	to	the	same	thing	(namely	BG)	are

equal	to	each	other.

Proposition	3	reads:	“Given	two	unequal	lines,	to	cut	off	from	the	greater	a
straight	line	equal	to	the	less.”98
After	Proposition	2,	this	Proposition	requires	one	more

step,	namely	to	rotate	the	line	that	Proposition	2	constructs	at	A	in

the	desired	direction.	(That	desired	direction	is	determined	by	a

given	line	segment	from	the	point	A.)
So,	by	the	end	of	Proposition	3,	Euclid	has	shown	how	to



construct	a	line	segment	of	any	given	length	and	direction	at	any

chosen	point.	He	has	provided	a	recipe,	shown	an	abstract	way,	to

accomplish	the	same	thing	that	we	do	whenever	we	move	an	object

into	a	different	position	to	compare	it	with	another	object.	Taken

together,	the	first	three	propositions	specify,	abstractly,	how	to

move	line	segments	around	so	that	they	can	be	compared.
The	demonstration	of	Proposition	2	follows	the	exact

pattern	of	Proposition	1.	Its	method	is	the	same,	its	scope	is	the

same,	and	its	validity	is	the	same.	Together	with	Proposition	3,	its

corollary,	Euclid	can	now	appeal,	at	will,	to	the	ability	to	compare

line	segments	at	any	two	separate	points.	The	construction	that	he

presents	need	never	be	explicitly	repeated,	but,	simply,	taken	for

granted	in	all	subsequent	arguments.	Proposition	3	is	a	building

block	to	be	used	over	and	over	again.	Whenever	Euclid	compares

line	segments,	he	is	appealing	to	Proposition	3.

Proposition	4

“If	two	triangles	have	the	two	sides	equal	to	two	sides

respectively,	and	have	the	angles	measuring	or	comparing

contained	by	the	equal	straight	lines	equal,	they	will	also	have	the

base	equal	to	the	base,	the	triangle	will	be	equal	to	the	triangle,	and

the	remaining	angles	will	be	equal	to	the	remaining	angles



respectively,	namely	those	which	the	equal	sides	subtend.”99

Why	can	Euclid	speak	of	two	angles	being	equal?	Euclid,

though	without	acknowledgement,	relies	critically	on	the	import	of

Postulate	4:	Angles	at	different	places	are	directly	comparable

because	Postulate	4	says	that	the	right	angles	at	those	different

places	are	directly	comparable.

Proposition	4	is	ostensibly	about	triangles.	But	what	it

provides	is	a	way	of	comparing	angles,	namely	the	two	remaining

angles	that	are	subtended	by	the	other	sides.	It	also	provides	a

comparison	of	the	respective	bases	of	the	two	triangles.	More

generally,	Proposition	4	is	the	first	step	towards

relating

measurements	of	angles	to	measurements	of	length.	This	is	the

point	of	Proposition	4,	its	measurement	implications.

What	about	its	underpinnings?	In	the	first	three

propositions,	Euclid	has	established	the	basis	for	a	direct

comparison	of	two	line	segments.	The	quantitative	comparisons	to

establish	Proposition	4	proceeds	as	follows:

1.

First	move	the	first	side	of	one	to	coincide	with	the	first

side	of	the	other.	Because	the	two	sides	have	the	same



length,	they	coincide.

2.

The	equal	angles	will	also	coincide	because	they	are	equal

and	because	they	now	start	at	the	same	place.
3.

So	the	second	sides	will	also	coincide.

The	entire	argument	appeals	to	the	fourth	Common	Notion

that	things	that	coincide	are	equal	to	each	other.	As	Figure	8

illustrates,	Euclid	intends	his	argument	to	apply	to	reflections,	as

well:

Proposition	4	tells	us	that	two	sides	and	the	angle	between

them	determine	the	other	parts	of	the	triangle.	But	it	does	not	tell



them	determine	the	other	parts	of	the	triangle.	But	it	does	not	tell

us	quantitatively	how	these	three	parts	of	the	triangle	determine	the	other	parts.
Euclid	does	not	provide	a	formula.	Yet	this

proposition	is	one	of	the	foundations	of	trigonometry,	later

developed	to	do	precisely	that,	to	relate	the	measurements	of	the

sides	and	angles	of	a	triangle.	And	trigonometry,	in	turn,	provides

the	underpinnings	of	navigation	and	astronomic	measurement.

For	Euclid,	Proposition	4	is,	in	large	part,	a	building	block

for	further	propositions.	His	characteristic	use	of	Proposition	4	is

already	evident	in	the	very	next	Proposition	5.	Euclid	typically	will

construct	triangles	that	include	the	lines	or	angles	that	he	wants	to

compare.	Then	he	will	argue	that	certain	other	parts	of	those

triangles	are	equal.	And	then	he	will,	finally,	argue	that	the

triangles	are	congruent	and	hence,	the	sides	or	angles	that	he’s

specifically	interested	in	are	equal.

Notice	that,	even	by	the	time	one	reaches	Proposition	4,

making	comparisons	has	gotten	easier.	The	entire	chain	of

measurements	required	to	prove	the	first	three	propositions	has

now	been	consolidated	into	the	statement	of	Proposition	3.	The

steps	in	these	constructions	need	never	be	repeated	in	Euclid’s	later

constructions.	But,	conversely,	Proposition	4	is	simply	another

landing	point,	one	used	constantly	in	Euclid’s	arguments	for



landing	point,	one	used	constantly	in	Euclid’s	arguments	for

subsequent	propositions.

In	sum,	each	proposition	is	a	building	block	that	facilitates

further	measurements.	A	geometric	proposition	provides	the	same

kind	of	unit	economy	that	Ayn	Rand	discusses	in	regards	to

concepts.	In	this	respect,	formulating	a

valid

proposition,	a	geometric	principle,	is	exactly	analogous	to	forming	a	concept.100

Proposition	5.	In	isosceles	triangles	the

angles	at	the	base	are	equal	…

Proposition	5	reads:	“In	isosceles	triangles	the	angles	at	the

base	are	equal	to	one	another,	and,	if	the	equal	straight	lines	be

produced	further,	the	angles	under	the	base	will	be	equal	to	one	another.”101

Proposition	5	is	not	a	construction;	it	calls	for	a	comparison

of	two	angles.	But	although	it	does	not	ask	for	a	construction,

Euclid	used	a	construction	to	establish	it.	That	construction	is

Euclid’s	recipe	to	compare	the	two	angles.

The	steps	in	the	construction	are	depicted	in	Figure	9.	The

first	figure	is	the	given	isosceles	triangle,	which	means	that	the	two

sides	AB	and	AC	are	presumed	equal.	Step	1	is	to	extend	the	two

sides	in	their	respective	directions,	ending	in	D	and	E.	Step	2



sides	in	their	respective	directions,	ending	in	D	and	E.	Step	2

measures	off	equal	lengths	AF	and	AG	on	these	two	sides	by

drawing	a	circle	around	A.	The	choice	of	a	point	F	on	the	first	line

was	a	free	choice	but,	once	chosen,	the	intersection	of	the	circle	at	G

with	the	segment	AE	is	determined	by	the	radius	of	the	circle.	The

final	step	is	to	connect	C	and	F	with	the	Line	CF	and	to	connect	B

and	G	with	the	line	BG.

A	number	of	triangles	result	from	taking	these	steps.	These

triangles	can	be	compared	because	of	the	knowledge	one	has

already	gained	from	earlier	propositions.

Steps	1,	2,	and	3	of	the	construction	phase	are	all

measurements.	Step	1	extends	the	measurement	of	the	directions

specified	by	the	two	lines	by	extending	the	lines.	Step	2	measures

equal	distances	from	A	in	the	two	directions.	Step	3	measures	the

directions	from	C	to	F	and	B	to	G.

So	ends	the	construction	phase,	depicted	in	Figure	9.



This	construction,	once	it’s	complete,	supports	a	series	of

comparisons	to	establish	the	proposition.	Focus,	in	Figure	10,	on

the	two	large	bolded	intersecting	triangles.	I	will	not	sketch	a	complete	proof
here.	But,	in	outline,	Euclid	first	compares	triangles

ACF	and	ABG	(the	two	large	bold	triangles	in	Step	1)	arguing	that	they	are
congruent.	“Congruent”	means	that	the	triangles	can	be

lined	up	so	that	they	coincide	so	that	all	corresponding	edges	and

angles	are	equal.	From	that,	Euclid	argues,	in	Step	2,	that	the

triangles	BCF	and	CBG	(the	smaller	bolded	intersecting	triangles)	are	also
congruent.	Each	step	is	a	comparison,	although	each	of

these	comparisons	could	be	broken	down	into	further	comparisons.

Even	in	this	early	proposition,	Euclid	draws	on	knowledge	already



established	in	earlier	propositions.	Getting	into	these	details,

however,	would	neither	affect	nor	further	illuminate	my	argument.

In	step	3,	Euclid	compares	angles	FBC	and	BCG	(the

marked	angles),	arguing	that	they	are	equal:	a	third	comparison.

But,	then,	in	step	4,	the	angles	ABC	and	ACB	(the	marked	angles)

are	also	equal,	a	final	comparison	proving	the	Proposition.

I	have
omitted	many	steps,	but	this	example	indicates,	in	outline,	the	pattern	of	Euclid’s
proofs	as	generally	including:

1.

A	series	of	constructions,	each	constituting	an	abstract

measurement	and	drawing	on	previously	established

knowledge,	that	is,	on	previously	performed



knowledge,	that	is,	on	previously	performed

measurements.

2.

A	series	of	quantitative	comparisons,	each	step	the

ultimate	product	of	direct	quantitative	identifications	and

constructions.

Once	again,	Euclid	has	established	his	proposition	by	a

series	of	measurements.
As	I	have	pointed	out,	Euclid’s	argument	for	Proposition	5

shows	a	typical	use	of	Proposition	4:	First,	he	constructs	the

required	triangles.	Then	he	argues	that	certain	line	segments	and

angles	are	equal.	Next,	he	observes	that	these	segments	and	angles

are	parts	of	triangles	and	argues	that	the	triangles	are	congruent.

Finally,	he	concludes	that	the	remaining	corresponding	parts	of

those	triangles,	including	the	parts	of	particular	interest	to	his

Proposition,	are	equal,	as	well.

Other	Consequences	of	Postulates	1–4

Proposition	6	is	simply	the	converse	of	Proposition	5:	If	the

angles	are	equal	then	the	sides	are	equal.102
The	purpose	of	Proposition	7,	which	I	will	not	state,	is	to

establish	Proposition	8,	which	states	that	the	angles	of	a	triangle

are	determined	by	the	lengths	of	its	three	sides.	Two	triangles	with	the	same



lengths	of	corresponding	sides	are	congruent.103	When	one	speaks	of	the	rigidity
of	triangles,	one	speaks	of	Propositions	4

and	8.
Proposition	9	(“To	bisect	a	given	angle”)104	starts	a	new	phase	of	Euclid’s
enquiry.	Numbers	enter	for	the	first	time.	It	was

not	enough	for	Euclid	or	for	the	Greeks	to	speak	abstractly	of

dividing	an	angle	into	two	equal	parts	or	five	equal	parts.	They

wanted	an	exact	way	to	carry	out	the	division.	They	wanted	a

geometric	construction.	Indeed,	they	wanted	a	construction	with

straight	edge	(the	measure	of	direction)	and	compass	(the	measure

of	length).	Anything	else	was	less	than	satisfactory.	For	example,

they	could	not	trisect	an	angle	with	such	tools	and	the	quest	did	not	end	when
Nicomedes	discovered	a	way	to	trisect	an	angle	with	the

aid	of	a	peculiar	kind	of	curve	called	“conchoidal”	lines,	a	curve	that	he	was	able
to	generate	by	means	of	a	mechanical	device.105

In	establishing	Proposition	9,	Euclid	bisects	an	angle	as	follows:106



Figure	11

Proposition	9,	in	Euclid’s	treatment,	already	uses

Proposition	8.	It	specifically	uses	the	fact	that	the	three	angles	of	a

triangle	are	determined	once	the	three	sides	are	known.	Euclid

argues	that	triangles	ADF	and	AEF	are	congruent	and	that,

therefore,	the	two	angles	DAF	and	FAE	are	equal,	providing	the

required	bisection.

Once	again,	one	sees	the	application	of	an	indirect

measurement	to	establish	an	equality.	In	this	case,	a	judgment	of

equality	is	used,	for	the	first	time,	to	establish	a	judgment	of

multiplicity:	that	the	given	angle	has,	indeed,	been	divided	into



two	equal	parts.

The	next	three	Propositions,	10	through	12	read:

	
●

Proposition	10:	“To	bisect	a	given	finite	straight	line.”107	●

Proposition	11:	“To	draw	a	straight	line	at	right	angles	to	a

given	straight	line	from	a	given	point	on	it.”108

●

Proposition	12:	“To	a	given	infinite	straight	line,	from	a

given	point	which	is	not	on	it,	to	draw	a	perpendicular

straight	line.”109

These	three	propositions,	together	with	Proposition	9,	are

all	closely	related.	As	in	the	proof	of	Proposition	9,	Euclid’s

constructions	draw	on	earlier	ones	and,	in	this	case,	are	not	the

most	direct.	In	particular,	he	utilizes	the	results	of	Proposition	1.	A

more	direct	construction	uses	the	concept	that	underlies

Proposition	1	instead	of	simply	invoking	it.	Euclid’s	approach,

which	I	will	not	discuss	further,	makes	his	demonstration	quicker,

but	the	underlying	construction	would	take	longer.

In	Figure	12	below,	the	line	CD	is	the	perpendicular

bisector	of	the	line	segment	AB.	This	construction	is	the	key	to

Propositions	10	through	12:



Propositions	10	through	12:

Figure	12

	
Taken	together	these	Propositions	are	important	because

1.

They	provide	the	ability	to	subdivide.
2.

They	provide	the	ability	to	construct	a	perpendicular	to	a

given	line,	either	from	a	point	on	that	line	or	from	a	point

not	on	that	line.	A	line	is	perpendicular	to	another	line

when	it	makes	a	right	angle	on	either	side.
3.

This	is	the	recipe	for	creating	right	angles	that	I	discussed	earlier.	As	I	discussed,
the	importance	of	Euclid’s



Postulate	4	derives,	in	large	part,	from	one’s	ability	to

manufacture	a	right	angle	at	any	point	in	the	plane,	or	in

the	universe.

Proposition	26	is	the	third	key	proposition	to	establish

conditions	for	congruent	triangles.	Recall	that	Proposition	4	says

that	a	triangle	is	determined	by	two	sides	and	the	angle	between

them,	while	Proposition	8	says	that	the	three	sides	of	a	triangle	also

determine	the	angles.	Proposition	26	says	that	a	triangle	is

determined	by	two	of	its	angles	and	the	line	segment	between	them.

It	states:	“If	two	triangles	have	the	two	angles	equal	to	two	angles

respectively,	and	one	side	equal	to	one	side,	namely	either	the	side

adjoining	the	two	equal	angles,	or	that	subtending	one	of	the	equal

angles,	they	will	also	have	the	remaining	sides	equal	to	the	remaining	sides	and
the	remaining	angle	to	the	remaining	angle.”110

Figure	13	outlines	the	essential	points:

	



Figure	13

	
I	will	need	this	Proposition	in	Chapter	3	in	relation	to

Euclid’s	analysis	of	area.

I	will	continue	my	discussion	of	Euclid,	in	relation	to

parallel	lines,	geometric	area,	and	geometric	proportion,	in	Chapter

3.	But,	by	now,	the	role	of	abstract	measurement	in	both	the

content	and	the	proofs	of	Euclid’s	Propositions	should	be	evident.

The	General	Pattern	and	Conclusion

To	summarize	my	review	of	Euclidean	propositions:

1.

Every	step	in	each	of	these	demonstrations	is	a	recipe	for	a



series	of	measurements.
2.

Each	proposition	condenses	a	series	of	measurements	into

a	single	unit.
3.

Each	step,	in	any	concrete	context,	is	subject	to	precision

requirements,	to	be	met	by	a	sufficiently	accurate

execution	of	Euclid’s	recipe.
4.

Therefore,	each	argument	applies	universally	to	every

circumstance	embraced	by	the	proposition.

A	Euclidean	argument	is	an	abstract	measurement	of	the

world.	Euclid	does	not	know	how	precise	any	particular

measurement	will	be	or	will	need	to	be	in	any	particular

application.	He	does	not	need	to	know:	his	principles	do	not

depend	on	any	particular	precision	limit:	They	require	only	that

there	be	a	specific	finite	precision	requirement	in	any	particular

application	of	his	principles.	Euclid	leaves	the	problem	of	execution

to	those	who	would	apply	his	principles.	As	applied	to	any	specific

context,	he	presumes:

●

that	the	lines	are	thin	enough	and	straight	enough;

●



●

that	the	measurements	of	direction	are	precise	enough

●

that	the	measurements	of	distance	and	the	choice	of	the

points	from	which	those	measurements	start	are	accurate

enough.

Euclid’s	presumption	is	that	his	propositions	will	be

applied	to	contexts	for	which	the	required	precision	is	achievable	by

available	physical	means.	The	unknown	inaccuracies	can	be	ignored

because	they	don’t	materially	affect	the	result.	Euclid’s	task	is	to

proceed	on	that	basis	and	to	do	nothing	to	introduce	new

inaccuracies	in	his	own	analysis.

Euclid’s	arguments	apply	universally	because	they	apply	to

each	concrete	case	regardless	of	the	specific	precision	requirements

of	any	specific	case.

The	Need	for	Precision	in	Mathematics

If	Euclid	understood	how	his	abstractions	and	arguments

relate	to	the	world,	he	certainly	did	not	explain	it.	Yet	despite	the

shortcomings	in	his	presentation	and	in	his	understanding,	his

approach	is	fundamentally	sound,	once	its	proper	relationship	to

the	world	has	been	identified	and	understood.



In	particular,	it	is	altogether	appropriate,	indeed	necessary,

to	offer	total	precision	in	one’s	expression	and	analysis	of

mathematical	relationships.	The	implication	of	such	infinite

precision,	as	I	have	argued	throughout,	is	not	that	actual

measurements	ever	attain	such	precision.	To	expect	actual

measurements	to	attain	infinite	precision	is	to	miss	the	point.	Any

particular	measurement	will	meet	a	finite	precision	requirement.

But	no	specific	precision	requirement	can	be	specified	in	advance,

for	all	measurements,	for	all	time.	So	the	mathematical	treatment

can	and	must	accommodate	any	and	every	required	precision	limit

that	will	ever	be	encountered	in	any	concrete	application.	From	a

reality-based	perspective,	this	is	precisely	what	is	meant,	what

should	be	meant,	by	precision	in	mathematics.

Fundamentally,	the	need	for	precision	in	geometry	arises

from	a	difference	between	mathematics	and	engineering.	In

engineering,	with	a	concrete	application	in	mind,	one	can	always

identify	the	required	precision	in	advance.	The	measurements	one

makes	building	a	house	are	generally	accurate	within,	perhaps,	an

eighth	of	an	inch.	Far	greater	precision	is	required	for	a	precision

machine	and	greater	still	is	the	precision	required	for

semiconductors.



But	the	application	of	mathematics	is	open-ended.	It

applies	to	all	engineering	problems	that	will	ever	be	tackled	and	all

levels	of	precision	that	will	ever	be	required.	There	is	simply	no	way

to	anticipate	the	level	of	precision	that	may,	someday	for	some

reason,	be	required	by	someone	for	some	purpose.

Euclid’s	abstract	measurement	meets	the	precision

standard	that	mathematics	requires.	His	arguments	and

propositions	apply	to	all	cases,	whatever	the	specific	precision

limits	of	each	case.	His	methods	share	the	open-ended	character

that	all	concepts	have;	their	applications	extend	beyond	the	scope

of	any	special	presumptions	that	one	might	make	about	the	finest

precision	level	that	will	ever	be	available	or	needed	within	any

particular	application.	Propositions,	and	their	arguments,	apply,

and	are	valid,	to	any	context	for	which	the	required	precision	is

physically	possible.

Precision	in	mathematics	means:	independent	of	any	a

priori	standard	of	precision.
In	this	way,	mathematicians	are	able	to	achieve	what	an

engineer	cannot.	A	mathematician	can	analyze	complex	chains	of

mathematical	relationships	without	ever	losing	precision.

Mathematical	methods	are	designed	to	provide	whatever	specific

level	of	precision	might	be	required	without	anyone	having	to



level	of	precision	might	be	required	without	anyone	having	to

know,	in	advance,	the	requirements	for	any	concrete	case.

Mathematical	arguments	are	universal	because	their	chains	of

mathematical	relationships	are	independent	of	any	specific	finite

precision	requirement.
Mathematicians	can	indeed	study	and	explicitly	address

questions	regarding	precision	limits,	but	their	arguments	never

depend	upon	any	particular	limit	that	one	might	specify	in	advance.
Mathematicians	do	make	approximations	in	their	work.

But	when	the	approximation	occurs	within	a	mathematical

analysis,	a	mathematician	will	always	offer	a	way	to	meet	any	and

all	potential	precision	demands.	The	pattern	is	to	say,	and	argue:

for	any	positive	number	epsilon	(ε	>	0),	there	is	a	realizable

approximation	that	is	guaranteed	to	provide	a	final	measurement

within	a	range	of	±ε.
By	contrast,	any	pre-specified	approximation,	set	for	all

time,	would	fail	to	meet	some	precision	level	that	might	one	day	be

required	by	someone	for	some	purpose.	The	validity	and

universality	of	mathematical	conclusions	depends	on	the	ability	to

analyze	complex	chains	of	mathematical	relationships	without	ever

losing	precision.

What	have	we	learned?

We	have	learned	that	geometric	shapes	are	shapes	that



We	have	learned	that	geometric	shapes	are	shapes	that

exist	on	earth.	Concepts	of	geometric	shapes	are	grasped

perceptually	and	pertain	to	the	shapes	that	we	observe.	Context	is

essential.	Any	specific	context	has	its	own	standard	of	precision.

Whether	something	is	a	triangle,	circle,	or	straight	line	always

depends	on	the	standard	of	precision.

Secondly,	we	have	learned	that	Euclid’s	propositions	refer

to	shapes	and	relationships	in	the	world.	That	a	proposition	about

triangles	applies	to	all	triangles	insofar	as	they	are	triangles.

We	have	learned	that	Euclid’s	postulates	are	the

underpinnings	of	geometric	measurement.	That	Euclid’s	Postulates

formulate	our	most	basic	measurements	on	which	the	more

complex	measurements	in	the	propositions	are	built.

And	finally,	we	have	learned	that	Euclid’s	arguments	are

valid,	that	they	are	recipes	for	measuring	the	world.	A	Euclidean

argument	is	a	recipe,	a	recipe	Euclid	argument	as	recipe	prescribing

a	series	of	abstract	measurements	of	the	world.
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Chapter	2	Measurement	and	the	Geometry	of
Magnitudes
The	most	profound	ideas	in	mathematics	make	their	first	appearance	in
arithmetic.	The	break	between	mathematics	and	reality	in	people’s	minds,
though	unnoticed,	begins	there,	as	well.	The	break	is	insidious	because	it	goes
unnoticed.	To	fill	a	gap	one	must	first	know	that	it	is	there.

If	one	wants	to	appreciate	the	subtleties	of	higher	mathematics,	one	needs	to
appreciate	their	first	appearance	in	elementary	mathematics.	If	one	wants	to
understand	the	tremendous	mathematical	advances	in	the	nineteenth	and
twentieth	centuries,	to	understand	what	they	say	about	the	world	we	live	in,	how
mathematics	relates	to	that	world,	how	mathematics,	at	all	levels,	illuminates	and
quantifies	our	grasp	of	that	world,	one	needs	to	begin	with	elementary
mathematics.

By	“understand”	I	mean	to	acquire	a	firm	grasp	of	the	relationship	of
mathematics	to	reality.	So	I	am	not	speaking	of	conventional	mathematical
definitions	and	proofs	by	which	mathematicians	deduce	the	fundamental
relationships	in	arithmetic	from	a	few	basic	assumptions.1	Nor	am	I	speaking	of
the	ability	to	compute	or	to	manipulate	algebraic	expressions.	And,	finally,	I	am
not	speaking	of	the	ability	to	use	arithmetic	in	the	everyday	sense	of	balancing
ones	checkbook	or	calculating	percentages.

Rather,	I	speak	of	taking	a	step	back	to	understand	just	how	numbers	are	used	to
measure	relationships	in	our	world,	to	isolate	just	what	is	the	relationship	of
these	numbers	to	the	quantities	that	they	are	used	to	measure.

My	specific	concern	will	not	be	with	counting	objects,	but	with	using	numbers	to
measure	magnitudes,	such	as	length,	weight,	and	speed.	In	this,	we	should	not	be
surprised	to	find	that	our	usage	of	numbers	is	indeed	correct.	But	we	will	find
that	characterizing	exactly	what	we	are	doing	when	we	apply	numbers	is	not	as
straightforward	as	one	might	have	thought.	Yet	in	laying	this	process	bare,	one
creates	the	foundation	for	a	similar	understanding	of	mathematical	concepts
whose	relationship	to	the	world	we	live	in	may	be	far	from	obvious.	It	is	the	lack
of	such	understanding	that	has	led	to	the	widespread	false	alternatives	that
mathematics	is	either	a	formal	game	played	with	symbols,	a	system	of	deduction



mathematics	is	either	a	formal	game	played	with	symbols,	a	system	of	deduction
from	carefully	chosen	axioms	such	as	the	axioms	of	set	theory,	or	an	insight	into
a	Platonic	universe	of	mathematical	concepts.	On	any	of	these	views,	the
applicability	of	mathematics	to	reality	must	be	viewed	as	a	happy	accident.

We	are	taught	to	think	of	numbers	as	points	on	a	real	number	line.	There	is	value
in	such	a	perspective,	but	there	is	danger,	as	well.	The	danger	lies	in	what	is
being	ignored	or	taken	for	granted.	The	real	number	line	is	a	culmination	of	a
long	historical	development.	It	had	to	be	long,	because	it	is	the	product	of	many
layers	of	abstraction.	The	well-known	reluctance,	at	every	step	throughout
history,	to	recognize	ratios,	negative	numbers,	and	irrational	numbers	as	bona
fide	numbers	was	not	accidental	and	reflects	the	shifting	perspectives	required	to
embrace	each	newcomer.

A	culmination	of	this	development,	the	real	number	line,	is	not	the	place	to	start;
not	if	one’s	goal	is	to	fully	understand	the	relationship	of	numbers	to	reality.	It	is
one	thing	to	reach	such	an	abstraction,	to	clearly	know	its	lineage,	to	see	how
each	step	ties	to	the	previous	and	how	each	step	applies	to	and	illuminates	the
concretes	of	the	world	we	live	in.	But	it	is	quite	another	to	begin	there,	as	though
its	application	to	reality	were	self-evident	and	no	further	understanding	were
needed	or	possible.

Exploring	the	lineage	of	the	real	numbers	involves	history	because	the	issues	one
must	confront	were	all	confronted	historically.	My	analysis	will	draw	primarily
on	the	foundational	thinking	of	the	Greeks	and,	to	a	lesser	extent,	on	one	of	the
inventors2	of	analytic	geometry,	namely,	Rene	Descartes.

It	is	not	possible	to	fully	understand	how	mathematical	concepts	tie	to	reality	if
one	does	not	understand	how	concepts	in	general	apply	to	reality.	Because	Ayn
Rand’s	theory	of	concepts	has	provided	that	understanding,	her	theory	of
concepts	provides	a	fundamental	underpinning	of	this	study.	My	treatment	will
not	contain	an	exposition	of	her	ideas	nor	presuppose	a	prior	understanding	of
them.	But	I	will	be	applying	her	framework	at	every	turn,	will	be	looking	at
mathematical	concepts	from	that	perspective.	As	in	Chapter	1,	when	particularly
appropriate,	I	will	call	attention	to	the	specific	passages	of	her	work	that
crystallize	the	underpinnings	of	my	own	analysis.	It	is	Ayn	Rand’s	theory,	in	my
view,	that	enables	one	to	avoid	the	false	alternative	between	the	Platonic	view	of
a	separate	mathematical	universe	and	the	more	modern	view	that	mathematical
concepts	are	arbitrary	conventions	requiring	no	existential	referent.

Some	puzzles	go	unnoticed	at	all	levels	of	education,	from	grade	school	through



Some	puzzles	go	unnoticed	at	all	levels	of	education,	from	grade	school	through
graduate	school.	In	our	quest,	we	will	encounter,	and	address	a	number	of	them.
For	example:

●	Why	is	a	ratio	different	than	a	fraction?	Or	is	it?

●	Do	we	need	a	mathematical	infinity	of	numbers	because	the	world	is	infinite
or	because	it	is	finite	and	measurable?
●	What	does	the	unit	‘1’	on	the	real	line	represent?	This	one	may	be	the	most
puzzling,	because	it	sounds	like	a	silly	question.	So	the	first	puzzle	really	is:
Why	isn’t	it	a	silly	question?

A	final	question	would	require	a	knowledge	of	the	history	of	mathematics	that	is
not	part	of	the	standard	curriculum:
	●	If	Descartes	was	right	about	Cartesian	coordinates,	was	it	for	the	right	reason?
Or	for	the	wrong	reason?

I’ve	worded	these	questions	as	teasers	and,	in	what	follows,	I	do	not	ask	these
questions	in	quite	this	way.	They	do	not	arise	in	conventional	treatments	of	real
numbers.	But	they	arise	naturally	when	one	begins	with	the	phenomena	that	real
numbers	are	needed	to	represent,	namely	the	measurement	of	magnitudes.

It	is	not	my	intention	in	this	chapter	to	discuss	standard	approaches	(such	as	the
mathematical	constructions	I	once	learned	as	a	mathematics	student)	to
understanding	the	real	line.	My	discussion	of	Dedekind	and	Cantor	regarding	the
real	numbers	is	deferred	to	Chapter	4.	My	task	in	this	chapter	is	a	more	positive
one,	namely	to	understand	the	real	line:	To	present	a	reality-based	approach	to
understanding	the	real	numbers,	specifically	as	they	apply	to	magnitudes.	I	will
address	the	questions	along	the	way	that	have	aroused	my	own	interest	and	that	I
consider	essential	to	a	full	understanding	of	elementary	arithmetic.

I	will	begin,	as	I	say,	not	with	real	numbers,	but	with	what	they	measure.	I	will
begin	with	magnitudes,	such	as	the	length	of	long	objects	and	the	speed	of
moving	bodies.	I	will	look	at	magnitudes	the	way	one	had	to	when	measurement
was	still	being	invented.	And	I	will	take	a	geometric	perspective	in	the	spirit	of
Euclid’s	Elements	because	such	a	perspective	is	a	way	of	turning	the	spot	light
away	from	the	quantitative	abstraction,	as	such,	and	toward	the	genesis	or
content	of	such	abstractions.	As	I	see	it,	the	geometric	perspective,	broadly
conceived,	is	a	way	of	focusing	on	the	content	of	mathematical	abstractions,	on
what	is	being	measured.	The	geometric	perspective	helps	distinguish	what	is



being	measured	from	the	means	by	which	one	measures.

Geometry,	Measurement,	and	Magnitude

To	properly	understand	the	measurement	of	magnitudes	one	must	first	look	at
them	as	the	ancient	Greeks	did.	One	must	look	at	them	geometrically.3

The	geometric	perspective	directs	ones	focus	toward	the	object	of	measurement,
as	opposed	to	the	numerical	results	of	such	measurement.	One	thinks	of	the
objects	as	having	an	independent	existence,	as	having	preexisting	relationships
to	other	objects,	and	as	being	measurable.

When	I	look	at	a	distance	as	being	five	miles	I	am	not	looking	at	it
geometrically;	I	am	looking	at	it	numerically.	When	I	perform	an	algebraic
calculation	involving	numerical	unknowns,	I	am	also	not	thinking	geometrically.
But	if	I	compare	two	pencils	with	regard	to	length	and	say	that	this	pencil	is
longer	than	that	or	if	I	say	that	this	pencil	is	three	times	as	long	as	that,	I	am
looking	at	it	geometrically.	My	focus	is	on	quantitative	relationships	between	the
pencils.	This	remains	true	whether	or	not	I	draw	lines	to	represent	the	pencils.

In	general,	looking	at	an	object	quantitatively,	but	without	regard	to	a	specific,
given	unit	of	measurement	is	looking	at	it	geometrically.	But	this	is	not	a
criterion	and	it	can	be	a	matter	of	emphasis.	For	example,	if	I	consider	the
relationship	of	a	choice	of	unit	to	the	numerical	results	of	that	choice,	I	need	to
retain	my	focus	on	the	object	of	measurement.	In	such	a	case	I	would	be	thinking
geometrically.	For	example,	when	one	converts	feet	to	yards,	one	presupposes,
and	focuses	on	the	fact,	that	one	and	the	same	object	is	being	measured	in	two
different	ways.

As	in	Chapter	1,	I	will	examine	the	underpinnings	of	measurement,	this	time	as
it	relates	to	magnitudes.	I	will	examine	the	quantitative	relationships	that	make
measurement	possible,	possible	in	the	full	sense	of	“measurement”	articulated	by
Ayn	Rand.	As	a	reminder:

“Measurement	is	the	identification	of	a	relationship–a	quantitative	relationship
established	by	means	of	a	standard	that	serves	as	a	unit.”4

Chapter	1	focused	on	the	preconditions	of	geometric	measurement;	this	one	will



focus	on	the	preconditions	of	the	measurement	of	magnitudes.	My	analysis	will
look	at	measurement	in	the	general	way	that	Euclid	(implicitly)	did,	as
determining	or	specifying	quantitative	relationships	in	an	abstract	setting	that
apply	to	an	open-ended	range	of	concretes.	In	chapter	1,	I	characterized	this	as
abstract	measurement.

But	a	quantitative	relationship	is	a	relationship	between	two	quantities,	two
quantities	of	a	particular	characteristic.	When	one	isolates	a	similarity,	one	is
recognizing	a	quantitative	dimension	along	which	the	concretes	vary.	In	the
similarity,	one	recognizes	a	characteristic	that	the	concretes	share,	though	in
possibly	different	degree.	The	specific	degree	of	the	common	dimension	is	its
quantity.

Quantity	is	an	aspect	of	the	identity	of	the	characteristic,	an	aspect	that	we
identify	either	by	direct	perception	or	by	relating	it	quantitatively	to	something
that	we	do	perceive	directly.	As	such,	quantity	is	something	that	exists	in	the
world.	Quantity	is	not	the	number	or	specifications	that	we	attach;	rather,	it	is
that	to	which	we	attach	the	number	or	specifications.

The	geometric	perspective	taken	by	Euclid	is	a	focus	on	quantities	as	objects	of
measurement,	as	the	objects	of	study	and	as	relatable	quantitatively,	but	without
regard	to	a	specification	of	a	particular	perceptual	standard.

A	magnitude	is	a	type	of	quantity.	One	needs	to	distinguish	magnitudes	from	the
broader	category	of	continuous	quantity,	on	the	one	side,	and	from	multiplicities
of	discrete	entities	on	the	other.	Discrete	entities,	taken	together,	comprise	a
collection.	A	count	of	a	collection	of	entities	always	yields	a	whole	number.	By
contrast,	continuous	quantities	are	not	collections,	but	admit	of	gradations.	A
length	is	a	continuous	quantity;	a	collection	of	books	is	a	multiplicity.	A
magnitude,	in	general,	is	a	continuous	quantity.

Magnitudes	are	distinguished	from	a	variety	of	different	kinds	of	continuous
quantity.	On	the	one	side,	consider	that,	for	example,	length	is	a	magnitude.	We
can	compare	lengths	in	terms	of	multiplicity.	We	can	say	that	one	length	is	twice
another	length	or	that	length	C	is	the	sum	of	length	A	and	length	B.

In	contrast,	hardness	is	a	continuous	quantity,	but	it	isn’t	a	magnitude,	at	least	as
it	was	measured	in	the	past.5	Traditionally,	one	measured	hardness	of	minerals
and	gem	stones	along	a	comparative	scale	called	Moh's	Scale	of	Hardness.	One



said	that	a	diamond	had	a	hardness	of	10	while	quartz	had	a	hardness	of	7
because	a	diamond	can	scratch	a	quartz	crystal	but	a	quartz	crystal	cannot
scratch	a	diamond.	Between	quartz	and	diamond	in	hardness	are	Topaz	and
Corundum.	The	differences	were	ordinal.	There	was	a	way	to	determine	relative
hardness,	but	we	could	not	say,	on	such	a	basis,	that	a	diamond	is	twice	as	hard
as	a	quartz	crystal.

Lengths,	areas,	weight,	acceleration	(in	a	particular	direction),	force	(in	regards
to	the	strength	of	the	force),	density,	and	water	pressure	are	all	magnitudes.	The
pitch	of	a	sound	is	also	a	magnitude	because	one	can	relate	pitch	to	the
frequency	of	a	vibration.	But	we	do	not	perceive	it	that	way:	when	one	vibration
is	twice	the	frequency	of	another	we	perceive	the	difference	as	a	musical
interval,	specifically	as	an	octave.	Finding	frequency	as	a	unit	of	measure	was	a
scientific	discovery.

Ordinal	measurement	of	physical	quantities	is	unusual,	but	there	are	many,	more
common	kinds	of	continuous	quantities	that	are	not	magnitudes.	For	example,
force,	considered	as	acting	in	one	of	a	range	of	directions,	is	not	a	magnitude.	It
certainly	involves	a	magnitude,	namely	the	strength	of	the	force,	but	to	fully
specify,	to	fully	measure,	a	force,	one	need	also	identify	the	direction	in	which	it
acts.	Many	physical	quantities	are	of	this	type,	including	velocity	(as	opposed	to
speed)	and	acceleration	(conceived	as	a	rate	of	change	of	velocity).

Direction	falls	into	yet	another	important	category	of	continuous	quantity.
Direction,	as	such,	is	not	a	magnitude;	one	cannot	speak	of	multiples	of	north
and	one	cannot	add	north	and	east.	Northeast	is	not	the	sum	of	north	and	east,	for
example.	Rather,	it	is	a	third	direction	between	north	and	east.

But	a	difference	in	direction,	if	measured	as	a	rotation,	is	a	magnitude.	This	is
clearest	when	one’s	study	is	confined	to	a	plane.	As	we	saw	in	Chapter	1,	a
difference	in	direction	is	an	angle,	an	amount	of	turning	or	rotation.	An	amount
of	rotation	is	a	magnitude,	a	magnitude	that	Euclid	characterized	as	an	angle	and
measured	in	multiples	or	fractions	of	a	right	angle.

In	three	dimensions,	an	angle,	an	amount	of	turning,	can	occur	in	different
directions.	For	example,	one	can	rotate	90	degrees	from	north	to	west	or	one	can
rotate	90	degrees	from	the	vertical	to	the	horizontal.	Rotating	involves	both	the
amount	of	turning	(which	is	a	magnitude)	and	the	axis	of	the	rotation	(which	is
not	a	magnitude).	A	rotation	in	three	dimensions	is	not	a	magnitude.	But	even
here,	a	difference	in	direction,	the	angle,



here,	a	difference	in	direction,	the	angle,

considered	without	regard	for	the	axis	of	rotation	(an	omitted	measurement)6	is
a	magnitude.

There	are	many	kinds	of	quantities	that	are	not	themselves	magnitudes	but	for
which	differences	between	concrete	instances	are	magnitudes.	Direction	is	a
striking	example	of	this	phenomenon,	but	is	only	one	of	many	important
examples.	Another	important	example	is	position,	position	along	a	linear
direction.	Although	length,	distance,	and	displacement	(along	a	linear
dimension)	are	magnitudes,	position,	is	not.	But	relative	position,	measurable	by
the	length	of	a	tape	measure,	say,	stretching	from	one	object	to	the	second	and
without	regard	for	direction,	is	a	magnitude.	Displacement,	a	movement	of
something	from	one	position	to	another,	involves	that	same	magnitude.	Time
intervals,	although	harder	to	measure,	are	a	similar	example.	In	physics,
measures	of	potential	energy	and	electric	potential	require	selecting	a	zero-point.
What	one	measures,	as	magnitudes,	are	differences	in	potential	energy	or
differences	in	electric	potential.

Examples	such	as	direction,	vectors,	and	position	follow	a	general	pattern.	Such
quantities	are	not	magnitudes	but	are	measured	by	magnitudes.	In	general,	such
measurements	require	choice	of	an	axis	of	measurement	and/or	a	zero	point.	In
the	case	of	vectors,	one	chooses	an	entire	coordinate	system.	Choosing	a
coordinate	system	for	such	quantities	is	exactly	equivalent	to	choosing	a
standard	(such	as	a	meter)	to	measure	length.	The	numerical	values	of	the
numerical	measurements	(or	coordinates)	depend	upon	the	choice	of	coordinate
system	and	are	only	meaningful	in	relation	to	the	chosen	coordinate	system.

The	use	of	magnitudes	to	measure	differences	also	introduces	a	refinement	into
one’s	conception	of	magnitude.	To	measure	position,	one	very	often	selects	a
zero-point,	a	sort	of	“home”	position,	like	a	terminal	point	on	a	railroad	line.
One	measures	position	as	the	relative	position	from	the	zero	point.	Then	one	can
distinguish	the	two	opposite	directions	from	that	zero	point,	calling	one	direction
positive	and	the	other	negative.	A	difference	of	position	in	one	direction	is
positive;	in	the	other,	it’s	negative.	As	a	slightly	different	example,	one	might
distinguish	between	counter-clockwise	(positive)	rotations	and	clockwise
(negative)	rotations	in	the	plane.

Notice	a	difference	between	these	two	examples.	In	the	case	of	position,	one’s
use	of	numbers	to	measure	linear	position	involves	two	choices.	First,	there	is



the	choice	of	a	home	position.	Second,	there	is	the	choice	of	a	positive	direction
(which	may	be	to	the	right)	and	a	negative	direction	(the	opposite	direction	from
the	positive	direction).	But,	in	the	case	of	rotations,	the	home	position	is
necessarily:	no	rotation	at	all,	a	zero-rotation.	Yet,	one	still	needs	to	decide
whether	a	clockwise	or	counter-clockwise	rotation	(as	viewed	from	a	particular
vantage	point)	will	be	taken	as	positive.	One	does	not	choose	the	zero	point,	but
one	does	need	to	decide	which	sense	of	rotation	is	taken	to	be	positive.
Displacement	is	similar	in	that	regard.	A	displacement	from	A	to	B	has	the
opposite	sense	as	a	displacement	from	B	to	A.	One	must	choose	which	sense	one
takes	to	positive.	And	the	zero	point	is	the	trivial	displacement	from	A	to	A.

Finally,	notice	that	any	type	of	magnitude	can	form	the	basis	for	a	related	type	of
magnitude	that	involves	either	positive	or	negative	senses.	Consider	weight,	for
example.	Ignoring	the	phenomenon	of	buoyancy,	weight	is	always	positive.	But
one	can	compare	weights	and	measure	differences	in	weight.	One	can	compare
the	weights	of	Mary	and	Joe.	Joe,	let	us	say,	weighs	200	pounds	and	Mary
weighs	120	pounds.	Then	one	can	say	that	Joe	weighs	80	pounds	more	than
Mary.	To	paraphrase,	the	difference	in	weight	between	Joe	and	Mary	is	80
pounds,	that	is,	Joe	is	80	pounds	more	than	Mary.	But	one	can	also	turn	this
around	and	say	Mary	is	80	pounds	less	than	Joe.	One	paraphrases	this
relationship	by	saying	that	the	difference	in	weight	between	Mary	and	Joe	is
minus	80	pounds,	that	is	Mary’s	weight	minus	Joe’s	weight	is	minus	80.	Viewed
in	this	light,	differences	in	weight	admit	of	positive	and	negative	senses.	A
positive	designation	means	that	one	needs	to	add	something	to	get	from	the
second	to	the	first	whereas	a	negative	designation	means	that	one	needs	to
subtract.

It	is	important	to	realize	that	the	positive	and	negative	senses	of	a	magnitude	are
two	senses	of	the	same	kind	of	magnitude.	For	example,	a	difference	in	80
pounds	can	be	a	positive	difference	or	a	negative	difference.	The	first	weight	can
be	either	80	pounds	greater	or	80	pounds	less	than	the	second.	But	either	way,
the	absolute	magnitude,	the	amount,	of	the	difference	is	80	pounds.	There	is	a
great	difference	between	Joe	weighing	80	pounds	more	than	Mary	and	weighing
80	pounds	less	than	Mary,	but	either	way,	the	magnitude	of	the	difference	is	80
pounds.	And	this	same	point	applies	to	all	of	my	other	examples	such	as
distances	between	objects,	time	intervals,	potential	energy,	and	electric	potential.
In	all	such	cases,	the	amount	of	the	difference	is	a	magnitude.	Without	knowing
the	sense	of	the	difference,	greater	or	lesser,	clockwise	or	counter-clockwise,	one
has	not	fully	specified	the	difference.	But	one	has	specified	the	degree	of	the



difference,	its	magnitude.

On	the	basis	of	this	discussion,	a	magnitude	can	be	characterized	as	a	continuous
quantity	that:

1.	Admits	of	comparisons	of	greater	or	lesser	with	other	quantities	of	the	same
type
2.	Can	be	related	to	other	magnitudes	of	the	same	type	in	terms	of	multiplicity.
That	is,	one	can	determine	that	one	magnitude	is	three	times	another	magnitude
of	the	same	type.

In	this,	one	takes	for	granted	that,	for	example,	when	one	doubles	a	magnitude
one	obtains	a	greater	magnitude	of	the	same	kind,	that	magnitudes	are	divisible,
and	that	when	one	subdivides	a	magnitude,	the	parts	are	each	less	than	the	whole
and	add	up	to	the	whole.	I	also	take	the	ability	to	add	two	magnitudes	of	a
particular	type	to	be	characteristic	of	magnitudes	and	implicit	in	the	relation	of
multiplicity.	Finally,	in	my	discussion	of	magnitude,	I	will,	much	of	the	time,
ignore	the	distinction	between	positive	and	negative.

As	the	examples	indicate,	it	is	sometimes	easier	and	sometimes	harder	to
determine	whether	a	quantifiable	characteristic	of	something	is	a	magnitude	and,
if	it	is,	to	determine	how	to	relate	one	instance	to	a	multiple	of	another	instance.
Difficult	or	easy,	these	are	discoveries	that	must	be	made	anew	with	each	new
kind	of	magnitude	one	encounters.	The	mathematical	theory	of	continuous
magnitudes	and	of	the	positive	real	numbers7	that	measure	them	becomes
applicable	once	this	discovery	has	been	made.

Representing	Magnitudes	by	Line	Segments

One	of	the	easiest	magnitudes	to	grasp	as	a	magnitude	is	the	length	of	an	object.
Moreover,	it	is	easy	to	create	a	stylized,	visual	representation	of	length,	by	a	line
segment,	to	help	visualize	the	quantitative	relationship	one	wants	to	study.

Euclid	followed	this	procedure	in	Book	V	of	the	Elements.8	Euclid’s	theory	of
ratio	did	not	limit	the	type	of	magnitude	to	which	his	theory	applied,	but
required	only	that	the	two	magnitudes	related	by	a	ratio	be	the	same	kind	of
magnitude.9	And	Euclid,	explicitly,	took	ratios	between	lengths	and	ratios
between	areas,	starting	in	Book	VI.	Yet,	throughout	Book	V,	he	used	line



segments	to	represent	magnitudes,	without	regard	to	whether	any	particular
magnitude,	thus	represented,	is	a	length	or	an	area.

Archimedes	went	even	further,	using	line	segments	to	represent	weight	or,
implicitly,	force/buoyancy	in	an	upward	or	downward	direction.	For	example,
Archimedes’s	famous	law	of	levers	relates	weights	applied	on	a	balanced	lever
arm	to	distances	along	the	lever.	To	illustrate	his	derivation,	he	drew	areas	to
represent	weights	and	line	segments	to	represent	lengths.	In	his	derivation,
Archimedes	draws	freely	on	the	methods	presented	in	Euclid’s	Book	V.10

Euclid’s	application	of	his	theory	of	magnitude	to	both	length	and	area	is	critical
to	his	theory.	As	I	will	show	in	Chapter	4,	Euclid’s	theory	of	proportion	requires
not	only	a	way	to	measure	the	ratio	of	two	areas,	but	also	a	way	to	compare	a
ratio	of	lengths	to	a	ratio	of	areas.	Euclid’s	own	applications	illustrate	that	the
power	of	representing	magnitudes	by	line	segments	consists	in	the	fact	that	one’s
discoveries	do	apply	to	other	kinds	of	magnitudes.	These	discoveries	apply
generally	to	magnitudes	because	the	arguments	depend	only	on	characteristics
common	to	all	magnitudes.

In	what	follows,	I	will	use	line	segments	to	advance	my	discussion	of	the
“prearithmetic”	of	magnitudes.	But	it	will	be	important	to	explore,	as	I	proceed,
just	how	the	central	ideas	apply	to	other	kinds	of	magnitudes.

The	PreArithmetic	of	Magnitudes

Taking	the	geometric	perspective,	the	first	task	is	to	explore	the	ways	that
quantitative	relationships	can	be	grasped	without	first	choosing	a	standard	of
measurement.	Such	relationships	do	not,	could	not,	be	created	by	the	numbers
we	attach	to	them.	It	is	quite	the	reverse.	One	can	apply	numbers	to	magnitudes
because	the	relationships	they	bring	to	light	already	exist.	And	one’s	ability	to
relate	a	magnitude	to	a	chosen	universal	unit	already	presupposes	a	prior,	more
general,	ability	to	compare	magnitudes.	One’s	ability	to	identify	a	length	as
being	twice	the	length	of	a	foot	does	not	depend	on	having	chosen	that	foot	as
one’s	unit	of	length.

Even	so,	it	may	seem	unnatural	to	think	about	the	relationships	between
quantities	without	attaching	numbers	to	the	quantities	being	related.	But	one
needs	to	remember	that	relationships	between	quantities	are	real.	These



relationships	exist	before	one	measures	them	and	are	discovered	during	the
process	of	measuring.

In	this	regard,	remembering	one’s	study	of	plane	geometry	may	help	to	establish
the	right	frame	of	mind.	That	entire	subject	is	usually	taught	with	nary	a	number
in	sight,	yet	the	subject	abounds	with	bisections,	equalities,	and	ratios.
Remember,	as	well,	that	the	Pythagorean	Theorem,	as	conceived	geometrically,
is	not	about	the	sums	of	squares	of	numbers,	but	of	the	sums	of	actual	squares
erected	on	the	sides	of	a	right	triangle.11

I	will	apply	Euclid’s	method,	discussed	in	Chapter	1,	to	the	study	of	magnitudes,
as	well.	I	will	focus	on	quantitative	relationships.	I	will	not	offer	straight	edge
and	compass	constructions,	as	Euclid	does.	But	I	will	retain	the	essence	of	this
approach	by	elucidating,	as	appropriate,	how	one	might	determine	various
quantitative	relationships.	Nonetheless,	in	cases	for	which	the	ability	to	perform
a	particular	measurement	is	sufficiently	well	understood,	I	will	take	these
measurements	for	granted.

Like	arithmetic,	what	I	call	the	prearithmetic	of	magnitudes	begins	with
addition.
Magnitudes	can	be	added.	Sometimes,	as	with	line	segments,	one	can	say	this
quite	literally:	Lay	them	end	to	end	and	you	have	a	longer	line	segment,	the	sum
of	the	two.	In	the	diagram	below,	line	segments	A	and	B	are	added	to	form	a	line
segment	C.	Please	keep	in	mind	that	the	letters	“A”,	“B”,	and	“C”	do	not	stand
for	numbers	in	this	picture;	they	name	geometric	objects,	line	segments	taken	as
open-ended	abstractions:



To	emphasize,	one	constructs	this	sum	geometrically	without	ever	saying
anything	like	“This	length	is	4	inches,	that	one	is	5,	therefore	the	total	is	9
inches.”	Inches	or	centimeters	do	not	enter	into	this	in	any	way.	Moreover,	the
geometric	construction	I	have	outlined	is	simply	an	abstract	way	of	specifying
what	one	would	do	in	each	concrete	instance.	Namely,	in	the	case,	say,	of
pencils,	one	lays	one	pencil	end	to	end	with	the	other	to	find,	physically,	the	sum
of	their	lengths.	As	I	have	stated,	looking	at	quantitative	relationships	in	this	way
is	the	essence	of	the	geometric	perspective.

But	such	a	procedure	is	not	always	available.	For	example,	how	does	one	add
two	frequencies?	I	will	answer	this	question	in	a	moment,	but	clearly	a	more
abstract	perspective	on	this	is	needed,	even	when	I’m	not	talking	about	numbers.

So,	to	continue,	when	I	talk	about	adding	magnitudes,	what	I’m	really	defining	is
a	relationship.	I’m	defining	a	relationship	between	pairs	of	lengths	A	and	B
versus	other	lengths	equal	to	the	physical	sum	C	of	A	and	B.	In	the	case	of	line
segments,	I	lined	up	two	lengths	end	to	end	to	get	their	sum,	the	length	C.	But
any	other	magnitude	that	would	match	this	sum,	any	other	magnitude	of	length
C,	has	a	length	equal	to	the	sum	of	lengths	A	and	B.	The	sum	of	lengths	A	and	B
is	not	specifically	the	length	of	one	particular	physical	object.	Rather,	it	is	that
characteristic,	the	specific	length,	that	all	lengths	of	that	particular	combined



characteristic,	the	specific	length,	that	all	lengths	of	that	particular	combined
length	have	in	common.

By	the	same	token,	any	length	greater	than	C	is	greater	than	the	sum	of	A	and	B
and	any	length	less	than	C	is	less	than	the	sum	of	A	and	B.

Moreover,	in	speaking	of	the	sum	of	A	and	B,	I	do	not	claim	that	there	actually
exists,	at	this	moment,	a	particular	physical	object	of	length	C,	the	length	that
would	result	by	laying	A	and	B	end-to-end.	Nor	have	I,	in	fact,	created	such	a
length.	Without	actually	carrying	it	out,	I	have	specified	a	recipe,	an	abstract
measurement,	for	doing	so.	And	the	meaning	of	the	result,	the	conceptual	units
of	my	prescription	as	applied	to	particular	lengths	A	and	B,	consists	in	all	the
magnitudes	that	ever	existed,	that	ever	will	exist	or	that	might	exist	with	a	length
of	C.	What	is	important	is	that	I	have	specified,	by	reference	to	a	chain	of
abstract	measurements	and	subject	to	contextual	precision	requirements,	those
magnitudes	of	length	C	equal	to	the	sum	of	the	magnitudes	A	and	B.

The	actual	way	that	one	adds	magnitudes	depends	upon	the	particular	magnitude
in	question.	The	appropriate	method	must	be	discovered	in	each	case.	Weights,
for	example,	are	added	by	bringing	them	together	in	some	way,	perhaps
attaching	them,	placing	them	on	the	same	balance	scale,	or	causing	the	weights
to	join	forces	in	some	other	way.

A	different	approach	is	required	to	add	speeds.	In	this	example,	speed	must	be
taken	to	be	constant	during	a	particular	interval	of	time.	Speed	involves	a
distance	traveled	within	a	certain	interval	of	time.	If	one	travels	twice	the
distance	in	that	time,	one	obtains	twice	the	speed.	More	generally,	to	add	speeds,
choose	any	convenient	time	interval.	Having	chosen	the	interval,	one	simply
relies	on	the	fact	that	addition	of	distance	has	already	been	defined.	So	the	sum
of	the	two	speeds	is	simply	the	speed	for	which	the	distance	traveled	during	the
time	interval	is	the	sum	of	the	two	distances	for	the	speeds	being	added.

Notice	that,	unlike	the	case	of	length,	I	have	not	prescribed	laying	the	speeds	end
to	end;	I	have	simply	appealed	to	that	process,	for	lengths,	to	specify	the
meaning	of	a	sum	of	two	speeds,	thereby	prescribing	the	physical	relationship
between	the	summands	and	the	sum.	It	is	that	specification,	not	the	means	by
which	it	is	specified,	that	matters.	The	entire	specification	is	an	abstract
measurement	in	the	sense	I	defined	in	Chapter	1.

Pitch	is	a	similar	case.	A	pitch	is	a	manifestation	of	a	certain	multitude	of



vibrations	during	a	specified	period	of	time.	The	sum	of	two	pitches	is	that	pitch
for	which	the	multitude	of	vibrations	during	a	specified	time	interval	is	the	sum
of	the	multitudes	for	the	two	summands.	(The	sum	of	two	multitudes	is	simply
the	combination	of	the	two	multitudes	considered	as	a	single	multitude.)	In	this
case,	to	understand	the	addition	of	multitudes,	both	what	it	entails	physically	and
what	perspective	it	entails,	it	is	enough	to	specify	the	sum	of	the	two	pitches;
such	a	specification	counts	as	an	abstract	measurement.	However,	this
specification	does	not	prescribe	a	way	to	construct	such	a	pitch,	even	in	pattern.
For	such	a	prescription	would	have	to	involve	something	like	the	following
(changing	the	example	slightly):	If	a	string	has	a	particular	thickness,	tension,
and	length,	these	three	factors	determine	the	pitch	of	its	vibration	when	it	is
plucked.	If	one	keeps	the	thickness	and	tension	the	same,	but	cuts	its	length	in
half,	one	doubles	the	frequency	of	the	pitch	and	hears	a	tone	one	octave	higher.
(On	a	violin	or	a	guitar,	one	does	this	routinely	by	pressing	the	midpoint	of	the
string	with	one’s	finger.)	But	this	is	a	physical	implementation	of	a	prescribed
quantitative	relationship,	a	relationship	that	has	been	defined	without	having
specified	the	means	of	bringing	it	about.

In	general,	many	physical	characteristics	are	measured	by	their	effects	on
motion.	Such	effects	are	generally	quantifiable	with	respect	to	displacement,
time,	and	force.	One	measures	physical	characteristics	such	as	electric	charge
indirectly	by	measuring	their	more-directly	measurable	effects.	Even	force	can
often	be	quantified	by	the	effect,	in	regards	to	its	motion,	on	a	particular	kind	of
object.	In	such	cases,	for	those	physical	quantities	that	are	actually	magnitudes,
one	identifies	a	method	of	addition	with	reference	to	the	methods	for	adding
distance,	time,	and	force.	My	discussion	of	adding	speeds	followed	this	pattern.

Using	line	segments	to	represent	magnitude	generally	is	valid	because,	and
insofar	as,	the	relationship	established	for	the	lengths	of	line	segments
correspond	to	similar	relationships	for	other	kinds	of	magnitudes.

Similarly,	one	can	subtract	two	magnitudes.	Lay	two	line	segments	next	to	each
other,	matching	the	endpoints	on	one	end	of	the	line	segments.	Looking	at	the
other	ends,	the	segment	between	the	endpoint	of	the	shorter	and	the	endpoint	of
the	larger	is	the	difference	between	them.	Again,	one	compares	pencils,	finds	the
difference	in	their	lengths,	in	precisely	this	fashion.	In	the	diagram	below,	the
difference	between	line	segment	A	and	line	segment	B	is	the	line	segment	C:



For	other	types	of	magnitudes,	once	one	has	figured	out	a	method	to	add
magnitudes	of	that	type,	one	simply	follows	the	inverse	process	for	that	same
method,	as	I	have	indicated	here	for	the	subtraction	of	lengths.

Next,	one	can	multiply	a	magnitude	by	a	number.	Here,	I	warn	the	reader,	in
advance,	that	this	is	not	the	same	as	multiplying	a	magnitude	by	a	magnitude.
Rather,	as	we	once	learned	in	grade	school,	multiplication	by	a	number	can	be	a
short-hand	for	repeated	addition.	To	multiply	a	magnitude	by	five,	add	together	a
total	of	five	repetitions	of	the	magnitude.	Numbers	are	being	used,	here,	to
count;	the	numbers	count	repetitions.

Symbolically,	one	might	write	5×A	=	A	+	A	+	A	+	A	+	A.	But	one	thinks	of	this
operation	as	being	carried	out	physically.	One	thinks	of	a	second	physical
quantity	related	to	the	first	physical	quantity	in	the	indicated	fashion.	In	the	case
of	line	segments,	one	can	count	repetitions	of	a	length	and	one	can	apply
arithmetic	to	the	numbers	used	to	count	these	repetitions.	But	one	cannot	use	a
number	to	represent	a	length	and	add	those	numbers	until	one	has	chosen	a
standard	such	as	feet	or	meters.	There	are	no	numbers	to	add	without	a	standard.
So	in	the	next	diagram,	5	times	the	line	segment	A	comprises	5	line	segments	of
length	A	laid	end	to	end:



To	recap,	the	number	“5”	has	entered	the	discussion.	What	does	“5”	represent?
Well,	it	has	nothing	to	do	with	whether	we	measure	the	length	A	in	feet	or
meters	or	whether	we	ever	measure	the	length	A	at	all.	Rather,	“5”	represents
nothing	more	nor	less	than	the	number	of	repetitions,	the	number	of	times	that
the	length	A	is	laid	end	to	end	with	itself;	the	number	of	occurrences	of	“A”	in
the	formula	above.	The	process	described	is	totally	independent	of	any	standard
of	length	that	one	might	select	to	measure	the	line	segment	A.

To	clear	up	a	possible	confusion,	there	is	one	limited	sense	in	which	“A”
functions	as	a	standard	in	this	example.	Namely,	when	the	iterations	of	its	length
are	counted,	it	is	treated	as	a	standard	in	exactly	the	way	that	counting	always
treats	the	units	that	are	being	counted.	To	wit,	it	is	one	of	the	units	being
counted.	“A”	happens	to	be	the	particular	length	that	is	being	laid	end	to	end.
But	this	does	not	make	it	a	standard	of	length.

One	should	also	note,	here,	that	my	method	of	multiplying	a	magnitude	by	a
number	presupposes	that	one	knows	how	to	add	two	concrete	instances	of	that
magnitude.	And	this	is	the	proper	hierarchy:	to	define	multiplication	in	terms	of
addition.	So,	when	I	characterized	magnitudes	as	being	relatable	to	each	other	in
terms	of	multiplicity,	this	characterization	presumed	the	ability	to	add
magnitudes.	In	sum,	the	ability	to	add	magnitudes,	as	I	mentioned	in	that
discussion,	should	be	taken	as	implicit	in	my	characterization.

On	the	other	hand,	the	ability	to	add	quantities	of	a	particular	type	does	not	make



On	the	other	hand,	the	ability	to	add	quantities	of	a	particular	type	does	not	make
them	magnitudes.	For	there	are	obvious	counterexamples.	For	example,	one	can
add	velocities	and	one	can	add	forces,	something	that	physicists	properly	do
routinely.	But	velocity	is	characterized	by	both	a	magnitude	(its	speed)	and	a
direction.	If	two	velocities	in	different	directions	are	added,	the	speed	of	the	sum
will	be	less	than	the	sum	of	the	speeds	of	the	summands.

This	treatment	does	indicate	that	once	one	has	defined	addition	for	a	particular
kind	of	magnitude,	one	has	a	general	process	for	defining	subtraction	of
magnitudes	of	that	kind,	multiplication	of	them	by	numbers,	and,	as	we	shall	see
shortly,	division	by	numbers,	as	well.	Once	the	additive	relation	has	been
identified	for	a	particular	kind	of	magnitude,	the	rest	of	my	discussion	applies	to
that	kind	of	magnitude,	as	well.

Just	as	subtraction	relates	to	addition,	division	relates	to	multiplication.	Thus,
dividing	a	magnitude	into	three	equal	smaller	magnitudes	means	finding	a
magnitude	that,	when	multiplied	by	three,	yields	the	original	magnitude.	In	the
following	figure,	C	is	one	third	of	A	precisely	because	3	times	C	equals	A:

Now	the	ancient	Greeks	had	a	geometric	construction,	using	a	straight	edge	and



compass,	to	divide	a	line	into	any	prescribed	number	of	equal	segments.	But
they	tried	unsuccessfully	to	find	such	a	construction	to	subdivide	angles.	They
could	bisect	them,	but	to	trisect	them	(divide	an	angle	into	three	equal	angles)
required	mechanical	contrivances	that	they	considered	unsatisfactory.12

In	general,	one	can	specify	mathematically	what	it	means	to	subdivide	a
magnitude.	But	the	actual	physical	process	to	carry	out	this	division	is	a	separate
discovery	for	each	new	magnitude	that	one	discovers.	As	in	the	example	of
sound	pitch	(vibration	frequency),	this	subdivision	can	be	highly	non-trivial.
This	is	especially	true	when,	as	in	that	case,	even	the	addition	of	magnitudes
(frequencies	of	vibration)	is	non-trivial,	because	the	identification	of	the
particular	kind	of	magnitude	that	underlies	our	observations	requires	a	scientific
discovery.	Keep	in	mind,	as	well,	that	there	can	be	physical	limits,	for	any
particular	type	of	quantity	to	which	a	division	can	be	carried	out.	As	two
examples,	as	far	as	we	know,	Planck’s	constant	is	the	absolute	minimum	of
action	that	is	physically	possible	and	1/3	of	the	charge	of	an	electron	is	the
smallest	unit	of	charge	that	is	known	to	exist.	So,	for	example,	one	can	specify
how	one	fourth	of	the	charge	of	an	electron	would	relate	to	the	charge	of	an
electron.	We	would	recognize	it	if	we	found	it.	However,	to	our	knowledge,
there	is	no	such	subdivision.

Indeed,	there	is	a	significant	difference	between	the	way	that	one	subdivides	a
length	and	the	way	that	one	subdivides	most	other	magnitudes.	For	example,	one
does	not	subdivide	a	pitch	into	two	pitches	nor,	for	that	matter,	does	one
physically	add	two	pitches	together	to	create	a	new	pitch.	One	only	has	different
pitches	from	two	different	objects	vibrating	at	different	speeds.	Nonetheless,
what	one	can	do	is	to	relate	two	different	pitches.	One	can	say,	for	example,	that
the	pitch	one	octave	above	middle	C	has	twice	the	frequency	of	middle	C.	Or
one	can	establish	that	the	sum	of	the	frequencies	of	two	different	pitches	is	equal
to	the	frequency	of	a	third,	a	judgment	that	is	independent	of	any	standard	of
measurement	that	one	might	have	selected.	These	relationships	between	pitches
are	relationships	of	magnitudes	just	as	the	relationships	of	line	segments	are
relationships	between	magnitudes	and	the	relationships	are	the	same.	What
differs	in	the	two	cases	is	the	means	of	establishing	those	relationships	and	the
specific	form	that	they	take.

I	have	now	discussed	multiplication	of	magnitudes	by	whole	numbers	and
division	of	magnitudes	by	whole	numbers.	Putting	these	together,	one	can
interpret	multiplication	by	a	fraction	N/M	to	be	the	magnitude	obtained	by	first
multiplying	it	by	N	and	then	dividing	the	result	into	M	equal	pieces.	Each	one	of



multiplying	it	by	N	and	then	dividing	the	result	into	M	equal	pieces.	Each	one	of
the	resulting	pieces	has	the	desired	magnitude.	The	result	is	the	same	as	first
dividing	the	original	result	into	M	pieces	and	then	picking	one	of	these	pieces	to
multiply	by	N.	This	first	method	is	illustrated	below	for	N	=	3	and	M	=	2.

The
second	method:
	



This	is	the	same	process	one	follows	in	arithmetic:	To	multiply	by	a	fraction,
multiply	by	the	numerator	and	divide	by	the	denominator	in	either	order.

The	process	of	multiplying	by	an	irrational	number	works	for	magnitudes	the
way	it	works	for	numbers.	Recall	that	an	irrational	number,	such	as	the	square
root	of	two,	is	a	number	that	cannot	be	expressed	as	a	fraction,	as	a	ratio	of
whole	numbers.	In	practical	life	one	deals	with	irrational	numbers	by	finding	a
suitably	precise	approximation	of	the	irrational	number	by	a	rational	number

That	approach	applies	here,	as	well.	In	any	concrete	context,	there	is	a	limit	to
the	precision	that	is	needed	and	to	the	precision	that	can	be	achieved.	Subject	to
such	limits,	one	finds	a	suitable	rational	approximation	and	then	multiplies	the
magnitude	by	that	rational	number	in	the	way	that	I	have	described.13	Within	the
specified	precision	context,	the	resulting	magnitude	bears	the	required
relationship	to	the	multiplied	magnitude.

The	full	justification	of	this	process	requires	that	it	is	always	possible,	no	matter
how	demanding	the	required	precision,	to	find	a	qualifying	rational
approximation.	That	such	an	approximation	can	always	be	found	is	a
consequence	of	the	Axiom	of	Archimedes,	discussed	in	the	next	section.

Multiplying	by	irrational	numbers,	in	this	way,	assumes	that	the	irrational
number	has	already	been	specified.	In	general,	one	specifies	irrational	numbers



number	has	already	been	specified.	In	general,	one	specifies	irrational	numbers
in	relation	to	other,	already	specified	numbers.	So,	for	example,	the	square	root
of	two,	an	irrational	number,	is	specified	in	relation	to	the	number	2:	It	is	that
number	whose	square	is	2.	The	general	problem	of	specifying	irrational	numbers
is	the	focus	of	Chapter	4.

To	recap:	Without	ever	specifying	a	unit	of	measurement,	one	can	relate	a
magnitude	as	being	the	sum	or	difference	of	two	other	magnitudes.	As	a
consequence,	one	can	also	multiply	a	magnitude	or	divide	a	magnitude	by	a
number.	In	all	four	cases,	addition,	subtraction,	multiplication,	or	division,	the
result	is	another	magnitude	of	the	same	kind.

This	provides	a	first	glimpse	of	the	relationship	of	geometry	to	measurement.
We	are	all	accustomed	to	using	yardsticks	and	tape	measures.	To	measure
something	one	simply	stretches	the	measuring	tape	along	the	length	that	one	is
measuring.	But	where	did	the	measuring	tape	come	from?	How	is	it	that	one	is
able	to	lay	off	a	marking	every	foot	of	its	length	and	then	subdivide	one	of	these
feet	into	inches,	half	inches,	and	quarter	inches,	and	then	repeat	these
subdivisions	between	every	other	foot-marking	of	the	tape	measure?	Because:
We	already	know	how	to	add	lengths	together	and	we	already	know	how	to
subdivide	them	in	just	the	ways	that	we	have	described.

To	conclude:	The	geometric	perspective	precedes	measurement.	To	measure	is
to	measure	something.	Before	one	can	measure	magnitudes	one	needs	to	know
how	to	add	physical	magnitudes	and	how	to	subdivide	them.

The	Axiom	of	Archimedes

In	Aristotle’s	Physics,	as	part	of	his	argument	against	the	existence	of	actual
infinite	magnitudes,	one	finds:

“…for	every	finite	magnitude	is	exhausted	by	means	of	any	determinate	quantity
however	small.”14
Today,	Aristotle’s	statement	is	known	as	the	Axiom	of

Archimedes,15	after	the	greatest	mathematician	of	antiquity,	considered	one	of
the	very	greatest	of	all	time.	Keep	in	mind,	though,	that	Aristotle	preceded	both
Euclid	and	Archimedes,	though	he	didn’t	precede	Eudoxus.	Whatever	else	may



be	true,	Archimedes	did	not	originate	the	axiom	of	Archimedes	and	Aristotle
grasped	its	import.

To	paraphrase,	given	any	two	magnitudes	of	the	same	kind,	one	can	obtain	a
magnitude	that	exceeds	the	larger	by	taking	a	sufficiently	high	multiple	of	the
smaller	magnitude.	If	A	is	the	smaller	magnitude	and	B	is	the	larger,	there	is
some	whole	number	N	such	that	N	times	A	exceeds	B.

The	very	statement	of	this	axiom	requires	the	geometric	perspective	on
magnitude	that	I	have	been	developing.	Even	in	his	brief	statement	one	notices
that	Aristotle	takes	that	perspective	entirely	for	granted.

I	will	need	another	form	of	the	same	axiom.	Applying	the	axiom	to	A	and	B,
suppose	that	one	has	found	a	positive	integer	N	such	that

N	×	A	>	B

Subdividing	the	segment	N	×	A	into	N	segments	yields	N	segments	of	length	A.
(Indeed,	N	×	A	is	already	subdivided	by	virtue	of	consisting	of	N	segments	of
length	A	laid	end	to	end.)	Subdividing	B	into	N	segments	yields	a	magnitude
that	one	can	write	as	1/N	×	B	or,	for	short,	B/N.

Now	the	subdivision	of	a	larger	magnitude	must	exceed	the	same	subdivision	of
a	smaller	magnitude.	So	evidently,
	A	>	B/N

As	a	reminder,	this	statement	means,	and	only	means,	that	when	or	if	B	is
subdivided	into	N	equal	pieces,	each	of	these	pieces	is	less	than	A.	I	emphasize,
again,	that	this	is	not	a	statement	about	numbers,	but	about	magnitudes.

Now	it	may	happen	that	subdividing	B	into	N	equal	pieces	is	not	actually
possible.	So	a	precise	statement	requires	a	formulation	to	the	effect	that	if	B
were	subdivided	into	N	equal	pieces,	each	of	these	pieces	is	would	be	less	than
A.

Thus,	I	state	a	second	form	of	the	Axiom	of	Archimedes:	Given	any	two
magnitudes,	a	sufficiently	fine	subdivision	of	the	larger	into	a	finite	number	of
equal	pieces,	if	carried	out,	would	consist	of	pieces	smaller	than	the	smaller
magnitude.	If	A	is	the	smaller	magnitude	and	B	is	the	larger,	there	is	some	whole
number	N	such	that	B/N	is	less	than	A.16



Why	care?
Because	the	actual	meaning	of	the	Axiom	of	Archimedes	is	that	all	magnitudes
are	measurable.	As	will	become	evident,	to	explain	this	will	require	both	forms
of	the	axiom.
It	is	said	that	all	journeys	begin	with	a	single	step!	If	one	takes	inspiration	from
this,	it	is	from	the	unspoken	premise	that	the	journey	can	be	completed	with	a
finite	number	of	steps,	that	each	step	takes	us	one	step	closer	to	one’s
destination.
Consider	two	distances.	Choose	the	smallest	and	think	of	it	as	a	standard.	For
purposes	of	discussion,	say	the	smallest	is	a	mile.	The	first	form	of	the	Axiom	of
Archimedes	states	that	some	multiple	of	the	smaller	magnitude,	which	one	might
choose	as	the	standard,	will	exceed	the	larger	one.	For	some	large	number	N,
one	can	say	that	the	larger	distance	is	less	than	N	miles.
Were	this	not	the	case,	if	the	distance	could	not	be	bounded	by	any	specific
number	of	miles,	the	distance	would	be	infinite.	One	would	not	be	able	to	relate
it	to	the	chosen	standard;	one	would	not	be	able	to	measure	it.17
From	this	one	sees	that	measurement	of	magnitudes,	one’s	ability	to	measure	all
magnitudes	of	a	particular	type,	however	large,	presupposes	the	Axiom	of
Archimedes.
Keep	in	mind	that,	for	two	magnitudes	to	be	magnitudes	of	the	same	kind	they
must	be	commensurable	.	In	Ayn	Rand’s	terms,	they	are	same	characteristic,
“but	in	different	measure	or	degree.”18	Two	lengths	differ	in	degree;	a	weight
and	a	length	differ	in	kind.	One	can	measure	one	length	against	another	because
they	are	commensurable.	One	cannot	measure	a	length	against	a	weight	because
they	are	not	commensurable.	We	see,	in	all	of	our	observations	of	the	world,	a
relationship	between	commensurability	and	measurability.	And	contrary	to	all	of
this	experience,	the	failure	of	the	Axiom	of	Archimedes	would	imply	that
magnitudes	can	be	commensurable19	without	being	measurable.
Mathematics,	however,	cannot	offer	a	proof	of	the	Axiom	of	Archimedes.20
Knowledge	of	that	axiom	is	something	that	one	brings	to	mathematics.	One’s
universal	experience	is	of	finite	quantities	and	one	sees	this	axiom	as	naming	a
basic	fact,	inherent	in	the	nature	of	the	world.	In	essence,	it	is	an	aspect	of	the
law	of	identity.	Things	are	finite	because	they	are	limited;	because	their
characteristics	are	specific;	because	they	have	a	specific	nature.21
How	does	one	appeal	to	this	axiom	when	one	measures?
Assume	that	one	has	chosen	a	unit	of	distance.	Suppose	D	is	a	distance	and	U	is
the	chosen	unit.	Then	the	Axiom	of	Archimedes	states	that	there	exists	some
whole	number	M	such	that



D	<	M×U

This	is	another	way	of	saying	that	the	distance	D,	expressed	numerically	in	terms
of	our	chosen	unit,	is	less	than	M.	Next,	there	must	be	some	lowest	whole
number	N	such	that

D	<	N×U
	Because	N	is	the	least	such	number,	it	follows	that
	(N	–	1)	×	U	<=	D

In	other	words,	D,	expressed	as	a	multiple	of	the	chosen	unit,	is	between	N	–	1
and	N.	If	U	is	a	mile	and	N	is	501	then	this	says	that	the	distance	D	is	between
500	and	501	miles.

This	is	already	a	measurement	of	D.	But	one	may	want	to	refine	that
measurement.	One	subdivides	U	into	tenths	of	a	mile.	One	may	discover,	say,
that	D	is	between	500.6	miles	and	500.7	miles.	Depending	upon	the	accuracy
required	by	the	context	one	might	continue	to	subdivide	further	until	one	is
either	unable	or	unwilling	to	pursue	a	more	precise	determination.22

One	knows	from	experience	that	a	decimal	expansion	in	terms	of	a	chosen	unit
can	specify	a	measure	of	a	magnitude	within	any	required	precision.	One	learns,
conversely	that	there	is	a	limit,	in	any	particular	case,	to	the	precision	that	is
physically	possible,	that	beyond	a	certain	number	of	decimal	places	any	further
refinement	becomes	meaningless,	that	one	reaches,	for	example,	what	Corvini
calls	the	distinguishability	limit.23	But	within	these	limits	one	learns	that
decimals	can	approximate	any	number	to	any	required	precision	and	I’ve	now
outlined	the	process	by	which	this	is	done.	Once	a	standard	has	been	chosen,	any
two	magnitudes	that	one	is	able	to	distinguish	have	a	different	decimal
expansion.	There	is	some	point	at	which	the	numbers	in	the	expansions	differ;
there	is	some	rational	number	that	lies	between	them.

The	Axiom	of	Archimedes	identifies	the	principle	underlying	these	calculations.
The	Axiom	of	Archimedes	asserts,	by	implication,	that	any	magnitude	can	be
related	numerically	to	any	other	magnitude	of	that	same	type.

To	explicitly	relate	this	principle	to	the	prearithmetic	of	magnitudes,	recall	my
discussion	of	precision	in	Chapter	1.	Specifically,	to	say	that	two	magnitudes,	of
the	same	type,	are	equal	is	to	say,	in	a	particular	context,	that	there	is	no	material



difference	between	them.	So	I	reiterate	my	claim	in	the	last	section	that,	for	any
chosen	standard	of	materiality,	given	two	magnitudes	X	and	Y	there	is	a	rational
number	A	such	that	there	is	no	material	difference	between	Y	and	AX.	For	the
sake	of	the	argument	assume	X	<	Y.

Suppose,	then,	that	X	and	Y	are	magnitudes	of	the	same	type;	suppose	that	X	<
Y,	and	suppose	a	precision	context	in	which	any	differences	less	than	a
particular	magnitude	Z	>	0	are	immaterial.	Since	Z	is	a	positive	magnitude,	the
Axiom	of	Archimedes	says	that	there	exists	some	integer	N	for	which	X/N	<	Z.
Given	the	choice	of	Z,	this	means	that	differences	of	X/N	or	less	are	also
immaterial.

Now,	again	by	the	Axiom	of	Archimedes,	since	X/N	>	0,	there	is	a	smallest
number	M	such	that	Y	<	M	×	X/N,	which	also	implies

(M	–	1)	×	X/N	<=	Y	<	M	×	X/N
	But,	since
	(M	–	1)	×	X/N	=	((M-1)/N)X	and	M	×	X/N	=	(M/N)X
	It	follows	that
	((M-1)/N)X	<=	Y	<	(M/N)X

Since	Y	is	between	two	magnitudes	that	differ	by	the	immaterial	amount	X/N,	Y
is	equal,	within	the	assumed	standard	of	precision,	to	either	term	or,	indeed,	to
any	magnitude	in	between.	Setting	A	=	M/N,	there	is,	in	this	context,	no	material
difference	between	Y	and	AX.	In	this	precision	context,	then,	Y	=	AX.	One	says
that	the	ratio	Y	to	X	is	A,	and	also	uses	the	notation	Y/X	=	A	as	expressing	the
same	relationship	in	a	different	form.	One	thinks	of	Y/X	as	designating	the	ratio
of	Y	to	X,	as	representing	the	number,	A,	for	which	Y	=	AX.	In	showing	how	to
find	a	suitable	value	A	once	a	context	is	given,	in	thus	providing	a	recipe	to
specify	A,	within	materiality	for	any	context,	one	has	specified	it	for	all
contexts.

But	now	consider	the	question	of	the	uniqueness	of	the	rational	number	A,
suggested	by	the	expression	Y/X	=	A.	Once	a	precision	context	has	been
specified,	can	one	say	that,	in	any	sense,	that	there	is	a	unique	rational	number	A
for	which	Y	=	AX?	Is	there,	as	my	notation	suggests,	a	unique	number	A	such
that	Y/X	=	A?	If	the	question	is	asked	within	a	specified	precision	context,	then
the	answer	is	no,	indeed	clearly	no:	The	differences	among	satisfactory	values
are	immaterial	and	one	can	say	that	A	is	determined	up	to	materiality,	but	A	is



not	unique.	Indeed,	in	terms	of	my	construction,	any	rational	number	A	=	p
where	p	is	between	((M1)/N)	and	(M/N),	would	also	satisfy	Y	=	AX,	would
provide	a	value	of	AX	that	could	not	be	distinguished	from	Y.	These	differences
in	values	of	A	may	be	immaterial,	as	measurements	of	Y	with	respect	to	X,	but
they	are,	nonetheless,	different	as	numbers,	as	specifications	of	relationships.	So
cases	such	as	this,	when	the	required	precision	level	has	already	been	chosen,
are	not	an	appropriate	setting	for	this	question	of	numerical	uniqueness.	In	such
cases,	the	proper	concept	is	not	numerical	uniqueness,	but	uniqueness	up	to
materiality.

The	appropriate	mathematical	context	for	numerical	uniqueness	arises	only
when	one	looks	for	a	numerical	solution	that	is	independent	of	precision	context.
That	is	to	say,	it	arises	when	one	specifies	a	relationship	independently	of
precision	context.

The	question	arises,	for	example,	when	X	and	Y	arise	geometrically	as,	say,	the
side	and	diagonal	of	a	square.	General	geometric	relationships,	as	we	discussed
in	Chapter	1,	apply	simultaneously	to	all	precision	contexts	and	are	indepenent
of	precision	context.	So	in	such	cases	it	makes	sense	to	ask:	Is	there	a	unique
number	A,	possibly	irrational,	that	can	be	said	to	solve	the	equation	Y/X	=	A	(or
Y	=	AX)	regardless	of	precision	context?	(In	this	example,	that	number	would	be
A	=	√2.)	The	geometric	problem	does	not	specify	a	precision	context	and	it
requires	a	solution	to	the	equation	that	is,	accordingly,	independent	of	precision
context.	In	this	sort	of	situation	the	question	of	uniqueness	does	make	sense	and,
in	fact,	the	numerical	solution	can	be	shown	to	be	unique.

In	Chapter	4,	I	will	explain	in	just	what	sense	√2,	in	this	example,	is	a	number	A
that	uniquely	satisfies	Y	=	AX	simultaneously	in	all	precision	contexts.	For	now,
notice	that,	in	any	particular	precision	context,	successive	rational
approximations	(m/n)	do	not,	ultimately,	differ	materiallyfrom√2,	the	ratio
between	X	and	Y.	Regardless	of	precision	context,	there	comes	a	point	at	which
all	sufficiently	precise	rational	approximations	to	√2	solve	the	equation	Y	=	AX.
As	we	will	make	clearer	and	more	precise	in	Chapter	4,	this	amounts	to	saying
that	Y/X	=	√2	in	each	precision	context,	i.e.,	simultaneously	in	all	precision
contexts.	Until	then,	take	it	that,	whenever	one	first	specifies	a	required
precision,	then	all	sufficiently	precise	rational	approximations	A	to	√2	satisfy	Y
=	AX.

But	is	√2	unique	as	a	numerical	solution	that	applies	to	all	precision	contexts?



Continuing	the	geometric	example,	assume,	to	the	contrary,	two	distinct
solutions,	two	numbers	A1	<	A2	such	that,	Y	=	A1X	and	Y	=	A2X.	As	I	will
shortly	show,	one	can	apply	the	Axiom	of	Archimedes	to	numbers	(as	well	as	to
magnitudes).	So	I	conclude	that,	for	any	pair	of	numbers,	A1	<	A2,	there	exists	a
ratio	of	integers	p	=	m/n	such	that	A1	<	p	<	A2.	Applying,	the	Axiom	again,	one
finds	yet	another	rational	number	q	between	p	and	A2so	that	A1	<	p	<	q	<	A2.

Now	assume	a	sufficiently	fine	precision	context,	one	able	to	detect	differences
of	magnitudes	>=(q-p)X.	In	this	context,	one	can	detect	that	(qp)X	>	0	and
therefore	that	pX	<	qX,	which,	in	turn,	implies

A1X	<	A2X

The	assumed	two	solutions	are,	therefore,	contrary	to	supposition,
distinguishable	in	a	sufficiently	fine	context.	So,	to	conclude,	there	is	at	most
one	number	A	that	satisfies	Y/X	=	A	(or	Y	=	AX)	in	all	precision	contexts.

In	the	forgoing,	I	have	shown	existence	of	a	solution	relative	to	any	prescribed
precision	context	and,	secondly,	I	have	now	shown	uniqueness	across	precision
contexts	for	relationships	that	arise	in	a	general	geometric	context.	But	I	have	not
yet	made	the	general	argument	to	show	the	existence	of	a	number	(in	general,	an
irrational	number)	that	simultaneously	solves	an	equation	Y	=	AX	for	all
precision	contexts.

Now	one	should	expect	there	to	be	such	a	number	because	any	number	A	that
satisfies	Y	=	AX	in	one	precision	context	will	also	satisfy	it	in	all	less
demanding	precision	contexts.	Or,	to	put	it	another	way,	any	interval	of
satisfactory	solutions	for	one	precision	context	will	also	satisfy	all	less
demanding	precision	contexts.	So	such	intervals	are	nested	in	the	sense	that	the
interval	corresponding	to	a	refinement	of	one’s	precision	standard	is	contained	in
the	precision	interval	for	the	previous	precision	standard.

However,	I	am,	so	far,	missing	a	step	showing,	for	example,	that	there	is,
therefore,	a	non-empty	intersection	of	these	precision	intervals,	that	there	is	at
least	one	number	contained	in	all	of	these	intervals,	that	will	always	solve	the
equation	regardless	of	precision	context.	I	need	to	show,	in	general,	that	any
nested	sequence	of	intervals	contains	at	least	one	real	number	that	is
simultaneously	contained	in	each	interval.	But	to	proceed	further,	at	this	point,
would	require	a	far	more	extensive	discussion	of	irrational	numbers.
Accordingly,	I	defer	this	discussion	to	Chapter	4.



Accordingly,	I	defer	this	discussion	to	Chapter	4.

In	general,	I	have	been	looking	at	magnitudes	geometrically	and	my	discussion
is	about	measuring	magnitudes.	I	have	not	been	focusing	on	the	numbers,	on
identifying	the	means	of	measurement,	on	presenting	the	real	numbers	as	an
exhaustive	system	of	measurements.	My	analysis	of	irrational	numbers	and	the
warrant	for	considering	them	numbers,	again,	is	deferred	until	Chapter	4.

But	we	needed	to	apply	the	Axiom	of	Archimedes	to	numbers,	just	now,	in	order
to	maintain	that	the	equation	Y/X	=	A	has	at	most	one	numerical	solution	that	is
independent	of	precision	context.	And,	in	any	case,	it	is	of	interest	to	notice	what
the	Axiom	of	Archimedes	says	about	numbers.

So,	in	the	remaining	part	of	this	section,	I	take	for	granted	that	one	knows
generally	about	rational	and	irrational	numbers.	As	a	reminder,	there	are	two
kinds	of	numbers.	Some	numbers,	the	rational	numbers,	can	be	expressed	as	the
ratio	of	two	integers.	6	is	a	rational	number;	so	is	6/13.	But	not	all	numbers	are
rational;	not	all	numbers	can	be	expressed	in	this	way.	For	example,	the	square
root	of	2,	as	the	classical	Greeks	had	already	discovered,	is	not	(in	modern
terminology)	a	rational	number.	Any	real	number	that	is	not	a	rational	number	is
an	irrational	number.

One	normally	uses	decimal	expansions	to	approximate	real	numbers,	to
distinguish	one	real	number	from	a	different	real	number.	The	basic	fact
underlying	the	use	of	these	decimal	expansions	is	that	any	two	distinct	real
numbers	can	be	distinguished	by	a	rational	number	lying	between	them.	If	A	and
B	are	real	numbers,	then	there	is	a	rational	number	R	such	that	A	<	R	<	B.

One’s	warrant	for	saying	this	is	the	Axiom	of	Archimedes.	In	its	second
formulation,	as	applied	to	numbers,	the	Axiom	of	Archimedes	states	that,	for	any
number	X	>	0,	there	is	a	fraction,	1/N,	such	that

1/N	<	X

The	Axiom	of	Archimedes,	in	essence,	applies	to	numbers	because	it	applies	to
magnitudes	and	numbers	are	the	measure	of	magnitudes	as	they	relate	to	a
standard.	To	choose	a	standard	is,	by	implication,	to	assign	a	number	to	each
magnitude.	Thus,	to	find	a	multiple	of	one	number	to	exceed	another	number	is
to	find	the	multiple	of	the	magnitude	corresponding	to	the	first	number	that
exceeds	the	magnitude	corresponding	to	the	second	number.



The	need	to	apply	the	Axiom	of	Archimedes	to	numbers	reflects	a	broader	point:
The	need	to	distinguish	numbers	reflects	the	need	to	conceptually	distinguish
(and	also	relate)	magnitudes,	because	that	is	what	numbers	do.

Suppose	the	Axiom	of	Archimedes	did	not	apply	to	real	numbers.	Then	one
could	find	a	real	number	X	smaller	than	any	conceivable	rational	number.	Then,
since	X/2	is	even	smaller	than	X,	the	entire	interval	between	X/2	and	X,
including	the	endpoints,	would	consist	entirely	of	irrational	numbers,	all	greater
than	zero,	but	less	than	any	assignable	rational	number.

An	entire	interval	consisting	entirely	of	irrational	numbers!	How	would	one	ever
approximate	an	irrational	number	lying	within	this	interval?	How	could	we	ever
distinguish	one	such	number	from	another	or	apply	them	to	the	measurement	of
magnitude?	How	would	one	come	up	with	a	decimal	expansion	converging	to
one	of	these	irrational	numbers,	as	opposed	to	a	different	one?	Well,	one
couldn’t.	One’s	confidence	in	decimal	approximation	is	based	entirely	on	the
implicit	acceptance	of	the	Axiom	of	Archimedes.

Conversely,	the	Axiom	of	Archimedes	implies	that	any	finite	interval	of
numbers	contains	at	least	one	rational	number.	(A	finite	interval	is	a	continuous
interval	with	two	distinct	end	points.)

To	see	this	implication,	it	is	enough	to	consider	positive	numbers.	So	assume	an
interval	with	two	end	points	given	by	positive	numbers	X	<	Y.	The	difference,	Y
-	X	is	a	positive	quantity.	By	the	axiom	of	Archimedes	there	must	be	a	rational
number	smaller	than	that	positive	quantity.	So	far,	then,	for	some	positive
integer	N

0	<	1/N	<	Y	–	X
	If	necessary,	replace	N	by	an	even	larger	integer	so	that	it’s	also	true	that
	0	<	1/N	<	X

Now	one	knows	by	the	Axiom	of	Archimedes	that	some	multiple	of	1/N,	say
M/N,	exceeds	X.	Choose	M	to	be	the	smallest	such	multiple.

Then	one	has:
	(M	–	1)/N	<=	X	<	M/N

Here,	if	X	is	an	irrational	number,	the	first	inequality	is	a	strict	inequality,	that	is,
(M	–	1)/N	<	X.	Otherwise,	if	X	is	a	rational	number,	(M	–	1)/N	=	X.



So,	to	begin	with,
	X	<	M/N
	Now	add	the	following	equations:
	(M	–	1)/N	<=	X
	and
	1/N	<	Y	–	X
	The	result	is	that
	M/N	<	Y

In	conclusion,	X	<	M/N	<	Y,	which	is	what	one	needed	to	show.
A	finite	interval	consisting	entirely	of	irrational	numbers	anywhere	within	the
field	of	real	numbers	would	create	an	absolute,	a	priori,	limit	to	the	precision
achievable	by	a	decimal	expansion.	The	Axiom	of	Archimedes	guarantees	that
this	anomaly	cannot	occur.
The	importance	of	the	Axiom	of	Archimedes,	then,	is	that	it	is	sufficient,	and
also	necessary,	to	guarantee	that	every	magnitude	of	a	particular	kind	can	be
measured	by	any	unit	chosen	as	the	standard	for	that	kind	of	magnitude.
Whatever	one’s	choice	of	unit,	any	magnitude	of	that	kind	can	be	measured,
thereby,	to	any	preassigned	degree	of	precision	by	a	rational	number
Now	suppose	one	argues:	Well	if	X	>	0	is	small	enough,	who	cares	if	there	are
any	rational	numbers	less	than	X?	But	this	question	actually	highlights	another
absurdity	that	would	result	from	denying	the	axiom.
First,	if	X	really	represented	a	number	smaller	than	any	rational	number,	it
would	be	indistinguishable	from	0.	But	suppose	one	makes	X	bigger.	Suppose,
for	example,	that	one	multiplies	X	by	a	billion.	Well,	notice	that	any	irrational
number,	multiplied	by	a	rational	number,	is	also	an	irrational	number.	If	the
interval	between	0	and	X	consists	entirely	of	irrational	numbers,	then	the	interval
from	0	to	one	billion	times	X	also	consists	entirely	of	irrational	numbers.	And
this	would	remain	true	if	I	replaced	one	billion	by	a	billion	trillion,	or	by	an	even
larger	integer,	no	matter	what	that	number	might	be.	No	matter	how	big	the
multiplier,	the	result	of	the	multiplication	will	be	an	interval	consisting	entirely
of	irrational	numbers.	And,	of	course,	since	1	is	a	rational	number,	one	could
never	find	a	multiple	of	X	that	would	exceed	1.	Or,	to	put	it	another	way,	1/X	if
such	a	calculation	made	sense,	would	be	higher	than	any	integer	one	might
choose;	1/X	would	be	infinite.
So,	once	again,	the	Axiom	of	Archimedes	is	a	way	of	saying	that	all	magnitudes
of	a	certain	type	are	comparable.	It	says	that	any	magnitude	of	a	particular	type
can	be	measured	in	units	of	any	other	magnitude	of	that	type.



Multiplication,	Units,	and	Ratios

We	are	taught	to	think	of	numbers	as	points	on	a	line	(the	“real	number	line”),
starting	from	a	zero	point	and	extending	in	two	directions,	a	positive	direction
and	a	negative	direction.	We	are	taught	the	operations	of	addition,	subtraction,
multiplication,	division,	and,	possibly,	the	extraction	of	square	roots.	The	result
of	all	these	operations	is	always	another	point	on	that	line.

I	dispute	neither	the	value	nor	the	validity	of	this	perspective.	But	it	can	be
misleading,	as	well,	because	it	suggests	that	a	number	is	a	type	of	magnitude.

In	this	regard	some	of	the	subtlety	has	been	lost.	Lost,	but	not	forgotten.	The
public	school	teachers	do	not	see	the	subtleties	and	the	mathematicians	seem	to
ignore	them.	But	the	physicists	are	forced	to	deal	with	them	because
“dimensional	analysis”,	keeping	track	of	units	and	types	of	magnitudes,	is
essential	to	their	calculations.	Those	who	use	mathematics	need	to	deal	with	its
subtleties	whenever	those	subtleties	become	relevant	to	their	concerns.

Multiplication	of	Magnitudes

When	one	adds	quantities,	one	adds	multiples	or	magnitudes	of	the	same	kind.
One	adds	apples	to	apples;	one	does	not	add	apples	to	oranges.	But	as	long	as	the
units	are	the	same,	the	rules	of	arithmetic	do	not	depend	on	what	kind	of
magnitude	or	multitude	one	may	be	adding	or	subtracting.

The	trouble	starts	with	multiplication.	One	multiplies	feet	times	feet,	but	the
answer	is	square	feet.	One	multiplies	hours	by	miles	per	hour	and	the	answer	is
in	miles.	One	multiplies	mass	times	acceleration	and	the	result	is	measured	as	a
force.

One	does	not	multiply	apples	by	apples	at	all.	One	multiplies	the	number	of
apples	in	a	group	by	the	number	of	groups,	but	that	is	a	multiplication	by	a
number	of	repetitions,	not	by	a	number	of	apples.	And	this	is	what	I	was	doing	in
the	last	section.	When	I	multiplied	a	magnitude	by	a	number,	I	got	a	magnitude
of	the	same	type	because	I	was	counting	repetitions	of	a	magnitude	added	to
itself	multiple	times.	In	the	case	of	apples,	“six	times	three	apples”	is	18	apples.
In	the	case	of	feet,	“six	times	three	feet”	is	18	feet.



But	“six	feet	times	three	feet”	has	a	different	meaning	and	it	has	a	different
answer:	“six	feet	times	three	feet”	is	18	square	feet.
The	Greek	geometers	did	not	multiply	magnitudes.	They	did	divide	them;	that	is,
they	considered	ratios.	But	their	understanding	of	division	was	limited	to	ratios
between	magnitudes	of	the	same	type.	For	example,	they	could	deal	with	ratios
between	lengths	and	ratios	between	areas	And	they	even	knew	what	it	meant	to
equate	a	ratio	of	lengths	to	a	ratio	of	areas.
But	the	idea	of	an	area	divided	by	a	length	made	no	sense	to	them.	All	of	their
discoveries	relating	magnitudes	of	different	types	were	expressed	as
relationships	between	ratios.	Thus,	Archimedes	expressed	his	celebrated	law	of
levers	as	a	relationship	between	a	ratio	of	lengths	and	a	ratio	of	weights.24	(See
Chapter	7	for	further	details.)
That	the	classical	Greeks	could	offer	a	rigorous	definition	of	ratio,	even	to	this
limited	extent,	was	a	tremendous	achievement.	But	such	limitations	are	almost
incomprehensible	today.	Today	we	routinely	divide	distance	by	time	to	calculate
velocity.	We	multiply	lengths	to	measure	area	and	we	multiply	the	number	of
years	spent	on	a	task	by	the	number	of	people	engaged	in	that	task,	expressing
the	result	in	man-years.	As	a	matter	of	arithmetic	we	multiply	and	divide
numbers,	at	will,	keeping	track	of	the	units	attached	to	each	number.
But	what	relationships	are	we	expressing,	with	such	facility,	by	means	of	these
calculations?	What	is	the	underlying	reality,	the	actual	relationships	among
magnitudes	that	we	capture	with	our	arithmetic	calculations?
This	modern	facility,	that	we	take	for	granted,	was	not	easily	won.	As	Harriman
points	out	the	modern	paradigm	was	not	available	to	Galileo.25	At	the	dawn	of
modern	science,	Galileo	was	limited	to	the	classical	Greek	paradigm,	which	left
no	way	to	express	such	fundamental	concepts	as	miles	per	hour.
The	ability	to	meaningfully	multiply	and	divide	magnitudes	is	a	fundamental
conceptual	underpinning	of	modern	science.	But	what	are	we	doing	when	we
multiply	or	divide	magnitudes?	What	do	these	operations	actually	mean?	I	begin
with	the	measurement	of	area.

Area

Today,	measurement	of	areas	usually	begins	with	rectangles.	One	says	that	a
rectangle	with	a	width	of	six	units	and	a	height	of	two	units	has	an	area	of	12
square	units.	But	a	number	of	questions	present	themselves.	First,	where	does
this	definition	come	from?	Second,	does	it	make	sense?	If	one	gets	the	same



answer,	for	example	12	square	units,	for	two	different	rectangles	do	they	really
enclose	the	same	amount	of	area?

Finally,	there	is	a	third,	more	subtle	question.	What	happens	if	one	changes	the
units	used	to	measure	the	two	sides?	If	area	is	indeed	a	magnitude,	the
relationship	between	two	different	areas	should	be	independent	of	the	units	one
uses	to	measure	the	two	areas.	If	one	area,	area	X,	is	three	times	another	area,
area	Y,	then	the	numerical	measurement	of	area	X	should	be	three	times	the
numerical	measurement	of	area	Y,	no	matter	what	units	one	usea	to	measure	the
two	areas,	providing	only	that	one	measures	the	two	areas	in	the	same	units
whenever	one	compares	them.

Consider	the	following	rectangle:
	

This	rectangle	is	two	units	high	and	six	units	wide.	Twelve	square	units!	What	is
a	square	unit?
Well,	what	about:

A	square	unit	is	a	square	for	which	each	side	is	of	unit	length.	So
now	one	just	counts	the	squares:
	



A	measurement	in	square	units	is	just	a	count	of	the	number	of	squares	made	out
of	units.	So	it	now	becomes	almost	obvious	why	a	rectangle	that	is	four	units
high	and	three	units	wide	encloses	the	same	area.	Because	4	times	3	=	12	=	2
times	6,	the	new	rectangle	contains	the	same	number	of	squares,	literally,	the
same	number	of	square	units:

So	the	unit	of	area	is	a	square	and	each	side	of	the	square	unit	is	the	magnitude
already	in	use	as	a	unit	for	the	sides.



already	in	use	as	a	unit	for	the	sides.
The	final	question	remains.	Suppose	that	one	changes	one’s	choice	of	unit.
Suppose,	for	example,	that	area	A,	as	measured	in	square	yards,	is	2	square	yards
and	that	area	B	is	8	square	yards.	This	means	that	area	A	contains	2	squares,
each	a	yard	long	in	each	direction,	and	that	area	B	contains	8	squares,	each	a
yard	long	in	each	direction.	Area	B	contains	4	times	the	area	as	area	A.
Now	suppose	one	measured	in	feet.	There	are	3	feet	in	a	yard.	A	square	yard
contains	an	array	of	square-foot	squares,	an	array	that	contains	three	units	in
both	directions,	a	total	of	9	square	feet.	Since	each	square	yard	contains	9	square
feet,	one	converts	square	yards	to	square	feet	by	multiplying	by	nine.	9	times	2	is
18	so	area	A	is	18	square	feet.	9	times	8	is	72	so	area	B	is	72	square	feet.	To
obtain	the	relationship	between	area	B	and	area	A,	divide	72/18	=	4.	So,	by	this
calculation,	area	B	still	computes	as	4	times	the	area	of	area	A.	The	math	had	to
come	out	this	way	because	the	factor	that	was	used	to	convert	A	to	square	feet,
namely	9	was	also	used	to	convert	B	to	square	feet.	Multiplying	numerator	and
denominator	of	a	fraction	by	the	same	number	does	not	change	the	result.
Symbolically:

4	=	(8	square	yards)/(2	square	yards)
=	((8	square	yards)	×	(9	square	feet	per	square	yard))/((2	square	yards)	×	(9
square	feet	per	square	yard))	=	(72	square	feet)/(18	square	feet)	=	4

This	calculation	is	completely	general.	So	the	calculated	ratio	of	areas	is
independent	of	the	chosen	unit	of	measurement.
From	this,	one	could	proceed	to	discuss	squares	with	fractional	numbers	of	units
on	its	side.	I	will	not	pursue	this	here.	But	it	is	worth	pausing	to	see	how	one	can
derive	formulas	for	parallelograms,	triangles	and	other	figures	simply	by
noticing	various	ways	to	subdivide	them.	For	example	the	following	picture
illustrates	that	a	parallelogram	has	the	same	area	as	a	rectangle	with	the	same
base	and	height:



Similarly,
the	picture	below	illustrates	that	a	triangle	has	half	the	area	as	a	parallelogram
with	the	same	base	and	height:
	

Thus,	one	sees	the	familiar	formula,	that	the	area	of	a	triangle	equals	one	half	of
the	product	of	its	base	and	height.
To	summarize,	the	product	of	two	lengths	provides	a	count	of	the	number	of	the,
possibly	fractional,	number	of	square	units	contained	in	a	rectangle	with	those
dimensions.	The	product	of	a	length	times	a	length	is:	a	measure	of	area.	When
one	multiplies	two	lengths,	the	result	is	not	a	length;	but	an	area.	When	one
multiplies	two	magnitudes,	one	does	not	get	a	magnitude	of	the	same	kind;	one
gets	a	square	magnitude.

But	Why	Area?

What	should	one	make	of	this	multiplication	of	two	line	segments?	One
multiplies	the	width	and	the	height	of	a	rectangle	and	gets	the	area	of	the
rectangle.	But	why	rectangles?	What	if	one	were	to	multiply	the	two	legs	of	a
right	triangle?	Or	what	if	one	were	to	square	the	radius	of	a	circle?	Or	multiply
two	sides	of	an	equilateral	triangle?	Are	such	multiplications	also	measures	of
area?	Do	they	measure	anything	about	their	respective	geometric	figures?	And,
if	one	interprets	the	answer	as	square	feet	…	well,	what	does	that	interpretation
have	to	do	with	the	geometric	figure	in	question?



Take	the	first	case.	Recall	that	a	right	triangle	is	a	triangle	in	which	two	sides
(the	legs)	of	the	triangle	intersect	at	right	angles.	One	knows	that	two	right
triangles	can	be	put	together	to	form	a	rectangle.	So,	therefore,	a	right	triangle	is
half	of	a	rectangle	and	has	half	of	its	area.	So,	from	a	modern	perspective,	one
says	that	the	product	of	the	legs	of	a	right	triangle	is	twice	the	area	of	the
triangle.	In	sum,	it	still	makes	sense	to	think	of	this	product	as	an	area:	That
product	just	has	a	different	relationship	to	the	area	of	the	triangle	than	it	does	to
the	area	of	a	rectangle.	Instead	of	being	the	area	of	the	triangle,	it	is	twice	the
area	of	the	triangle.	And	it	makes	sense	to	think	of	this	product	as	the	area	that
would	result	if	one	filled	out	the	rectangle,	containing	the	triangle,	with	the	legs
serving	as	base	and	height.	In	so	doing,	one	creates	a	rectangle	to	which	one	can
compare	the	area	of	the	triangle,	a	rectangle	with	twice	the	area	of	the	triangle.

The	case	of	a	circle	is	similar,	but	the	relationship	is	less	obvious.	The	area	of	a
circle	is	not	equal	to	its	radius	squared.	But	it	is	proportional	to	it.	The	area	of	a
circle	is	proportional	to	a	square	with	each	side	equal	to	the	radius	of	a	circle,	a
discovery	known	to	Euclid.	But	Euclid	did	not	know,	and	it	was	left	to
Archimedes	to	discover,	that	the	proportionalityfactoristheconstant	π,defined	as
the	ratio	of	the	circumference	of	a	circle	to	its	diameter.	Squaring	the	radius	is
the	first	step	to	computing	its	area.	That	computation	is	completed	by
multiplying	that	square	by	the	number	π.

The	final	case	of	an	equilateral	triangle	is	also	less	obvious.	But	even	in	this
case,	like	the	case	of	a	circle,	the	product	of	these	sides	is	proportional	to	the
area.	And	if	Euclid	were	to	establish	that	proportion,	he	would	draw	a	number	of
rectangles,	of	various	dimensions,	and	the	relationship	that	Euclid	would
establish	would	be	a	relationship	among	rectangles.	As	an	example	of	this	sort
of	thing,	Euclid	followed	this	procedure	in	his	arguments	for	the	Pythagorean
Theorem	and	for	its	later	generalization.26

So	the	product,	if	interpreted	as	square	feet,	is	proportional	to	the	areas	of	each
of	these	respective	geometric	figures	and,	in	that	sense,	can	be	regarded	as	a
measure	of	their	respective	areas.	But	the	question	remains:	Why	do	we	measure
area	in	squares?	And	why	do	we	interpret	the	multiplication	of	two	lengths	as	a
number	of	square	units?	Why	not	triangular	units	instead?

The	first	important	thing	to	realize	is	that	defining	the	product	of	lengths	in	the
way	I	did	involved	a	choice.	I	ask	these	questions	not	to	imply	that	what	we	are
doing	is	wrong,	but	simply	to	point	out	this	element	of	choice.	One	chooses,



though	for	many	good	reasons,	to	measure	area	in	squares;	one	does	not	measure
area	in,	say,	right	triangles.

The	practice	of	measuring	area	in	relation	to	squares	and	rectangles	goes	back	to
antiquity.	Euclid	does	not	multiply	lengths,	as	we	do.	But,	as	I	discuss	in	Chapter
3,	he	does	measure	area,	though	in	purely	geometric	terms,	in	relation	to
rectangles	and	squares.	The	Greek	approach,	however,	was	to	find	a	square	of
the	same	area	as	the	given	figure,	whereas	the	modern	approach	is	to	count
squares	of	a	given	size.	Thus,	whereas	we	write	a	formula	for	the	area	of	a	circle,
the	Greeks	spoke	of	“squaring”	the	circle,	i.e.,	finding	a	square	with	the	same
area	as	a	circle.

The	modern	approach	certainly	makes	a	natural	choice,	arguably	the	best	choice,
and	it	is	so	automatic	today	that	it	is	hard	to	conceive	an	alternative.	Yet	there	is
an	alternative,	however	inferior:	in	measuring	area,	we	could	have	counted	right
triangles,	say,	with	each	leg	equal	in	length	to	1	foot,	instead.	If,	perhaps,	less
intuitive,	the	result	would	constitute	a	measure,	or	a	specification,	of	area	in,	one
might	say,	“Triangle	feet”	instead	of	“square	feet””.

As	long	as	one	retains	the	units	involved,	the	product	of	two	magnitudes
expresses	something	determinate	about	the	two	magnitudes	involved	in	the
product.	(I	will	elaborate	this	point	later.)	But	to	identify	this	product	with	a	third
magnitude,	even	a	related	magnitude,	involves	a	choice.	To	multiply	lengths	to
get	an	area,	I	identified	that	product	with	a	particular	area,	namely	the	area	of	a
particular	rectangle,	the	rectangle	determined	by	the	lengths	in	the	product.

But	what,	for	example,	is	the	product	of	two	pencil	lengths?	There	are	two
defensible	answers.	First,	on	the	basis	of	my	discussion,	one	might	answer	that
it’s	the	area	of	a	rectangle	with	a	length	of	the	first	pencil	length	and	width	of	the
other	pencil	length.	That	answer	would	presuppose	that	one	has	already
interpreted	the	product	of	two	lengths	to	be	the	area	of	a	rectangle	determined	by
those	lengths,	extending	that	interpretation	to	pencils.

However,	I	favor	a	different	answer,	namely	that	the	question	is	inappropriate	in
the	context	of	pencil	lengths.	The	concept	of	area	arises	in,	and	pertains	to,	a
specific	geometric	context	involving	the	measurement	of	shapes.	Comparing
pencils,	looking	to	multiply	their	lengths,	is	not	part	of	that	context.

The	identification	of	a	product	of	lengths	with	an	area	is	a	choice,	but	one	that	is



far	from	arbitrary.	One	has	a	limited	array	of	choices	and	the	availability	of
those	choices	needed	to	be	discovered.	One	discovers	that	this	magnitude,	the
area	of	a	rectangle,	relates	in	a	certain	way	to	the	lengths	of	the	sides	of	that
rectangle:	two	other,	though	related,	magnitudes.	And,	for	this	purpose,	it’s	not
even	sufficient	that	the	area	be	determined	by	the	width	and	the	length.	It	must
be	determined	in	a	special	way.	For,	by	the	nature	of	numerical	multiplication,	if
one	doubles	either	one	of	the	two	factors,	for	example,	one	doubles	the	product.
If	this	product	is	to	measure	area,	then	the	related	area	must	double,	as	well.	The
area	measured	by	the	product	of	these	two	legs	must	be	proportional	to	each
dimension	taken	separately.	It	is	essential	that	doubling	the	length	or,
alternatively,	doubling	the	width,	will	double	the	area.

On	the	basis	of	this	discovery	,	one	defines	multiplication	of	lengths,	as	a
magnitude,	as	the	area	of	a	particular	rectangle,	namely	the	rectangle	spanned
by	those	lengths.	And	this	definition,	taking	rectangles	as	a	standard,	also
provides	a	way	to	measure	the	areas	of	other	geometric	figures,	including	circles
and	triangles.	One	relates	the	areas	of	each	to	the	area	of	a	square,	one’s	chosen
standard	of	area.

Once	units	of	length	are	established,	one,	further,	establishes	a	relationship
between	the	unit	that	is	used	to	measure	lengths	and	the	unit	that	is	used	to
measure	area.	On	the	basis	of	the	geometric	definition	of	multiplication	for
lengths,	one	can	relate	the	unit	of	length	to	the	unit	of	area.	A	square	with	both
sides	equal	to	the	unit	of	length	has	the	area	of	a	square	with	both	sides	equal	to
that	unit	of	length.	If	one	takes	this	“square	unit”	as	the	unit	of	area,	then,	as	I’ve
shown,	the	number	of	units	of	area	will	be	equal	to	the	product	of	the	number	of
units	of	length	and	the	number	of	units	of	width.	In	this	way,	one’s	choice	of
units	is	consistent	with	one’s	conception	of	multiplication,	as	applied	to	length.
On	the	basis,	and	only	on	the	basis	of	this	choice	of	unit	to	measure	area,	one
finds	that	3	feet	times	4	feet	=	12	square	feet.	This	choice	of	a	unit	of	area
guarantees	that	the	multiplication	of	the	numbers	3	and	4	will	give	the	answer
that	corresponds	to	multiplication	of	the	magnitudes,	3	feet	and	4	feet.

Finally,	keep	in	mind	that	multiplication	of	lengths	is	a	way	of	formulating	a
relationship	among	magnitudes	that	existed	independently	of	this	formulation.
The	area	of	a	rectangle	has	a	determinate	relationship	to	the	lengths	of	its	sides,
independently	of	how	one	formulates	that	relationship.	The	proportionality	of
the	area	to	either	side,	taken	separately,	is	a	discovery.	Taken	together,	these
facts	make	it	possible	to	define	an	area	as	a	product	of	two	lengths.	However,	the



choice	to	do	so	is	based	on	one	further	consideration:	the	fundamentality	of	area
as	a	geometric	magnitude	and	the	use	of	rectangles	to	measure	it.27	That	choice
recognizes	a	fundamental	relationship	among	magnitudes.	Far	from	being
arbitrary,	it	is	almost	necessitated	by	the	facts	it	embraces.	Nonetheless,	it	is	a
choice.

Multiplication	of	lengths	to	find	an	area	is	the	simplest	example	of	multiplication
of	magnitudes.	It	exemplifies,	and	is	part	of,	a	more	general	pattern:	the	subject
of	the	next	section.

Products	of	Other	Magnitudes	Newton’s	Second	Law

The	degree	of	acceleration	of	an	object	produced	by	an	applied	force	on	that
object,	depends	on	the	mass	of	the	object.	Specifically,	the	force	that	is	required
to	produce	a	particular	acceleration	is	proportional	to	the	mass	of	the	object.
Suppose	for	example,	that	the	force	is	produced	by	a	spring.	If	one	combines	two
objects	of	the	same	mass,	then	the	force	produces	half	of	the	acceleration	on	the
combined	objects,	compared	to	the	acceleration	that	it	would	produce	on	just	one
of	the	two	objects.

Secondly,	the	acceleration	produced	by	a	force	on	a	particular	object,	an	object
of	a	particular	mass,	is	proportional	to	the	force.	The	combined	action	of	two
identical	springs	will	produce	twice	the	acceleration	on	a	particular	object	as
either	spring	would	produce	separately.

In	sum,	that	required	force	is	jointly	proportional	to	both	the	mass	on	which	it
acts	and	to	the	acceleration	that	it	produces.	If	mass	is	held	constant,	the
required	force	is	proportional	to	the	acceleration	it	produces;	if	the	acceleration
is	held	constant,	the	required	force	is	proportional	to	the	mass	on	which	it	acts.

If	one	knows	the	mass	of	the	object	and	the	acceleration	produced	by	a	force,
one	can	compute	the	amount	of	force	required	to	produce	the	acceleration	from
the	formula	known	as	Newton’s	second	law	of	motion.	Newton’s	law	unites
three	magnitudes	that	are	connected	in	a	particular	physical	context	and
formulates	a	causal	law	pertaining	to	that	context.

The	formula	presupposes	such	a	context;	it	would,	for	example,	make	no	sense
whatever	to	produce	a	formula	relating	the	acceleration	of	a	falling	stone	to	the



force	that	someone	exerts	on	the	pedals	of	a	bicycle.	On	the	contrary,	the	causal
relationship	involves	one	object	to	which	the	force	is	applied.	The	mass	in	the
formula	and	the	acceleration	in	the	formula	both	pertain	to	that	object.	The	force
is	produced	by	an	external	agent	acting	on	that	object.

The	second	law	of	motion	was	an	epochal	discovery	and	is	one	of	the	most
fundamental	physical	laws	of	nature.
One	expresses	Newton’s	law	as	force	=	mass	times	acceleration	or,	in	symbols,

F	=	ma

The	magnitude	of	the	force	is	the	product	of	the	magnitude	of	the	mass	times	the
magnitude	of	the	acceleration.	“Force	equals	mass	times	acceleration”	expresses
a	relationship	among	physical	magnitudes.

But	what	is	that	relationship?	The	formula	expresses	a	relationship,	but,	as	it
relates	to	any	particular	mass	and	acceleration,	what	does	this	formula	actually
mean?	What	is	the	amount	of	force	required	to	accelerate	a	mass	of	100	grams	at
a	rate	of	15	feet	per	second	per	second?	How	would	one	apply	Newton’s
formula,	or	can	one,	based	solely	on	the	information	so	far	presented?	There	is
something,	so	far,	missing	from	this	discussion.

The	analysis	of	force	goes	back	to	Archimedes.	Archimedes	knew	nothing	of	the
dynamic	properties	of	force.	But	his	investigations	into	mechanical	levers	and
into	the	buoyancy	of	water	were	the	first	studies	of	forces	in	equilibrium.28

And	these	investigations	made	it	possible	to	compare	and	measure	forces	long
before	anyone	understood	their	effects	on	motion.	One	measures	the	force	of
gravity	on	an	object	by	weighing	it;	one	measures	the	force	of	a	spring	by
comparing	it	to	the	gravitational	force	on	a	separate	object.	For	this,	Archimedes
paved	the	way:	One	quantifies	force,	reducing	its	magnitude	to	perceptual	terms,
as	the	weight	of	a	particular	volume	of	a	particular	kind	of	object,	a	weight	that
one	can	experience	directly	by	holding	it	in	one’s	hand.	One	measures	forces	by
comparing	them	to	a	chosen	standard;	one	compares	forces	by	bringing	them
into	equilibrium.

But	what	is	the	force	required	to	accelerate	a	mass	of	100
grams	at	a	rate	of	15	feet	per	second	per	second?	And	what,	as	a	second
example,	is	the	acceleration	produced	by	a	force	of	60



pounds	on	a	mass	of	20	grams?	How	does	the	acceleration	in	feet	per	second	per
second	produced	by	a	force	on	a	particular	object	relate	to	the	measurement	of
that	force	in	pounds?	The	force	required	to	produce	that	acceleration	is	certainly
determinate.	And	one	can	specify	the	force	in	relation	to	its	dynamical	effects.
But	quantifying	that	force	in	pounds,	or	in	units	that	Archimedes	would	have
recognized,	requires	an	act	of	discovery.	To	multiply	a	mass,	specified	in	grams,
by	an	acceleration,	specified	in	feet	per	second	per	second,	and	then	expressing
the	results	of	the	multiplication	in	gram-feet	per	second	per	second,	is	not,	per
se,	to	identify	how	many	pounds	of	force	was	required	to	produce	that
acceleration.
Newton’s	Law	expresses	a	causal	relationship	relating	physical	quantities.	Once
meaningful	units	have	been	identified,	mathematics	can	express	the	causal
relationship	in	relation	to	these	units.	But	the	mathematics	cannot	shortcut	the
process.	Only	physical	experiment	can,	establish	that	relationship,	can,	in
particular,	establish	the	physical	units	required	to	relate	the	arithmetic
calculation	to	the	reality	that	it	is	intended	to	express.	In	sum,	if	all	I	knew	was
this	formula,	if	I	had	no	independent	knowledge	about	how	any	particular	mass
and	any	particular	acceleration	related	to	the	particular	physical	force	required
to	produce	the	acceleration,	I	would	be	unable	to	apply	it	to	any	specific	case.
The	formula	pertains	to	an	existing	causal	relationship	and	it	provides
information	about	the	nature	of	the	relationship,	but	doesn’t,	all	by	itself,
completely	capture	that	relationship.	From	the	formula,	one	knows	that	the	force
is	proportional	to	the	mass	and	the	acceleration	it	produces;	but	that	knowledge,
by	itself,	does	not	suffice	to	measure	that	force,	as	an	equivalent	weight,	in
pounds	or	ounces.
The	formula	needs	to	be	calibrated	somehow.	Each	magnitude	can	be	measured
separately,	but	the	only	way	to	calibrate	the	magnitude	of	the	force	representing
the	product	of	mass	and	acceleration	is	to	perform	an	experiment.	Only	when
one	knows,	for	example,	that	the	force	required	to	produce	some	particular
known	acceleration	on	an	object	of	some	particular	known	mass	would	balance
a	weight	of,	say,	200	pounds	on	a	balance	scale,	can	one	calibrate	the	formula.
From	a	mathematical	perspective,	one	experiment	is	enough	to	calibrate	the
formula.	And	the	way	it’s	usually	done	is	to	first	choose	a	unit	for	acceleration,
such	as	meters	per	second	per	second,	and	a	unit	for	mass,	such	as	kilograms.
And	then	determine	the	particular	force	required	to	produce	a	unit	of
acceleration	(one	meter	per	second	per	second)	on	one	unit	of	mass	(one
kilogram).	Having	determined	that	force	experimentally,	as	equal	to	the	weight
of	a	standard	object	(an	object	specified,	for	example,	as	a	particular	volume	of
water	at	a	particular	temperature,	at	sea	level),	one	can	define	that



experimentally	measured	force	as	a	new	unit,	a	unit	relatable	to	the	older
standard.29
As	in	the	case	of	area,	this	kind	of	choice	guarantees	that	the	formula	between
lengths	will	work	for	numbers,	as	long	as	the	numbers	correspond	to	the
measurement	of	lengths	in	the	appropriate	units.	In	the	case	of	Newton’s	law,
one	defines	a	unit	of	force,	appropriately	named	the	“newton”,	defined	as	“the
amount	of	force	required	to	accelerate	a	mass	of	one	kilogram	at	a	rate	of	one
meter	per	second	per	second.”30
But	notice	a	couple	of	things	about	this	choice	of	units.	First,	notice	that	the
newton	is	not	specifically	defined	in	relation	to	weight,	whether	in	pounds	of
kilograms.	Rather,	it	is	expressed	in	terms	of	the	other	units	involved	in	the
formula.	So,	if	one	measures	mass	in	kilograms	and	acceleration	in	meters	per
second	per	second,	then	for	m	=	1	and	a	=	1,	this	choice	of	unit	for	force
guarantees	that	F	=	1.	Any	other	choice	of	units	for	F	would	result	in	a	different
numerical	answer	for	F	(expressing,	however,	the	same	relationship,	among
physical	magnitudes).	So	F	=	ma	in	the	metric	system,	only	with	this	choice	of
units	to	measure	force;	any	other	choice	would	require	a	conversion	factor	to
convert	the	numerical	answer	to	newtons.	The	formula,	in	its	usual	expression	is
valid	numerically,	in	other	words,	only	when	the	various	physical	units	are
chosen,	in	this	way,	to	make	the	numbers	correspond	properly,	to	make	the
number	of	mass	units	times	the	number	of	acceleration	units	equal	the	number	of
force	units.
But	this	leads	to	the	second	point.	In	defining	newton	in	this	way	the	question	of
relating	the	force	represented	to	the	weight	of	some	standard	object	under	some
standard	set	of	conditions	is	left	unanswered.	That	question	has	been	neatly
finessed	and	the	final	connection	to	the	world,	the	required	calibration
comparing	a	newton	to	the	weight	of	a	standard	object,	still	remains	to	be	made.
Now,	of	course,	the	required	experiment	was	performed	long	ago,	long	before
the	newton	was	defined,	and	was	part	of	the	context	within	which	the	newton
was	defined.	So	my	point	is	not	that	there	is	anything	problematic	about	any	of
this.	Rather	it	is	simply	to	emphasize	that	a	quantitative	relationship	among
physical	magnitudes,	expressed	mathematically,	is	not,	strictly	speaking,	a
mathematical	relationship.	It	is,	rather,	irreducibly,	a	mathematical	expression	of
a	physical	relationship.
In	other	words,	the	meaning	of	F	=	ma	is	not	determined	by	the	mathematics;	it
is	determined	by	the	physics	and	requires	physical	experiments,	not	only	to
establish	the	type	of	relationship,	but	to	calibrate	that	relationship.	The
relationship	between	the	variables	is	not	driven	by	mathematics;	it	is	not	a



specifically	mathematical	relationship,	independent	of	physical	context.	Rather,
it	is	a	quantitative	relationship	pertaining	to,	relating	quantities	involved	in,	a
particular	kind	of	physical	context.	It	is	a	quantitative	relationship	that
quantitatively	expresses	and	identifies	a	causal	relationship.
I	have	now	discussed	two	examples	of	multiplication	of	magnitudes.	One	arises
in	a	geometric	context	and	the	other	arises	as	an	expression	of	a	causal,	physical
law.	Both	cases	provide	a	natural	choice	of	unit	for	the	product,	one	that
corresponds	to	the	standard	units	used	for	the	two	magnitudes	that	have	been
multiplied.	In	both	cases,	reality	sets	the	calibration	and	the	meaning	of	the
multiplication	operation.	A	particular	area,	the	area	of	a	particular	rectangle,	is
the	area	that	corresponds	to	the	product	of	the	lengths	of	its	sides.	A	particular
force,	whatever	force	be,	as	a	matter	of	fact,	required	to	produce	a	particular
acceleration	on	a	particular	mass,	is	the	force	expressed	by	the	product	of	mass
and	acceleration.	The	mathematics	does	not	create	these	relationships.	On	the
contrary,	it	is	used	to	express	them.

Products	and	Units

Let’s	look	at	this	more	generally.
It	is	only	possible	to	establish	or	meaningfully	define	a	numerical	relationship	of
a	product	of	two	magnitudes	to	a	third	magnitude,	under	certain	conditions.
First,	there	must	be	a	third	magnitude	that	is	determined,	in	some	context,	by	the
two	magnitudes.	Secondly,	as	in	the	cases	of	area	and	Newton’s	law,	the
relationship	to	this	magnitude	must	satisfy	a	very	special	condition.	The	third
magnitude	must	be	proportional,	in	the	nature	of	things,	to	each	of	the	two
factors,	taken	separately.	For	example,	if	one	doubles	either	magnitude	in	the
product,	one	doubles	the	result.	If	one	multiplies	either	magnitude	involved	in	a
product,	by	a	number,	one	multiplies	the	resulting	product	by	the	same	number.
Multiplication	must	work	the	same	way	with	magnitudes	as	it	does	with
numbers:	As	a	representative	numerical	example,	if	4	times	5	is	20,	then	8	times
five	is	twice	20,	8	being	twice	4.
A	magnitude	can,	certainly,	be	related	to	two	other	magnitudes	without
satisfying	the	proportionality	condition.	But	then	that	relationship	cannot	be
expressed	as	a	multiplication	of	two	magnitudes.
Suppose	that,	in	some	physical	setting,	a	magnitude	Z	is	determined	by,	causally
related	to,	two	other	magnitudes	X	and	Y.	In	mathematical	terminology,	Z	is	a
function	of	X	and	Y.	Any	pair	of	magnitudes	X	and	Y	determines	a	specific
magnitude	Z.	One	writes	Z	=	f(X,	Y)	to	designate	this	relationship.	Again,	in	this



expression,	X,	Y	and	Z	are	magnitudes	(not	numbers)	and	f	is	the	name	that	I	am
giving	the	relationship,	whatever	that	relationship	might	happen	to	be.	So,	in	this
expression,	X	and	Y	are	the	magnitudes	that	determine,	physically,	the
magnitude	Z	and	f(X,Y)	means	“the	physical	magnitude	Z	that	corresponds	to
magnitudes	X	and	Y”.
For	the	relationship	f	to	be	definable	as	a	product	of	magnitudes,	the	value	of	Z
must	be	proportional	to	both	X	and	Y,	taken	separately.	For	example,	if	X	is
doubled	and	Y	remains	unchanged,	then	Z	will	double.	In	my	notation,

f(2×X,Y)	=	2×Z	=	2×f(X,	Y)

In	this	formula,	interpret	2×X	as	I	did	in	my	discussion	of	the	prearithmetic	of
magnitudes.	2	times	X	is	simply	X	+	X.	In	words,	if	X	is	replaced	by	2	times	X
then	Z	is	replaced	by	2	times	Z.

By	the	same	token,	if	one	multiplies	Y	times	3	and	leave	X	unchanged,	the	value
of	Z	also	triples.	In	my	notation,	this	means	f(X,	3×Y)	=	3×Z	=	3×f(X,	Y).

In	general,	using	A	and	B	to	represent	any	numbers	whatever,
	f(A×X,	B×Y)	=	B×f(A×X,Y)	=	A×B×f(X,Y)	=	A×B×Z

This	formula	expresses,	in	symbolic	terms,	that	Z	is	proportional	to	either	X	or	Y
taken	separately.
Now	select	physically	defined	units	for	magnitudes	X	and	Y,	and	designate	them
as	UX	and	UY,	respectively.	(I	use	the	subscripts	in	my	symbolism	to	keep	track
of	the	respective	magnitudes	that	each	measures.)	Remember	that	a	unit	is	just	a
particular	magnitude	of	a	particular	kind	that	has	been	chosen	as	the	standard.
Keep	in	mind	that	there	is	no	reason	to	simply	assume,	in	advance,	that	the	unit
used	to	measure	Z	has	anything	to	do	with	the	units	used	to	measure	X	and	Y.
By	the	nature	of	the	case,	Z	is	a	different	kind	of	magnitude	than	X	and	Y	and
the	Z-type	of	magnitude	may	have	arisen	or	been	discovered	in	another	context
(as	was	the	case	of	force	in	the	previous	example).
One	does	not	choose	the	particular	physical	magnitude	Z	that	corresponds	to
specific	magnitudes	X	and	Y.	Reality	makes	this	choice	for	us,	but	one	does
have	a	choice	of	units	that	one	uses	to	measure	Z.	So	suppose	one	chooses,	as	a
unit	for	the	magnitude	Z,	the	value	UZ	=	f(UX,	UY).	This	choice	takes	UZ,	as	a
unit	for	measuring	Z,	to	be	the	particular	magnitude	of	that	type	that,	as	it
happens,	relates	to	the	particular	physical	magnitudes	UX	and	UY.
What	happens	if	one	expresses	X,	Y	and	Z	in	terms	of	these	units?	Each	is	some



particular	multiple	of	its	respective	particular	unit.	So	there	are	numbers	A,	B,
and	C	such	that	X	=	A×UX,	Y	=	B×UY,	and	Z	=	C×UZ.
Recall	that	X,	Y	,	and	Z	are	related	by	the	function	f,	that	Z	=	f(X,	Y).	On
substituting	the	expressions	for	each	variable	in	terms	of	units,	one	finds:

C×UZ	=	f(A×UX	,	B×UY)	=	A×B×f(UX	,	UY)	=	A×B×UZ

In	other	words,	C	=	A×B.	When	expressed	in	these	units,	the	relationship	among
the	magnitudes	is	expressed	by	the	arithmetical	multiplication	of	numbers!	But
keep	in	mind	that,	as	an	expression	of	the	physical	relationship,	the	meaning	of
these	numbers,	A,	B,	and	C	is	totally	dependent	upon	the	choices	of	units	UX	,
UY	and	UZ,	choices	that	are	a	necessary	part	of	the	context	of	the	numerical
formula.

The	physical	relationship,	of	course,	does	not	depend	upon	the	choice	of	units.
And	one	does	not	always	choose	units	to	simplify	the	expression	of	some
particular	physical	relationship.	But	sometimes	one	does	when	that	relationship
is	a	fundamental	one,	such	as	Newton’s	second	law	of	motion.

In	any	particular	context,	one	can	make	this	choice	of	units	just	once	for	a	pair	of
magnitudes	of	particular	kinds.	For	example,	the	area	of	a	triangle	is	directly
proportional	to	the	base	and	the	height.	But	one	would	never	say	that	the	area	of
a	triangle	is	equal	to	the	product	of	the	length	of	its	base	and	its	height	–	because
the	product	of	two	lengths	has	already	been	taken	to	be	the	area	of	a	rectangle.
We	do	not	measure	area	in	triangle	units.	One	says,	rather,	that	the	area	of	a
triangle	is	half	the	product	of	its	length	and	its	base.	In	measuring	triangles,	one
takes	for	granted	that	1	foot	multiplied	by	1	foot	equals	1	square	foot,	i.e.,	the
area	of	a	1	foot	by	1	foot	square.	(Or,	if	one	changes	the	standard	of	length,	one
makes	a	corresponding	change	in	the	standard	for	area.	For	example,	if	length	is
expressed	in	meters	instead	of	feet,	then	area	is	expressed	in	square	meters.)
Accordingly,	in	numerical	calculation,	this	relationship	of	the	units,	that
multiplication	of	lengths	measures	the	area	of	a	rectangle,	is	also	taken	for
granted.

Returning	to	the	magnitudes	X,	Y,	and	Z,	what	if	one	chooses	a	different	set	of
units	for	measuring	Z,	such	as	the	standard	that	was	already	in	place	before	the
discovery	of	the	relationship	f?	Then	one	needs	to	find	a	conversion	factor	to
calibrate	the	formula.	How?



Take	UZ,	in	this	argument,	to	be	the	preexisting	standard	for	Z.	Express	X,	Y,
and	Z	in	terms	of	their	respective	units.	Once	again,	A,	B,	and	C	are	numbers
that	relate	each	magnitude	to	its	unit:

X	=	A×UX,	Y	=	B×UY,	and	Z	=	C×UZ

Starting	from	the	given	relationship	of	magnitudes	(Z	=	f(X,	Y))	and	substituting
the	above	expressions	for	each	magnitude,	we	obtain:

C×UZ	=	f(A×UX	,	B×UY)	=	A×B×f(UX	,	UY)	so	C×UZ	=	A×B×f(UX	,	UY)

But	f(UX	,	UY)	is	a	magnitude.	It	is,	in	fact,	the	same	kind	of	magnitude	that	Z	is
and	that	UZ	is.	f(UX	,	UY)	is	the	particular	magnitude	of	type	Z	that	is
determined	in	the	prescribed	way	by	the	magnitudes	UX	and	UY.

So,	for	some	number	L,	determined	experimentally,	one	can	express	f(UX	,	UY)
in	terms	of	UZ	as
	f(UX	,	UY)	=	L×UZ

The	number,	L,	captures	the	relationship	between	the	magnitudes	f(UX	,	UY)	and
UZ	,	a	relationship	that	the	Greeks	treated	as	a	ratio.	In	general,	if	R	and	S
represent	magnitudes	of	the	same	type,	there	is	a	number	D	such	that	R	=	D×S.
As	discussed	earlier	in	the	section	on	the	Axiom	of	Archimedes,	I	define	D	to	be
the	ratio	of	R	to	S	and	write	R/S	=	D	as	simply	an	alternate	way	of	expressing
the	relationship	between	R	and	S.	(As	we	discussed	earlier,	D,	in	a	physical
application,	is	defined	up	to	materiality.)	R/S	is	a	notation	to	express	that
relationship,	that	ratio,	and	its	value	is	D.	A	ratio,	then,	is	a	number	that
designates	the	multiplicative	relationship	between	two	magnitudes	(or
multitudes)	of	the	same	kind.

In	this	terminology,	one	can	rewrite	this	expression	as
	f(UX	,	UY)/UZ	=	L
	L	is	the	ratio	between	the	two	magnitudes	of	type	Z.	Substituting	for	f(UX	,	UY),
one	finds,
	C×UZ	=	A×B×L×UZ
	from	which	it	follows	that
	C	=	A×B×L	=	L×A×B



The	arithmetic	formula	C	=	A×B,	that	resulted	from	my	earlier	choice	of	unit,
has	been	replaced	by	C	=	L×A×B.	In	this	expression,	the	coefficient	L	is	the
conversion	factor	to	convert	numerical	measurements	that	are	expressed	in	units
of	f(UX	,	UY)	to	numerical	measurements	that	are	expressed	in	units	of	UZ.	The
arithmetic	expression	has	changed;	it	is	affected	by	the	choice	of	units.	But	the
relationship	among	magnitudes	that	it	expresses	remains	the	same	and,	indeed,
the	derivation	of	L	presupposed	and	relied	on	this	preexisting	relationship
among	magnitudes.

Products:	General	Case

The	need	to	multiply	magnitudes	is	not	limited	to	cases	in	which	their	product	is
a	magnitude	that	has	been	previously	or	independently	identified.	Take,	for
example,	the	measurement	of	momentum.	For	purposes	of	this	discussion,
consider	the	onedimensional	case	in	which	all	velocities	run	along	the	same
direction.

The	momentum	of	an	object	is	measured	as	the	product	of	its	mass	and	its
velocity.	For	example,	suppose	an	object	has	a	mass	of	50	kilograms	and	moves
at	a	speed	of	100	feet	per	minute.	Then	its	momentum	is	5000	kilogram-feet	per
minute.

What	about	this	product?
First,	it	is	a	physical	fact	that	the	object	has	a	mass	of	50	kilograms	and	a	speed
of	100	feet	per	minute.	Secondly,	it	is	a	fact	that	if	the	mass	is	expressed	in
kilograms	and	the	speed	is	expressed	in	feet	per	second,	that	the	arithmetical
product	of	these	measurements	is	5000.	One	acknowledges	the	context	of	this
multiplication	by	keeping	track	of	the	units	involved	in	the	measurement	of	the
magnitudes	participating	in	the	multiplication.
So	the	result	of	the	calculation	reflects	something	specific	about	the	object	to
which	it	pertains.	One	can	think	of	it	as	capturing	the	amount	of	ongoing	motion
of	the	object,	capturing	it	from	a	perspective	that	regards	the	amount	of	motion
involved,	say,	in	two	such	moving	objects	as	representing	twice	the	amount	of
ongoing	motion	as	the	motion	of	either	object	taken	separately.
But,	unlike	the	case	of	Newton’s	Second	Law,	there	is	no	independent	measure
of	momentum	to	which	this	measurement	of	kilogram	feet	per	minute	need
relate.	The	calibration	requirement	does	not	arise.	It	cannot	arise	unless	and	until
one	would	discover	some	other	manifestation	of	an	object’s	momentum,	a



manifestation	giving	rise	to	a	different	way	to	compare	momenta	and	giving	rise
to	an	independently	identified	standard	of	measurement.
The	need	to	relate	two,	separately	measurable,	physical	manifestations	of	force
is	the	element	that	was	present	in	the	case	of	Newton’s	Law	and	that	is	missing
in	the	present	case.	The	need,	in	the	case	of	Newton’s	Second	Law,	to	relate
newtons	to	pounds	was	a	need	to	integrate	all	of	the	relevant	known	facts
pertaining	to	the	measurement	of	force.
Yet,	as	I	have	already	argued,	momentum	is	a	specific	property	of	a	moving
object.	It	is	a	property;	indeed	it	is	a	magnitude,	a	magnitude	that	can	distinguish
one	moving	object	from	another.	But	why	does	one	care?
Notice,	first	of	all,	what	is	being	lost	when	one	multiplies	mass	times	speed.	An
object	with	a	mass	of	six	kilograms	and	moving	at	a	speed	of	50	feet	per	minute,
for	example,	has	the	same	momentum	as	a	second	object	with	a	mass	of	two
kilograms	moving	at	a	speed	of	150	feet	per	minute,	namely,	300	kilogram-feet
per	minute.	The	two	objects	have	different	masses,	different	speeds,	but	the
same	momentum.
When	one	focuses	on	momentum,	neither	mass	nor	the	speed,	taken	separately
and	in	isolation,	is	important.	Only	the	product	matters.	The	product	of	the	two
factors	is	everything,	the	only	thing	that	matters;	the	specific	composition	of	the
two	factors	is	treated	as	an	omitted	measurement.
One	can,	as	I	have	indicated,	simply	regard	momentum	as	a	measure	of	the
amount	of	ongoing	motion.	But,	as	it	happens,	momentum	is	of	great
importance.	It	is	important	because	the	devastation	caused	by	a	collision	with	a
moving	object	primarily	relates	to	momentum.	It	is	much	worse	to	be	hit	by	a
truck	going	25	miles	per	hour	than	by	a	Volkswagen	Beetle	traveling	at	the	same
speed	and	far	worse	to	be	struck	by	a	train.	And	these	physical	consequences
reflect	a	fundamental	principle	in	physics,	namely	the	conservation	of
momentum.	As	Resnick	and	Halliday	formulate	the	conservation	of	momentum
principle,	“When	the	resultant	external	force	acting	on	a	system	is	zero,	the	total
vector	momentum	of	the	system	remains	constant.”31
One	cares	about	momentum,	in	large	part,	because	of	this	conservation	law	and
the	consequences	of	the	conservation	law.	But	to	formulate	that	law,	to	discover
it	in	the	first	place,	one	needs	to	be	able	to	meaningfully	multiply	two	physical
magnitudes	and	express	the	results	in	terms	of	the	chosen	physical	units	of	the
two	factors,	prior	to	such	discoveries	and	formulations.
To	further	explore	this	point,	as	a	final	example,	consider	a	balance	beam	with	a
weight	on	either	side	of	the	fulcrum.	If	the	weight	on	one	side	is	six	pounds	and
its	distance	from	the	fulcrum	is	ten	inches,	the	product,	60	poundinches,	is	called
the	moment	of	that	particular	weight	with	respect	to	the	fulcrum	of	the	lever.



That	six	pound	weight	will	be	balanced	by	a	three	pound	weight	situated	20
inches	from	the	fulcrum	on	the	other	side	of	the	lever.	And	it	will	balance
precisely	because	the	moment	of	this	second	weight,	calculated	as	three	pounds
times	20	inches,	is	also	60	poundinches.
In	this	example	the	meaning	and	importance	of	this	product	of	magnitudes	is
entirely	bound	up	in	a	particular	physical	context,	namely	that	of	the	lever	arm.
Yet	the	calculation	of	each	moment	reflects	a	specific	precise	characteristic	of
the	physical	situation	of	each	weight,	has	a	specific	meaning	and	import	within
that	context,	and	is	important	because	of	that	context.
In	general,	a	product	of	magnitudes	is	a	condensation	of	certain	aspects	of	a
physical	situation.	The	product	reflects	the	measurements	of	each	factor,	but	it
also	omits	certain	characteristics	of	the	physical	context,	retaining	only	the
arithmetic	product	and	the	combination	of	physical	units	that	relate	this	product
to	the	physical	context	of	the	measurement.	In	relation	to	these	units,	the	product
measures	a	physical	characteristic	of	the	physical	situation	to	which	it	relates.
And	this	product	is	properly	regarded,	in	its	own	right,	as	a	magnitude.	Indeed,
one	sees	that	the	product	is	a	magnitude	simply	by	holding	one	of	the	factors
constant	and	observing	that	any	arithmetical	operation	involving	the	second
factor	applies	immediately	to	the	product,	as	well.
In	general,	whenever	two	magnitudes	are	connected	within	a	category	of
physical	situations,	their	product	can	be	taken	as	a	third,	derived	magnitude
pertaining	to	and	measuring	something	about	that	type	of	physical	situation.
Thus,	for	example,	the	momenta,	of	objects	moving	in	the	same	direction,	can	be
compared,	added,	and	related	as	to	multiplicity.	The	law	of	conservation	of
momentum,	in	particular,	presupposes	such	quantitative	relationships,
presupposes	that	momentum	can	be	regarded	as	a	physically	meaningful
magnitude,	subject	to	further	investigation.	The	ontological	status	of	momentum
as	a	magnitude	is	not	affected	by	the	indirect	means	required	for	its	specification
and	measurement.

Division	of	Magnitudes	by	Magnitudes

The	ability	to	calculate	physical	quantities	such	as	speed,	acceleration	and
density,	to	generally	relate	magnitudes	of	different	types,	is	an	essential
underpinning	of	modern	science.	But	the	ability	to	make	these	calculations	is	a
modern	development;	as	I	have	indicated,	and	except	for	taking	ratios	among
magnitudes	of	the	same	type,	this	ability	was	unknown	to	the	ancient	Greeks.



Yet	the	underlying	rationale	for	these	ratios	is	seldom,	if	ever,	acknowledged	or
discussed.	To	provide	such	a	rationale,	to	even	recognize	that	one	is	needed,
cannot	be	found	in	the	standard	curriculum,	not	in	mathematics,	nor	in	physics,
nor	in	the	philosophy	of	science.	We	take	it	entirely	for	granted.	But	our	warrant
for	doing	so	is	not	obvious	and	merits	investigation.

Density

I	begin	with	density	because	it	provides	an	ideal	example	of	the	essential	issues.
Density	pertains	to	solid	objects,	liquids,	and	confined	gases.	Density	is	a
measurement	of	the	amount	of	matter,	the	amount	of	mass,	contained	in	a
particular	volume.	If	the	object,	the	liquid,	or	the	gas	is	homogeneous,	then,
other	things	being	equal,	the	density	is	constant	–	independent	of	the	particular
volume	under	consideration.	Thus,	20	grams	contained	in	a	volume	of	2	cubic
inches	represents	the	same	density	as	10	grams	contained	within	one	cubic	inch.
Density	is	regarded	as	constant	when	the	amount	of	mass	contained	within	a
volume	of	material	is	proportional	to	the	volume	under	consideration.
For	example,	the	density	of	gold	at	a	particular	temperature	is	characteristic	of
that	element	and	is	totally	independent	of	the	size	and	shape	of	a	particular
sample.	Or,	to	take	another	example,	the	density	of	a	confined	gas	is	normally
constant	throughout	the	container.
How	does	one	measure	density?	Density	is	a	magnitude	so	one	establishes	a
relationship	to	a	standard,	to	a	particular	concrete.	But	how	does	one
characterize	such	a	concrete?
One	could,	perhaps,	select	a	particular	dense	object.	For	example,	one	might
select	gold,	at	720,	or	ice,	just	below	its	melting	point.	But	that	is	not	what	one
normally	does.	And	the	reason	is	that	density	does	not	admit	of	direct
comparison;	one	requires	indirect	means	to	compare	the	density	of	two	objects.
Density	is	a	measure	of	the	amount	of	mass	in	a	particular	volume	so,	to
determine	density,	one	must	determine	the	mass	and	the	volume.
Taking	weight	as	an	indicator	of	mass,	if	one	object	has	twice	the	weight	of
another	object,	having	the	same	size	and	shape,	it	is	twice	as	dense:	It	has	twice
the	mass	in	a	particular	volume.	For	a	particular	volume,	the	density	is	directly
proportional	to	the	weight.
On	the	other	hand,	if	two	objects	have	the	same	weight,	but	one	has	half	the
volume	as	the	other,	then	the	smaller	object	has	twice	the	density.	If	the	larger
volume	be	divided	in	two,	each	of	those	two	halves	will	match	the	volume,	but
contain	half	the	mass,	as	the	smaller	object.	For	a	particular	weight,	density	is



inversely	proportional	to	the	volume	containing	that	weight.
In	general,	two	objects	with	the	same	ratio	of	weight	to	volume	have	the	same
density.	For	example,	suppose	object	A	weighs	16	ounces	(oz)	and	has	a	volume
of	2	cubic	inches	(in3),	while	object	B	weighs	24	ounces	and	has	a	volume	of	3
cubic	inches.	Then	one	cubic	inch	of	object	A	will	weigh	8	ounces,	since	one
cubic	inch	is	half	of	2	cubic	inches:	I	have	divided	the	volume	by	2	so	I	need	to
divide	the	weight	by	2,	since,	by	assumption,	the	weight	is	evenly	distributed
throughout	the	volume.	One	finds	16	oz/2	=	8	oz.	Similarly,	one	cubic	inch	of
object	B	will	contain	one	third	of	the	weight	of	object	B,	namely	24	oz/3	=	8	oz.
So	objects	A	and	B	have	the	same	density.	Two	objects	with	the	same
relationship	between	weight	and	volume,	two	objects	that,	when	expressed	in	the
same	units	have	the	same	numerical	quotient,	have	the	same	density.
Moreover,	this	numerical	quotient	provides	a	measurement	of	the	density,
considered	as	a	magnitude:	If	the	mass	in	a	particular	volume	doubles,	the
magnitude	of	the	numerator	doubles	and,	therefore,	the	numerical	quotient
doubles.	The	quotient	precisely	captures	the	relationship	of	the	density	of	an
object	to	its	mass	and	volume.
But	what	is	the	standard	of	measurement?
A	constant	density	is	independent	of	the	size	of	the	volume	or	of	the	particular
volume	of	that	size	that	one	considers.	So	choose	a	standard	volume,	such	as	one
cubic	inch.	If	one	knows	the	mass	of	a	cubic	inch	of	material,	one	knows	the
density	of	the	material.	If	one	measures	mass	in	ounces,	then	the	density	of	the
material	is	measured	in	ounces	per	cubic	inch.	If	there	are,	for	example,	five
ounces	in	a	cubic	inch,	than	any	cubic	inch	of	the	substance	contains	a	mass	of
five	ounces.	The	measurement	of	density	answers	the	question:	How	many
ounces	of	this	material	are	there	in	a	cubic	inch?
If	an	object	weighs	16	ounces	and	has	a	volume	of	2	cubic	inches	then	its	density
is	8	ounces	per	cubic	inch	because	one	cubic	inch	of	this	material	will	contain	8
ounces	of	it.	The	weight	of	any	particular	cubic	inch	of	the	material	is	direct
manifestation	of	its	density.
So,	to	find	the	density	of	a	material,	divide	its	mass	by	its	volume	and	keep	track
of	the	units	one	uses	for	both	the	mass	and	the	volume.	In	this	case,	one
represents	this	quotient	as
16	oz/2	in3	=	16/2	oz/in3	=	8	oz/in3	or	8	ounces	per	cubic	inch.
The	identification	of	the	units	at	the	end	designates	the	fact	that,	to	measure
density,	one	measures	the	mass,	in	ounces	(the	numerator)	within	a	particular
volume	in	cubic	inches	(the	denominator).	“Per”	in	this	context	means	“for
each”.	In	this	example,	it	means	that	each	cubic	inch	contains	8	ounces.



But	notice	something	important.	In	performing	this	calculation,	I	have	not
literally	divided	16	ounces	by	2	cubic	inches.	I	have	not	actually	divided	two
magnitudes	of	different	kinds.	And	this	is	indicated	by	the	logic	of	my	earlier
example.	What	I	actually	did	was	divide	16	ounces	by	a	number,	a	number
specifically	representing	the	relationship	of	the	volume	of	the	object	to	a	unit	of
volume.	I	divided	two	cubic	inches	by	one	cubic	inch	to	find	the	fraction	of	the
whole	that	I	needed	to	consider.	I	then	divided	the	weight	of	the	sample	volume
by	the	ratio	of	that	volume	to	a	unit	volume	to	determine	the	weight	of	a	unit
volume.
In	other	words,	I	reasoned	that	16	ounces	per	2	cubic	inches	equates	to	8	ounces
per	1	cubic	inch.	The	answer,	8,	is	half	of	16	because	1	is	half	of	2.	The	answer,
taken	with	the	context	supplied	by	the	reminder	of	the	units	involved,	and	the
way	that	they	are	involved	(oz/in3)	is	a	complete	specification	of	the	density,	one
that,	in	fact	and	despite	superficial	appearance,	does	not	require	dividing	one
magnitude	by	a	second	magnitude	of	a	different	type.
And	this	is	the	general	principle.	Division	of	two	related	magnitudes	can
generally	be	resolved	by	relating	the	divisor,	as	a	ratio,	to	its	unit,	dividing	the
numerator	by	the	resulting	ratio,	and	retaining	the	units.
For	every	division,	there	is	a	corresponding	multiplication	that	reverses	the
division.	What	about	this	corresponding	multiplication	in	the	case	of	density?
Keep	in	mind	that	density	is	a	magnitude	that	relates,	for	a	particular	object,	the
mass	contained	within	a	volume	to	a	measure	of	that	volume.	Density	is
calculated	by	dividing	the	mass,	within	the	particular	volume	containing	the
mass,	by	the	ratio	of	that	volume	to	a	standard	volume.
The	corresponding	multiplication	is	straightforward:	Density	times	volume
equals	mass.	How	much	mass?	The	mass	contained	within	the	volume.	If	the
density	of	a	homogeneous	substance	is	5	grams	per	cubic	inch,	one	finds	the
mass	of	a	10	cubic	inch	volume	by	multiplying	10	cubic	inches	by	5	grams	per
cubic	inch.	One	takes	this	product	as	answering	the	question,	“How	many	grams
of	material	are	contained	within	10	cubic	inches	of	the	material?”	And	the
answer	to	this	question	is	found	in	exactly	the	way	that	one	would	expect:
Multiply	10	times	5	and	express	the	result	in	grams:	10	cubic	inches	time	5
grams	per	cubic	inch	equals	50	grams.

Speed

The	corresponding	analysis,	in	its	entirety,	applies	to	speed.	Speed	is	a	measure
of	the	distance	traversed	within	a	specific	time.	If	one	travels,	at	a	constant
speed,	a	distance	of	300	miles	in	5	hours,	one	must	have	traveled	60	miles



speed,	a	distance	of	300	miles	in	5	hours,	one	must	have	traveled	60	miles
during	each	of	those	5	hours.	One’s	speed,	then,	is	60	miles	per	hour.	One
divides	the	total	distance	traveled	by	the	ratio	of	5	hours	to	one	hour.	But	this
ratio	is	5	and	300	miles	divided	by	5	is	60	miles.	Since	these	60	miles	were
traversed	during	the	interval	of	one	hour,	the	speed	is	60	miles	per	hour.

Conversely,	if	one	knows	the	speed	and	duration	of	the	travel,	one	multiplies
these	two	magnitudes	to	find	the	total	distance	traveled.	Thus,	5	hours	times	60
miles	per	hour	is	300	miles.

So,	in	a	sense,	the	Greeks	were	on	the	right	track.	One	does	not,	appearances	to
the	contrary	notwithstanding,	need	to	define	a	ratio	of	a	magnitude	to	another
magnitude	of	different	type.	It	suffices	to	find	the	ratio	of	the	denominator	to	its
unit	and,	then,	to	divide	the	numerator	by	the	resulting	number.

Finally,	I	have	made	an	assumption	in	each	of	the	last	two	examples	that	needs
to	be	relaxed.	In	the	case	of	density,	I	assumed	constant	density.	And,	in	the	case
of	speed,	I	assumed	constant	speed.	But	the	respective	quotients	are	valid,	even
without	such	an	assumption,	providing	that	one	properly	reinterprets	the
meaning	of	these	quotients.

In	the	case	of	density,	suppose	a	material	weighing	200	pounds	and	occupying	a
volume	of	10	cubic	feet.	Without	knowing	the	actual	distribution	of	material
within	this	volume,	one	can,	nevertheless,	say	that	the	density	of	the	material,	on
the	average,	is	20	pounds	per	cubic	foot,	meaning	that	if	the	mass	were
uniformly	distributed,	that	would	be	its	uniform	density.

Similarly,	if	one	travels	300	miles	in	5	hours,	then	the	average	speed	was	60
miles	per	hour,	regardless	of	the	number	of	times	one	might	have	slowed	down,
speeded	up,	or	stopped	altogether.	Again,	that	average	speed	of	60	miles	per
hour	is	the	speed	that	one	would	have	gone	if	one	had	traversed	that	300	miles	at
a	constant	speed	during	those	5	hours.

This	notion	of	an	average	is	also	one	key	to	understanding	the	concepts	of
instantaneous	velocity	at	a	particular	time	or	density	at	a	point.	Instantaneous
velocity,	for	example,	is	simply	one’s	average	velocity	during	a	sufficiently
small	temporal	duration	at	the	time	in	question.	Likewise,	density	at	a	point	is
the	average	density	of	a	sufficiently	small	volume	containing	the	point	in
question.

How	small?	That	depends,	as	always,	on	one’s	precision	requirement	in	any



How	small?	That	depends,	as	always,	on	one’s	precision	requirement	in	any
concrete	instance.
When	physicists	perform	calculations	involving	physical	magnitudes,	they	focus
on	the	physics	and	take	entirely	for	granted	their	ability	to	multiply	quantities	or
divide	them	whenever	necessary.	They	simply	make	their	measurements,
perform	their	calculations,	and	keep	track	of	the	units	and	conversion	factors
involved.
The	examples	I	have	just	given	are	representative	of	the	standard	approach:
Express	all	magnitudes	in	terms	of	physical	units;	perform	whatever	arithmetical
calculations	are	pertinent	to	one’s	purpose;	and	keep	track	of	the	units	that	were
applied	to	the	various	magnitudes,	distinguishing	the	units	relating	to	the
magnitudes	in	the	numerator	from	those	units	relating	to	the	denominator.
But	one	usually	performs	these	steps	without	fully	understanding	just	why	it
makes	sense,	without	even	an	inkling	that	there	is	anything	to	think	about,	that
the	possibility	of	such	calculations	ever	required	discovery	or	that	the	rationale
could	ever	have	been	in	doubt.

Numbers	and	Units

So	much	for	multiplying	magnitudes!	What	about	apples	or	oranges	or	dots?
How	should	one	analyze	the	following	3	by	4	array?

What	multiplication	does	this	picture	represent?	Does	this	picture	illustrate
multiplication	of	four	dots	by	three	dots?	Or	does	it,	rather,	depict	three
repetitions	of	four	dots?

Well,	the	total	is	12	dots,	not	12	square	dots,	so	it	must	represent	three
repetitions	of	four	dots.	As	I	already	had	occasion	to	recall,	multiplication	is	first
taught	as	a	short	cut	for	repeated	addition.	From	this	perspective,	one	multiplies
four	dots	by	three	and	gets	12	dots.	Here,	three	is	not	a	number	of	dots,	but	a



number	of	repetitions	–	exactly	as	when	one	multiplies	a	line	segment	by	a
number	to	get	another	line	segment.	The	two	situations	are	essentially	identical.

So,	in	this	context,	when	one	says	that	three	times	four	equals	four	times	three,
one	is	saying	that	three	repetitions	of	four	units	equals	four	repetitions	of	three
units.	When	one	looks	at	the	rectangular	array	in	two	different	ways	to
understand	why	these	two	products	are	equal,	one	is	truly	looking	at	it	two
different	ways.	In	the	one	case	one	multiplies	three	dots;	in	the	other	four.	The
rectangular	array	represents	the	result	of	either	process.

Now	when	one	arranges	numbers	on	a	number	line,	it’s	as	though	these	numbers
had	equal	status,	as	though	they	represented	different	amounts	of	the	same	unit,
as	though	they	represented	magnitudes	of	the	same	kind.	One	adds	2	and	3,
numbers	on	the	line,	and	gets	5,	another	number	on	the	line.	One	multiplies	2
times	3,	numbers	on	the	line,	and	gets	6,	another	number	on	the	line.	One	takes
the	square	root	of	25,	a	number	on	the	line,	and	gets	5,	a	number	on	the	line.	Yet
we	have	just	seen	that,	in	the	case	of	multiplication,	at	least	one	of	these	factors
would	have	to	be	interpreted	as	a	number	of	repetitions	to	get	an	answer	of	the
same	kind	of	magnitude	as	the	other	factor.

So	what’s	going	on	here?	If	one	multiplies	two	instances	of	a	unit,	the	result
must	be	expressed	in	square	units.
Well,	perhaps	the	unit	of	the	real	line	is,	implicitly,	“number	of	repetitions.”	One
could	certainly	argue	that	3	repetitions	times	2	repetitions	equal	6	repetitions.
But	this	interpretation,	or	any	other,	must	address	one	key	fact:	it	shouldn’t
matter	what	the	units	are.	Where,	after	all,	did	this	abstraction	of	‘number’	come
from?	And	to	what	does	it	apply?	Clearly,	the	laws	of	arithmetic	should	apply	no
matter	what	the	units	might	be;	no	matter	what	kind	of	magnitude	or	multiplicity
they	are	applied	to.	So,	it	would	seem,	we	have	hit	on	a	problem!
Well,	consider	the	following	relationships:

●	3	times	4	feet	equals	12	feet
●	3	feet	times	4	feet	equals	12	square	feet	●	times	four	dots	equals	12	dots
●	4	times	three	dots	equals	12	dots
●	4	miles	per	hour	times	3	hours	equals	12	miles

One	can	sum	them	all	up	as
	●	3	of	something	times	4	of	something	equals	12	of	something



In	this	formulation,	the	word,	something,	appears	three	times,	but	each	time	it
appears,	it	might	mean	something	else.	But	the	numbers	are	always	the	same;	the
arithmetic	does	not	depend	upon	the	units	to	which	it	is	applied.

No	matter	what	“something”	refers	to,	the	same	arithmetical	fact	underlies	every
one	of	these	statements.	Namely,	3	times	4	equals	12

I’ve	now,	finally,	omitted	any	mention	of	units	from	the	equation.	To	paraphrase
Ayn	Rand,	the	omitted	units	must	be	units	of	some	kind,	but	they	may	be	units
of	any	kind.32	When	one	multiplies	a	number	of	units	of	one	kind	by	a	number
of	units	of	a	second	kind,	the	result	is	a	number	of	units	of	yet	a	third	kind.

More	remains	to	be	said	about	the	need	to	be	consistent	in	ones	choice	of	units
between	the	various	terms	of	the	calculation.	But,	assuming	such	consistency	for
now,	the	number	of	units	of	this	third	kind	depends	only	on	the	numbers.	And
this	finally	gets	us	to	something	very	familiar:	When	one	multiplies	a	number
times	a	number,	the	result	is	a	number.

Treating	units	as	omitted	measurements	in	just	this	way	is	the	step	one	needs	to
take	to	get	us	to	the	number	line.	It	is	not	that	the	units	of	the	product	are	the
same	as	the	units	of	the	factors;	it	is	that	when	ones	focus	is	on	the	arithmetic	the
particular	units	being	omitted	in	that	particular	calculation	don’t	matter.	One
ignores	them	because	they	are	not	relevant	to	the	problem	in	arithmetic.

It	is	important,	though	to	understand	another,	more	fundamental,	way	to	look	at
number.	In	essence,	a	number	designates	a	relationship,	a	ratio,	between	a
quantity	and	the	unit	used	to	measure	the	quantity.	A	number,	as	such,	has	no
units;	rather	it	stands	for	a	relationship	that	is	independent	of	unit.	One	can
certainly	look	at	number	as	involving	omitted	measurements,	as	one	does	with
any	concept.	But,	what	is	being	omitted,	(among	other	things)	is	the	particular
kind	of	magnitude	or	multitude	being	related.	Fundamentally,	a	number	simply
stands	for	the	relationship,	independent	of	the	specific	choice	of	magnitude	that
it	may	be	used	to	relate.33

And	this	brings	us	to	the	confusion	that	can	be	engendered	by	the	number	line.
The	number	line	carries	the	suggestion	that	a	number	is	a	kind	of	magnitude.	But
it	isn’t;	it’s	a	kind	of	relationship.	The	laws	of	arithmetic	are	laws	that	relate
numbers.	And	numbers,	in	turn	relate	pairs	of	magnitudes	or	pairs	of	multitudes.
Numbers	relate	a	magnitude	to	a	chosen	standard	and	whole	numbers	relate	a



multitude	to	a	multitude	of	one.

In	my	treatment	I	have	emphasized	the	relationships	between	magnitudes:	the
sum	of	two	magnitudes,	the	product	of	a	magnitude	and	a	number,	the	product	of
two	magnitudes,	and	the	quotient	of	two	magnitudes.	These	relationships	are	the
basis	of	arithmetic.	Numbers	add	the	way	they	do	because	multitudes	and
magnitudes	add	the	way	that	they	do.	The	laws	of	arithmetic	derive	from	the
corresponding	relationships	among	multitudes	and	magnitudes.	But	arithmetic	is
a	higher	order	of	abstraction	and	it	is	a	mistake	to	confuse	a	number	with	either	a
magnitude	or	a	multitude.

Descartes:	Geometry	and	Arithmetic

This	is	not	the	answer	that	Descartes	provides	in	his	Des	matiers	de	la
Geometrie,	though	he	faced	similar	issues.34	Now,	as	we	shall	see,	Descartes
was	asking	a	different	question,	so	one	should	not	expect	the	same	answer.	Yet
he	is	sensitive	to	issues	of	this	sort,	first,	because	of	his	familiarity	with	Greek
geometry,	his	point	of	departure.	And	secondly,	he	needed	to	address	the	issue	of
units	because	his	purpose	was	to	reduce	questions	in	geometry	to	questions	in
algebra.	Descartes’s	discussion	is	historically	important	and	it	will	illuminate,
and	provide	a	foil	for,	my	own	observations.

Descartes’	enterprise	includes	two	basic	steps.	The	first	is	the	introduction	of
coordinates,	the	ancestor	of	the	real	number	line	and	also	the	ancestor	of	the
modern	form	in	which	we	utilize	Cartesian	coordinates.	The	second	step	is	the
use	of	equations,	such	as	y	=	x2	to	specify	geometric	shapes	algebraically.	This
equation	of	a	parabola	is	used	to	designate	a	graph	consisting	entirely	of	points,
represented	by	pairs	(x,y),	that	satisfy	the	equation.	For	example,	x	=3,	together
with	y	=9	satisfies	the	equation	because	3	squared	is	9.

Descartes	shows	his	awareness	of	my	issue	at	the	very	beginning	of	his
Geometrie	when	he	states:

“It	should	also	be	noted	that	all	parts	of	a	single	line	should	always	be	expressed
by	the	same	number	of	dimensions,	provided	that	unity	is	not	determined	by	the
conditions	of	the	problem.	Thus,	a3	contains	as	many	dimensions	as	ab2…”35

Descartes	is	saying,	for	example,	that,	without	specifying	a	unit,	the	expression	y



=	x2	+	x	is	meaningless	because	x2	and	x	have	different	units.	However,	once	a
unit	has	been	specified,	it	is	possible	to	interpret	the	expression.	Now,	from	my
vantage	point,	I	respond,	“Yes,	because	then	x	and	y	can	be	treated	as	numbers.”
And,	although	Descartes	does	not	look	at	it	this	way,	he	would	probably	accept
this	response.	However,	he	has	another	point	in	mind	because	he	wants	to
capture	the	geometry	by	his	use	of	algebraic	expressions.

By	the	time	the	quoted	statement	appears,	Descartes	has	already	shown	that,
once	a	unit	length	has	been	introduced,	one	can,	geometrically,	multiply	line
segments	and	take	square	roots.36

And	this	is	important	because,	in	Greek	geometry,	one	did	not	multiply	line
segments.	Where	a	modern	treatment	invokes	a	product,	Euclid	would	invoke	a
rectangle.	And	a	square	root	was,	implicitly,	the	length	of	the	side	of	a	square.
However,	Descartes	manages	to	construct	a	line	segment	representing	the
product	of	two	line	segments	and,	in	a	separate	construction,	a	line	segment
representing	the	square	root	of	a	given	line	segment.	He	seems	to	take	his
successes	to	imply	that	the	results,	the	line	segment	he	constructs	in	each	case,
embodies	the	same	units	as	the	original	line	segments.

The	underlying	issues	are	the	same	in	each	of	his	constructions,	so	I	will	only
examine	the	first	of	them	here,	namely	Descartes’	construction	of	a	product.	My
examination	of	his	construction	will	check	the	validity	of	his	claim.	But	it	will
also	bring	to	light	how	his	construction	relates	to	my	own	analysis	and	why	it
fails	to	address	the	issue	that	I	examined	at	the	end	of	the	last	section.

Descartes’	multiplication	of	line	segments	proceeds	in	two	steps	as	follows:
	





By	similar	triangles,	the	ratios
C/A	=	B/1.
	If	one	now	treats	C,	A,	and	B	as	numbers	instead	of	magnitudes,	one	can	reduce
the	equation	to	C	=	A	×	B/1	or	C	=	AB.

But,	in	fact,	A,	B,	and	C	are	not	numbers	and	Descartes’	construction	purports,
indeed,	to	provide	a	multiplication	of	magnitudes,	albeit	a	multiplication	that
depends	on	a	choice	of	unit.	So	how	should	one	look	at	this	construction?

I	will	discuss	Euclid’s	treatment	of	ratios	such	as	B/1	in	the	next	section,	but	the
Greeks,	at	least	implicitly,	treated	ratios	as	numbers.	The	ratio	of	magnitudes
C/A	is	a	number,	though	C	and	A	be	magnitudes.	Indeed,	that	a	ratio	of
magnitudes	of	the	same	kind	is	a	number	is	implicit	in	all	measurement.	Were
this	not	the	case,	one	could	not	numerically	relate	a	magnitude	to	another
standard	magnitude	to	express	its	measurement	as	a	number.	Thus,	for	example,
the	ratio	B/1	is	the	numerical	length	of	B	as	expressed	in	terms	of	the	unit
segment	designated	as	‘1’.

This	recalls	my	earlier	definition	of	ratio.	In	general,	if	X	and	Y	are	magnitudes
and	b	is	a	number,	then	the	formulas	X	=	bY	and	X/Y	=	b	can	be	regarded	as	two
different	expressions	of	the	same	relationship	between	X	and	Y.	For	example



different	expressions	of	the	same	relationship	between	X	and	Y.	For	example
X/Y	=	3/5	identifies	the	same	relationship	as	X	=	(3/5)	×	Y.

It	is	in	this	sense	that	one	can	deduce,	from	C/A	=	B/1,	that	C	=	(B/1)	×	A.	In
this	formula,	so	far,	A	and	C	are	still	magnitudes	and	the	expression	on	the	right
should	be	interpreted	as	multiplication	of	A	(a	magnitude)	by	(B/1)	(a	number)
to	yield	C	(a	magnitude).

But	the	problem	with	this	formula	is	that	Descartes	wants	to	treat	A,	B,	and	C	on
the	same	footing.	For	that,	it	is	not	enough	to	express	B	as	it	relates	to	1	without
doing	the	same	for	A	and	C.	So	taking	the	ratio	of	each	side	of	the	equation	to	1,
one	arrives	at

C/1	=	(B/1)	×	(A/1)	=	(A/1)	×	(B/1)

This,	at	last,	is	a	relationship	of	numbers	and	it	is	the	only	formula,	following
from	Descartes’	analysis,	that	also	puts	A,	B,	and	C	on	the	same	footing.	AB	=
C,	to	make	sense,	must	be	interpreted	as	a	short	hand	expression	for	this	formula
and,	insofar	as	Descartes	might	think	he	has	done	more	than	this,	he	would	be
equivocating	(between	numbers	and	measured	magnitudes;	between	the	measure
of	measured	magnitudes	and	the	magnitudes	that	one	is	measuring).	Descartes
has	indeed	produced	a	line	segment.	But	he	has	not	multiplied	line	segments,	as
such.	What	he	has	accomplished	is	to	construct	a	line	segment	whose	length,
expressed	in	terms	of	a	given	unit,	is	equal	to	the	product	of	the	lengths	of	two
other	line	segments,	each	expressed	in	terms	of	the	given	unit.

Properly	interpreted,	Descartes	has	exhibited	a	valid	relationship	even	if	his	own
interpretation	of	that	relationship	is	unclear	or	open	to	question.

In	the	interests	of	better	understanding	that	relationship,	it	may	be	helpful	to	tie
it	into	my	earlier	analysis	of	area.	So	consider,	again,	segments	A	and	B.	Their
product	has	the	dimensions	of	area,	an	area	that	can	be	exhibited	by	creating	a
rectangle	of	sides	A	and	B.	Once	a	unit	has	been	chosen	one	can	create	a	second
rectangle	enclosing	the	same	area	as	the	first	and	for	which	one	of	the	sides	is
the	chosen	unit.	If,	for	example,	A	is	3	units	and	B	is	2	units,	the	area	of	the	first
rectangle	is	6	square	units.	Since	one	side	of	the	second	rectangle	will	have	a
length	of	1	unit,	the	other	side	must	be	6	units.	The	entire	set	of	relationships	is
illustrated	in	the	following	diagram:



Descartes,	then,	has	not	addressed	the	abstraction	of	arithmetic	from	units.
Rather,	he	has,	in	effect,	adjusted	the	units	by	dividing	one	of	the	factors	by,	say,
1	foot	to	reduce	an	answer	in	square	feet	to	an	answer	in	feet	–	a	step	that	is	only
possible	when	one	has	chosen	a	unit	(in	this	case,	1	foot).	That	Descartes
understands	this	much	is	clear.	For	it	is	made	explicit,	as	his	second	major	point,
in	the	continuation	of	the	passage	that	I	quoted	earlier.	Descartes	writes:

“It	is	not,	however,	the	same	thing	when	unity	is	determined,	because	unit	can
always	be	understood,	even	when	there	are	too	many	or	too	few	dimensions;
thus,	if	it	be	required	to	extract	the	cube	root	of	a2b2	–	b,	we	must	consider	the
quantity	a2b2	divided	once	by	unity,	and	the	quantity	b	multiplied	twice	by
unity.”37

Descartes’s	point	is	that	dimensions	are	not	a	problem	as	long	as	a	choice	of	unit
is	always	assumed	to	be	given	and	all	required	adjustments	are	made	at	every
turn,	an	assumption	he	makes	thereafter,	implicitly	or	explicitly,	whenever	he
needs	to	make	it.	Having	disposed	of	the	issue	in	the	first	few	paragraphs	of	his
Geometrie,	he	never	raises	it	again.

Descartes’s	goal	was	to	reduce	geometry	to	algebra.	The	price	he	willingly	paid



Descartes’s	goal	was	to	reduce	geometry	to	algebra.	The	price	he	willingly	paid
to	make	the	transition	was	to	assume,	thenceforth,	that	a	unit	has	been	chosen.
He	was	right	that	selecting	a	unit	was	the	price	and	it	remains	the	price	to	this
very	day.	It	is	the	price	we	rightly	pay	whenever	we	choose	coordinates	and
begin	to	calculate.	Descartes	accomplished	what	he	set	out	to	do	insofar	as	he
did	succeed	in	finding	an	algebraic	formulation	of	problems	in	geometry,	an
achievement	of	epic	importance.	But,	although	his	concerns	were	related	to
mine,	he	was	not	addressing	quite	the	same	issue.

It	is	worth	pausing	a	little	longer	to	see	how	Descartes’	coordinate	approach
plays	out	in	elementary	physics.
Consider	the	motion	of	a	projectile,	starting	from	ground	level	with	an	initial
upward	velocity.	Restricting	the	discussion	to	the	height	x	of	the	projectile	above
the	ground	and	letting	t	denote	time,	the	motion	obeys	an	equation	of	the	form	x
=	at2	+	bt,	where	a	is	negative	and	b	is	positive.	This	is	the	equation	of	an
inverted	parabola	and	it	remains	valid	(ignoring	air	resistance,	etc.)	until	the
projectile	ultimately	strikes	the	ground.	The	motion	starts	when	t	=	0.
But	what	about	the	diverse	types	of	magnitudes	involved	in	this	equation?	First,
‘t’	represents	time	which,	to	begin	with,	does	not	have	the	units	of	distance.	And
here	we	are	squaring	the	time	dimension	and	then	adding	the	squared	value	to
time!	What	is	going	on?
Well,	the	key	lies	in	the	innocent	coefficients	‘a’	and	‘b’.	The	missing	units	are
contained	in	‘a’	and	‘b’.
So	what	are	these	coefficients	‘a’	and	‘b’?	To	begin	with,	they	are	not	numbers
and,	to	express	them	numerically,	one	needs	to	choose	units.	In	general,	to	relate
this	equation,	or	any	equation	in	physics	to	the	world,	one	must	invoke	a	set	of
standard	units	of	measure,	a	set	that	provides	for	every	term	in	the	equation.	So
suppose	one	chooses	feet	for	x	and	seconds	for	time	(t).	Having	now	chosen
units	of	distance	and	time,	and	only	now,	one	can	identify	the	values	of	‘a’	and
‘b’.
The	first	coefficient,	a,	is	a	constant	on	the	earth’s	surface.	Its	value	to	two
significant	figures	is	-32	feet	per	second	per	second	and	its	full	expression
requires	both	the	numerical	value	and	the	units	in	which	it	is	expressed.	This	is
the	downward	acceleration	due	to	gravity;	it	means	that,	in	every	second	the
upward	velocity	decreases	by	32	feet	per	second	or,	equivalently,	the	downward
velocity	increases	by	32	feet	per	second.	Notice	that	there	are	two	‘per	seconds’
included	in	the	constant	‘a’	to	cancel	the	‘square	seconds’	represented	by	t2.	The
entire	term,	at2,	has	units	of	feet.
What	about	the	second	constant	‘b’?	Well,	that	turns	out	to	be	the	initial	upward



speed	(at	time	t	=	0)	and,	accordingly,	has	units	of	feet	per	second.	Once	again,
the	‘per	second’	in	b	cancels	the	‘seconds’	in	t.	Consequently,	the	term,	bt,	also
has	units	of	feet.	Once	this	is	all	understood	and	retained	as	a	context,	writing
out	these	units	every	time	becomes	pedantic	and	gets	in	the	way	of	the	algebra.
But	it	is	worth	doing	so	at	least	once.	So,	choosing	128	feet	per	second	as	the
initial	upward	speed:

x	feet	=	-	(32	feet	per	second	per	second)	×	t2	square	seconds	+	(128	feet	per
second)	×	(t	seconds)

As	this	relates	to	my	earlier	analysis,	the	lesson	is	clear.	In	any	application	to
concretes	or	even	to	general	physical	settings,	units	must	be	chosen	and	the	units
must	be	consistent	throughout.	As	this	example	illustrates,	choosing	consistent
units	is	not	an	academic	exercise.	Although	the	form	of	the	formula	was	not
affected	by	the	choice	of	units,	the	coefficients	were.	Both	coefficients	would
have	been	different	numbers	had	the	equation	been	written,	for	example,	in	miles
per	hour.

This	example	illustrates	how	the	connection	is	maintained	when	one	applies
coordinate	geometry	to	physical	problems.	Descartes’	coordinate	approach
provides	a	way	to	convert	problems	in	geometry	and	physics	to	algebra	(and,
ultimately,	to	differential	equations).	By	taking	units	for	granted,	in	the	way
Descartes	suggested,	one	can	simply	ignore	the	units	while	one	solves	the
mathematical	problem.	Yet	the	units	are	always	present	in	the	background	and
must	be	made	explicit	again	whenever	one	tries	to	connect	the	mathematical
result	to	the	original	problem	in	geometry	or	physics.

This	example	shows	the	difference	between	the	algebraic	viewpoint	and	the
viewpoint	of	the	physicist.	More	generally,	understanding	the	way	that	the
formulation	of	physical	laws	depends	upon	the	choice	of	units	(ultimately,	of
coordinate	systems)	has	proven	enormously	helpful	in	the	discovery	of	new
physical	laws.	So,	to	better	understand	the	connection	between	the	mathematics
and	the	physics,	let’s	convert	the	units	in	this	equation	to	miles	per	hour.

First,

128	feet	per	second	=	(128	feet	per	second)	×	(1	mile	per	5280	feet)	×	(3600
seconds	per	hour)	=
87.3	miles	per	hour



Secondly,

32	feet	per	second	per	second	=	(32	feet	per	second	per	second)	×	(1	mile	per
5280	feet)	×	(3600	seconds	per	hour)	×	(3600	seconds	per	hour)	=	78,500	miles
per	hour	per	hour

I	have	rounded	the	acceleration,	because	32	feet	per	second	per	second	is	only
accurate	to	two	significant	figures.
The	formula	for	the	trajectory	in	miles	(for	x)	and	hours	(for	t)	becomes:

x	miles	=	-	(78,500	miles	per	hour	per	hour)	×	t2	square	hours	+	(87.3	miles	per
hour)	×	(t	hours)
	Ignoring	the	units	in	the	expression,	but	keeping	them	in	mind,	one	writes
	x	=	-78,500t2	+	87.3t

Now,	to	an	algebraist,	this	equation	and	the	previous	one	represent	two	different
algebraic	expressions.	If	one	uses	them,	say,	to	find	the	maximum	value	taken	by
x,	the	highest	point	reached	by	the	projectile,	one	solves	two	different	equations.
But	for	a	physicist,	these	equations	are	simply	two	different	expressions	of	the
same	physical	law,	applied	to	the	same	physical	situation.	My	interest	here	is	to
appreciate	both	perspectives,	to	understand	the	relationship	between	the
measurements	and	the	measurement	standards,	the	systems	of	coordinates	that
they	invoke.	More	generally,	this	is	one	of	the	tasks	of	a	geometer,	to	study	the
relationship	between	these	two	perspectives	on	a	more	abstract	level,	as	it
applies	to	situations	more	complex,	more	interesting,	and	more	far-reaching	than
this	example.

This	example	is	a	somewhat	pedantic	beginning	on	one	of	the	paths	that	leads	to
a	subject	of	enormous	consequence,	the	study	of	symmetries	and	invariants	that
has	proven	so	valuable	to	both	physicists	and	mathematicians.	I	say	more	about
the	measurement	of	symmetry	in	Chapter	8.

The	dependence	of	the	coefficients	on	the	choice	of	units	is	a	commonplace
today.	Descartes	laid	the	groundwork,	but	he	did	not	address	the	issue	to	this
level.	Certainly,	he	invoked	a	device	to	make	the	units	consistent,	but	that’s
where	his	interest	died.	The	discovery	of	how	to	apply	these	expressions	in
physical	problems	was	left	to	others.

Returning	to	this	theme,	what	subtlety	does	one	lose	when	thinking	purely	in
terms	of	numbers?	If	one	does	not	work	to	remember	it,	one	loses	the	geometry.



terms	of	numbers?	If	one	does	not	work	to	remember	it,	one	loses	the	geometry.
One	forgets	the	connection	to	actual	quantity,	because	geometry	is	that	link.

Arithmetically,	one	can	legitimately	perform	any	operation	on	two	numbers	and
get	another	number.	But	the	example	of	the	projectile	illustrates	that	whenever
one	applies	these	operations	to	a	concrete	problem,	matters	immediately	get
more	complicated.

For	example,	I	can	only	add	or	subtract	quantities	when	they	have	a	common
unit.	I	cannot	add	apples	and	oranges,	nor	can	I	add	velocity	to	a	time	interval.
On	the	other	hand,	although	I	can	multiply	velocity	times	a	time	interval,	the
need	for	consistency	arises	in	another	form.	I	have	no	choice	regarding	the	units
of	the	resulting	product.

If	one	multiplies	speed	in	miles	per	hour	times	some	number	of	hours,	one
always	gets	a	distance	in	miles.	30	miles	per	hour	times	2	hours	is	60	miles.	One
could,	of	course,	express	the	answer	in	feet,	but	that	would	require	another
multiplication:	60	miles	times	5280	feet	per	mile	equals	316,800	feet.	The
arithmetic	in	the	first	equation,	30	times	2	=	60,	only	applies	if	one	expresses
that	result	in	miles.

Multiplying	force	times	distance	(a	measure	of	work)	illustrates	the	general	way
one	keeps	track.	If	one	applies	a	force	of	5	pounds	to	move	something	8	feet,	the
amount	of	work	is	said	to	be	40	foot-pounds.	One	keeps	track	simply	by
repeating	each	unit	in	the	final	expression.	What	makes	this	practice	specifically
significant	is	the	physical	fact,	which	had	to	be	defined	and	established,	that
applying	a	force	of	10	pounds	to	move	something	4	feet	involved	exactly	the
same	amount	of	work	as	the	application	of	5	pounds	to	move	something	8	feet.
One	needs	to	have	established	that	the	amount	of	work	is	the	same	in	both	cases
precisely	in	virtue	of	the	fact	that	the	multiplications,	5	times	8	and	10	times	4,
are	the	same.

It	is	easy	to	take	arithmetic	for	granted,	multiplication	in	particular.	Yet	its
complexity	has	always	been	there	because	the	world	that	it	is	used	to	measure	is
complicated.	The	relationship	of	numbers	to	the	world	has	been	mysterious,	in
part,	because	the	relationship	of	concepts	to	reality,	in	general,	is	still	a	mystery
to	almost	everyone.	Taking	a	step	back	to	examine	the	things	we	take	for	granted
has	always	been	difficult.	It	is	difficult	because	one	must,	in	the	very
examination,	find	a	place	to	which	one	can	take	that	backward	step.

Mathematics	is	referential.	To	understand	mathematics	is	to	understand	how	it



Mathematics	is	referential.	To	understand	mathematics	is	to	understand	how	it
relates	to	the	world.	And	that	relationship	of	mathematics	to	the	world	becomes
more	subtle	the	further	one	proceeds	to	greater	and	greater	levels	of
mathematical	abstraction.

The	place	to	start	is	at	the	beginning,	with	geometry	and	arithmetic,	carefully
tracing	the	relationships	of	key	concepts	to	the	world	that	those	concepts	help	us
apprehend.	We	take	our	first	big	step	when	we	realize	that	things	are	not	as
simple	as	they	first	appeared	or	were	made	to	appear.	Because	we	need	to
confront	our	confusions	before	we	can	begin	to	address	them.	The	breakthrough
comes	when,	having	glimpsed	the	complexity,	we	begin	to	grasp	that	there	really
is	a	way	to	make	sense	of	it	all.

The	Greeks	can	be	an	inspiration	on	both	counts.	But	to	really	understand
mathematical	concepts,	to	understand	them	as	capturing	aspects	of	the	world,
one	needs	a	better	understanding	of	concepts	in	general.	One	needs	an	third
alternative	between	the	Platonist	view	that	conceptual	objectivity	requires	a
separate	world	of	mathematics	versus	the	nominalist	view	that	mathematical
concepts	are	not	inherently	referential,	but	are	a	free	creation	of	the	human	mind.
One	needs,	in	my	view,	the	perspective	provided	by	Ayn	Rand’s	theory	of
concepts.	And	I	point,	as	a	manifestation	of	this	need,	to	the	fact	that	neither
mathematicians	nor	philosophers	have,	in	modern	times,	been	able	to	adequately
account	for	the	relationship	of	mathematics	to	the	world.	Indeed,	to	all
appearances,	they	have	abandoned	the	challenge,	equating	any	objective
referential	character	of	mathematics	to	Platonism.

Finally,	for	future	mathematicians,	there	is	a	third	step.	There	is	value	in
following	the	standard	treatments	to	understand	just	how,	for	example,	the
“distributive	law”,	established	first	for	positive	integers,	applies	to	negative
numbers,	fractions,	and	irrational	numbers,	as	well.	But	this	value	requires	that
one	first	fully	grasp,	and	never	forget,	the	relationship	of	these	concepts	to
reality.

Ratios	in	Euclid

A	ratio	is	a	measure	of	relative	magnitudes.	Ratios	are	the	foundation	of	the
measurement	of	magnitudes.	It	is	because	we	can	identify	the	ratio	of	the	height
of	a	man	to	a	foot-long	ruler	that	we	can	identify	his	height	as	six	feet.



Euclid’s	Elements	speaks	of	the	ratio	of	magnitude	X	to	magnitude	Y	and
provides	criteria	to	compare	ratios	between	different	pairs	of	magnitudes.38
Ratios	may	be	equal	(in	proportion)	or	one	ratio	may	be	greater	than	another
one.	Euclid’s	definition	of	equality	and	inequality	of	ratios	covers	cases	in	which
the	first	pair	of	magnitudes	is	different	in	type	from	the	second	pair	of
magnitudes.	Thus,	one	can	say	that	a	ratio	of	line	segments	is	greater	than,	less
than,	or	equal	to	a	ratio	of	areas.

Although	Euclid’s	formal	treatment	in	Book	V	provides	a	very	precise	criterion
for	equality	and	inequality	of	ratios	of	magnitudes	there	is	nothing	in	that	Book
to	justify	relating	a	ratio	of	magnitudes	to	a	number,	or	even	relating	it	to	a	ratio
of	numbers.	Yet	such	a	relationship	seems	to	have	been	taken	for	granted	among
Greek	mathematicians,	both	before	and	after	Euclid,	in	their	various	rational
approximations	to	the	irrational	numbers	π	and	√2,	both	of	them	ratios	of
magnitudes.	And,	finally,	in	Book	X,	Proposition	5,39	Euclid	states,	but	does	not
adequately	prove,	that	“Commensurable	magnitudes	have	to	one	another	the
ratio	which	a	number	does	to	a	number.”40

My	viewpoint	diverges	from	Euclid’s,	drawing	on	my	earlier	discussion	of	the
prearithmetic	of	magnitudes	to	identify	the	relationship	between	ratios	and
numbers.	In	the	section	entitled	“The	Axiom	of	Archimedes”,	I	applied	the
Axiom	of	Archimedes	to	argue	that,	if	X	and	Y	are	magnitudes	of	the	same	kind,
then	there	is	a	number	A	such	that	X	=	AY	to	any	required	level	of	precision.	In
relation	to	this	formula,	I	have	defined	A	as	the	ratio	of	X	to	Y.	And,	when
convenient,	I	express	this	relationship	as:

X/Y	=	A

This	notation	is	both	appropriately	suggestive	and	compact,	so	long	as	one	keeps
in	mind	that,	while	A	is	a	number	(specified	up	to	materiality	with	respect	to	the
product	AY),	X	and	Y	are	not	numbers.	To	make	this	fully	concrete,	X	and	Y
might	both	be	the	length	of	objects,	the	weights	of	objects,	or	the	frequencies	of
two	vibrating	strings,	all	considered	without	regard	to	the	specific	units	to	which
they	might	be	related.	Looked	at	in	this	way,	X/Y	=	A	is	just	another	way	to
express	the	relationship	X	=	AY.

Now,	how	does	this	relate	to	Euclid?	I	claim	that	it	is	entirely	consistent	with	his
definitions	in	Book	V	and	provides	a	way	to	relate	Euclid’s	formulation	to	a
modern	perspective.	The	key	definitions	are	definitions	3,	4,	5,	and	7,	so	we
consider	each,	in	turn.	Definition	3	reads:



consider	each,	in	turn.	Definition	3	reads:

“3.	A	ratio	is	a	sort	of	relation	in	respect	of	size	between	two	magnitudes	of	the
same	kind.”41
	Manifestly,

1.	X	=	AY	(where	A	is	a	number)	is	a	relation	of	two	magnitudes	in	respect	to
size
2.	A	relation	of	this	type	specifically	applies	when,	and	only	when,	X	and	Y	are
of	the	same	type.

Definition	4	reads:

“4.	Magnitudes	are	said	to	have	a	ratio	to	one	another	which	are	capable,	when
multiplied,	of	exceeding	one	another.”42

In	the	context	of	Definition	3,	this	is	a	weak	form	of	the	Axiom	of	Archimedes,
applied,	in	general,	to	magnitudes	of	a	particular	type,	which	I	have	already
discussed.	It	is	a	weak	form	insofar	as	it	leaves	open	a	possibility	that	Aristotle
did	not	leave	open:	that	two	magnitudes	of	the	same	kind	might	not	have	a	ratio.
Euclid	needs	to	use	this	property,	but	does	not	commit	himself	as	to	its	universal
applicability.	On	the	other	hand,	Euclid	implicitly	recognizes	a	further	point.	I
say	this	because	Definition	4	is	only	applicable	to	pairs	of	magnitudes	of	the
same	type.	One	cannot	say,	for	example,	that	any	multiple	of	a	length	can	either
exceed	or	fall	short	of	an	area.	Areas	and	lengths	are	two	different	types	of
magnitude	and	cannot	be	compared	in	this	way.	Euclid,	clearly,	was	aware	of
this	issue	and	it	was	important	to	him.

Definition	5	reads:

“5.	Magnitudes	are	said	to	be	in	the	same	ratio,	the	first	to	the	second	and	the
third	to	the	fourth,	when,	if	any	equimultiples	whatever	be	taken	of	the	first	and
third,	and	any	equimultiples	whatever	of	the	second	and	fourth,	the	former
equimultiples	alike	exceed,	are	alike	equal	to,	or	alike	fall	short	of,	the	latter
equimultiples	respectively,	taken	in	corresponding	order.”43

This	one	is	rather	a	mouthful	and	requires	unpacking.	Suppose	given	magnitudes
W,	X,	Y,	and	Z.	Euclid	offers	a	criterion	that	the	ratio	of	W	to	X	is	the	same	as
the	ratio	of	Y	to	Z.	In	my	notation,	this	equality	of	ratios	is	written	W/X	=	Y/Z.
This,	in	turn,	is	another	way	of	saying	that	if	W	=	AX	and	Y	=	BZ	then	A	=	B.



The	problem	Euclid	is	addressing	with	his	formulation	is	that	W	and	X	may	be
“Incommensurate”	in	the	Greek	sense,	meaning	that	the	unknown,	A,	is	an
irrational	number.	Euclid	cannot	reliably	find	specific	whole	numbers,	forming
an	exact	fraction,	to	measure	the	ratio.	So	he	is	left,	as	are	we,	with	finding	a	less
direct	way.	His	approach,	one	discovered	by	Eudoxus	and	exploited,	in	a
somewhat	different	form,	by	Dedekind	in	the	19th	century,44	is	to	locate	that
ratio	between	all	the	ratios	of	whole	numbers	that	exceed	it	and	all	the	ratios	of
whole	numbers	that	are	smaller.	The	awkwardness	of	Euclid’s	expression	is	due
to	a	dearth	of	means	to	say	this	easily.	Euclid’s	approach	will	become	clearer	as
I	unpack	his	formulation	and	relate	it	to	my	own	definition	of	ratio.
To	begin,	following	Euclid’s	definitions	for	equality	of	ratio,	assume	that	W	and
Y	are	multiplied	by	m	and	X	and	Z	are	multiplied	by	n.	There	are	three	cases:
1.	mW	>	nX,	in	which	case	Euclid’s	criterion	says	that
mY	>	nZ
2.	mW	=	nX,	in	which	case	Euclid’s	criterion	says	that
mY	=	nZ
3.	mW	<	nX,	in	which	case	Euclid’s	criterion	says	that
mY	<	nZ

Equivalently,	these	alternatives	are

1.	W	>	(n/m)X,	in	which	case	Euclid’s	criterion	says	that	Y	>	(n/m)Z
2.	W	=	(n/m)X,	in	which	case	Euclid’s	criterion	says	that	Y	=	(n/m)Z
3.	W	<	(n/m)X,	in	which	case	Euclid’s	criterion	says	that	Y	<	(n/m)Z

Since	W	=	AX	and	Y	=	BZ,	each	case	can	be	written,	in	turn,	as

1.	AX	>	(n/m)X,	in	which	case	Euclid’s	criterion	says	that	BZ	>	(n/m)Z
2.	AX	=	(n/m)X,	in	which	case	Euclid’s	criterion	says	that	BZ	=	(n/m)Z
3.	AX	<	(n/m)X,	in	which	case	Euclid’s	criterion	says	that	BZ	<	(n/m)Z

From	which	it	follows,	for	each	case	in	turn,	that

1.	A	>	(n/m),	in	which	case	Euclid’s	criterion	says	that	B	>	(n/m)
2.	A	=	(n/m),	in	which	case	Euclid’s	criterion	says	that	B	=	(n/m)
3.	A	<	(n/m),	in	which	case	Euclid’s	criterion	says	that	B	<	(n/m)

In	sum,	A	is	greater	than	n/m	only	if	B	is;	it	is	equal	to	n/m	only	if	B	is;	and	it	is
less	than	n/m	only	if	B	is.	But	m	and	n	are	chosen	freely.	So	n/m	could	be	any



positive	rational	number.	Therefore,	it	follows	from	these	alternatives	that	there
is	no	rational	number	between	A	and	B.	But	according	to	the	Axiom	of
Archimedes,	were	A	and	B	not	equal,	there	would	have	to	be	a	rational	number
between	them.	Since	there	isn’t,	then	A	=	B.

Euclid’s	criterion,	as	it	applies	to	my	formulation	of	ratio,	implies	that	the	two
ratios	are	the	same	because	it	implies	that	the	numbers	that	measure	them,	A	and
B	are	equal.	The	Axiom	of	Archimedes	is	an	essential	underpinning	of	this
argument.

Euclid’s	Definition	7	is	simply	a	variation	of	Definition	5.	It	states:

“7.	When,	of	the	equimultiples,	the	multiple	of	the	first	magnitude	exceeds	the
multiple	of	the	second,	but	the	multiple	of	the	third	does	not	exceed	the	multiple
of	the	fourth,	then	the	first	is	said	to	have	a	greater	ratio	to	the	second	than	the
third	has	to	the	fourth.”45

Not	to	belabor	the	point,	in	terms	of	the	notation	used	to	discuss	Definition	5,
this	says	that,	for	some	values	of	n	and	m,
	A	>	n/m	but	B	<	n/m

So	the	rational	number	n/m	lies	between	A	and	B.	It	follows	that	A	>	B,	which	is
to	say	that	W/X	>	Y/Z.
This	discussion	has	shown	that	my	discussion	of	the	prearithmetic	of
magnitudes,	drawing,	as	it	does,	on	modern	discoveries	relating	to	irrational
numbers,	suffices	to	define	ratios.	My	definition	is	also	consistent	with	the	use
of	ratios	in	Greek	practice.	But,	unlike	Euclid’s	discussion,	the	modern
perspective	makes	explicit,	from	the	very	outset,	the	relationship	of	ratios	to
numbers.
By	doing	so,	my	definition	clears	up	one	of	the	mysteries	in	Euclid’s
presentation.	By	the	end	of	Book	V,	Euclid	has	demonstrated	the	basic
properties	of	ratios.	And	Book	VI	proceeds	to	use	ratios	to	prove	geometric
theorems	including,	especially,	theorems	relating	ratios	of	areas	to	ratios	of
magnitudes.	What	gives	him	that	right?
Well,	the	technical	answer	is	that	Euclid’s	definition	of	equal	ratio	in	Book	V	in
no	way	restricts	him	from	relating	ratios	of	different	kinds	of	magnitudes.	But,	in
the	context	of	Euclid’s	Book,	his	ability	to	do	so	must	seem	like	an	accident.
My	perspective	dispels	this	impression.	In	the	equation	W	=	AX,	where	W	and
X	are	magnitudes	of	the	same	kind,	the	quantity	A	is	a	number.	But	it’s	also



what	physicists	call	a	dimensionless	quantity.	It’s	a	number	of	repetitions,	first;	a
number	of	divisions,	second;	or	a	combination	of	the	two	(a	rational	number),
third.	Or,	finally,	it	may	be	an	irrational	number	that	can	be	approximated,	to	any
meaningfully	required	accuracy,	by	a	rational	number.
These	basic	operations,	repetition	and	division,	are	the	same,	and	have	a
corresponding	result,	no	matter	what	kind	of	magnitude	or	number	they	are
applied	to.	When	a	magnitude	is	multiplied	by	such	a	number,	the	result	is	a
magnitude	of	the	same	kind.
In	effect,	the	quantity	A	measures	the	relationship,	the	proportion,	between	the
magnitudes.	If	A	=	2,	it	means	that	W	is	twice	X.	If	A	=	1/3,	it	means	that	W	is
one	third	of	X,	regardless	of	the	units	of	W	and	X.	The	quantity	A,	then,	means
exactly	the	same	thing,	specifies	the	same	relationship	or	proportion,	no	matter
what	specific	magnitudes	are	being	related.	So,	of	course,	it	can	be	used	to	relate
ratios	of	different	kinds	of	magnitudes.
Finally,	my	definition	makes	the	various	properties	of	ratios	easier	to	prove	and
easier	to	understand.
Take	an	example	from	Euclid’s	Book	V.	Now	most	of	the	early	propositions	in
Book	V,	which	lay	the	groundwork	for	the	more	difficult	ones,	are	immediately
obvious	from	my	perspective.	But	Proposition	16	is	not	obvious	and	it	is	also
one	of	the	most	important.
Proposition	16	is	applicable	whenever	W,	X,	Y,	and	Z	are	all	magnitudes	of	the
same	kind	(a	qualification	Euclid	omits,	presumably	as	an	oversight).	According
to	the	proposition,

If	W/X	=	Y/Z,	then	W/Y	=	X/Z
	As	Euclid	puts	it:46
	“If	four	magnitudes	be	proportional	they	will	also	be	proportional	alternately.”

A	modern	proof	is	algebraic.	Suppose	that	W/X	=	Y/Z	=	A	or,	equivalently,	W	=
AX	and	Y	=	AZ.	Since	W	and	Y	are	magnitudes	of	the	same	kind,	there	is	a
number	B	that	expresses	their	proportion.	Namely,

W	=	BY	and,	equivalently,	W/Y	=	B	It	follows	that	AX	=	W	=	BY	=	BAZ,	from
which	AX	=	ABZ	and,	therefore,	X	=	BZ	or,	equivalently,	X/Z	=	B

So	W/Y	=	B	=	X/Z,	proving	the	proposition.
In	the	context	of	Greek	mathematics,	the	theory	of	ratios	plays	a	central	role.	It
is	the	form	in	which	they	drew	comparisons	among	geometric	magnitudes	and
confronted	the	issue	of	measurability.	But	their	theory	was	never	completely



integrated.
Thus,	Euclid’s	Books	V	and	VII	present	two	different	theories	of	ratio,	one	for
magnitudes	and	one	for	numbers	(meaning	positive	whole	numbers).	A	ratio
between	magnitudes	seems	very	like	a	number,	especially	when	Euclid	proceeds
to	compare	ratios	of	lengths	to	ratios	of	areas	and	even,	in	Book	VII,	uses	line
segments	as	illustrations	standing	for	numbers.	Yet	this	connection	is	not	made
explicit	until	Book	X	and	then	only	for	ratios	of	commensurate	magnitudes,	and
also	without	a	complete	proof.47	It	is	not	a	complete	proof	because	Euclid	does
not	bridge	the	gap	between	the	two	different	definitions	of	ratio.
Book	V	is	particularly	frustrating	because	its	definition	of	equal	ratio	is	a
creation	of	genius.	But	the	discussion	is	left	hanging	in	mid	air	because	Euclid	is
unable	to	state,	lacked	the	vocabulary	to	state,	that	a	ratio	is	a	number.	He	tells
us	when	ratios	are	equal,	but	he	does	not	tell	us	what	they	are.
From	a	modern	perspective,	most	of	this	mystery	is	simply	unnecessary.	The
Greeks	certainly	knew	how	to	multiply	and	divide	line	segments	by	numbers;
much	of	their	thinking	was	in	those	terms	and	they	use	those	very	concepts	to
define	equality	of	ratios.	From	today’s	vantage	point,	which	admits	fractions	and
irrational	numbers	as	bona	fide	numbers,	only	a	very	slight	further	development
is	needed	to	incorporate	the	entire	subject	of	geometric	ratios	into	what	I	have
termed	the	prearithmetic	of	magnitudes.	And	my	development	of	this
prearithmetic	of	magnitudes	was	directly	inspired	by	Euclid,	together	with
Aristotle’s	fromulation	of	the	Axiom	of	Archimedes.
But	the	Greeks	did	not	have	the	benefit	of	our	perspective.	Qua	numbers,	they
had	no	concept	of	irrational	numbers,	no	systematic	vocabulary	to	specify	them.
And,	for	them,	irrational	numbers	always	arose	in	geometric	contexts,	as	the
incommensurate	relationship	of	two	magnitudes,	such	as	the	relationship	of	a
diagonal	to	the	side	of	a	square.	Geometric	ratios,	in	Euclid,	were	specified,
always,	by	a	pair	of	magnitudes,	usually	lengths.
The	Greeks	could,	indeed,	specify	a	ratio	of	commensurate	magnitudes	by	a	pair
of	numbers	counting	their	respective	common	units.	So,	for	example,	lengths	of
2	inches	and	7	inches	bear	a	ratio	of	2	to	7	counting,	respectively,	their	common
unit,	namely	inches.	But	the	Greeks	had	no	systematic	numerical	way	to
designate	irrational	numbers,	no	vocabulary	for	doing	so.
They	were	left	to	address	the	fundamental	problem	of	measuring
incommensurate	relationships	and	they	started	with	the	object	of	such
measurement:	pairs	of	incommensurate	magnitudes.	And	they	answered	the	first,
all-important	question:	When	are	two	pairs	of	magnitudes	in	the	same	ratio?	Or,
alternatively,	when	is	one	ratio	greater	than	the	other?	And	their	answers,
arguably,	were	eventually	the	inspiration	for	Dedekind’s	account	of	irrational



numbers	in	the	19th	century.
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Chapter	3	Geometric	Area,	Proportion,	and
the	Parallel	Postulate

The	Parallel	Postulate

All	of	Euclid’s	postulates	formulate	perceptual	observations.	Properly
understood,	their	fundamental	importance	relates	to	their	measurement
implications.	Their	application	to	the	world,	to	actual	problems	of	measurement,
is,	in	every	specific	case,	subject	to	contextual	precision	requirements.	They
apply	universally	to	any	concrete	case	for	which	the	required	precision	is
actually	achievable.

Historically,	however,	the	Parallel	Postulate	has	received	enormous	scrutiny
compared	to	the	other	postulates.
Prior	to	the	discoveries	in	the	early	19th	century,	this	scrutiny	involved	persistent
attempts	to	prove	the	parallel	postulate	from	the	other	postulates.1	Postulate	Five
received	particular	interest	because	it	seemed	to	invoke	infinity	in	a	way	that	the
others	did	not.
Less	noticed	was	a	similar	invocation	in	Postulate	One.	If	Postulate	Five	asserted
that	two	converging	lines	would	ultimately	meet,	Postulate	One,	by	implication,
by	what	Euclid	took	it	to	mean,	asserted	that	two	diverging	lines	would	never
meet.
Ultimately,	the	development	of	nonEuclidean	geometries,	challenging	these
attempts	to	prove	Postulate	Five,	led	to	the	conclusion	that	Postulate	Five	was,	in
fact,	independent	of	the	other	four	postulates.	These	geometries	satisfied
Postulates	One	through	Four,	but	not	Postulate	Five.	The	relevance	of	this	work
gained	acceptance,	especially,	with	the	development	of	geometric	structures,
residing	in	ordinary	Euclidean	space	that	were	interpretable	as	nonEuclidean
geometries,	as	satisfying	the	Postulates	of	these	nonEuclidean	geometries.2
One	might	counter	that	such	examples	amounted	to	a	redefinition	of	the	concept
of	a	straight	line.	But	the	examples	remained	impressive.	For	the	examples
implied	that	nonEuclidean	geometries,	in	which	Postulate	Five	did	not	hold,
were	fully	as	consistent	as	Euclidean	geometry,	consistent	because	they	could	be
subsumed	under	Euclidean	Geometry.3	One	could,	then,	realize	nonEuclidean
geometries	without	contradiction.	One	could	not,	without	appeal	to	some



premise	or	observation	about	lines,	circles,	and	direction,	beyond	Euclid’s	first
four	postulates,	prove	Postulate	Five.
Such	examples	had	one	important	thing	in	common:	On	a	sufficiently	small
scale,	the	lines,	circles,	and	directions	in	these	examples	looked	like	Euclidean
lines,	circles	and	directions.	The	situation	is	similar	to	the	measurements	one
makes	on	the	surface	of	the	earth.	On	a	perceptual	scale,	the	earth	appears	flat
and	measurements	of	the	earth	satisfy	Euclid’s	axioms.	But	the	earth	is	not	flat
and,	on	a	larger	scale,	its	curvature	becomes	important	and	must	be	included	in
one’s	calculations.
In	the	nineteenth	century,	these	discoveries	were	enough	to	challenge	Euclidean
geometry	in	its	historical	role	as	the	ultimate	foundation	of	mathematics.	Near
the	end	of	the	previous	century,	with	amazing	timing,	Kant	had	enshrined	space
as	the	form	of	perception,	as	a	prior,	as	the	“form	of	all	appearance	of	outer
sense.”4	But,	unbeknownst	to	Kant,	the	scientific	basis	for	any	such	claim	had
already	collapsed.
Notwithstanding,	Kant’s	world	of	phenomena	easily	survived	the	introduction	of
nonEuclidean	geometry.	The	casualty	was	on	the	side	of	mathematics.	As	we
shall	explore	futher	in	Chapters	4	and	6,	the	birth	of	nonEuclidean	geometry	set
the	stage	for	the	struggles	over	the	foundations	of	mathematics	that	were	to
follow.	And	the	most	important	philosophical	backdrop	for	that	struggle	was
provided	by	the	phenomenology	of	Kant.
In	regards	to	nonEuclidean	geometry,	the	twentieth	century	added	a	final	twist
with	Einstein’s	development	of	the	General	Theory	of	Relativity.	General
Relativity	is	built	on	the	geometry	of	light	rays,	a	geometry	in	which	light	rays,
propagated	across	space	are	treated	as	straight	lines.	And	the	geometry	of	these
straight	lines,	according	to	Einstein’s	theory,	is	not	Euclidean.5
From	a	realist,	measurement-centric	perspective,	and	aside	from	their	historical
interest	and	import,	these	developments	are	important	to	the	validity	of	the
parallel	postulate	only	insofar	as	they	circumscribe	its	applicability.	They	are
part	of	the	context	that	one	must	consider	and	they	certainly	have	measurement
implications.	They	bear	on	the	context	of	the	Parallel	Postulate,	and	they	also
create	a	need	to	expand	from	that	base	and	even	point	to	the	direction	that	such
an	expansion	must	take,	but	they	do	not	affect	the	validity	of	the	Parallel
Postulate	within	its	proper	context.	Euclidean	geometry	remains	the	geometry	of
the	perceptual	scale	to	which	all	of	man’s	measurements	ultimately	relate.6

Context	and	the	Parallel	Postulate



On	the	perceptual	level,	one	can	see	that	the	opposite	edges	of	a	rectangular
table	point	in	the	same	direction.	And	someone	in	the	living	room	can	look	in	the
same	direction	as	someone	else	in	the	kitchen.	These	are	perceptual
identifications,	unambiguous	within	any	standard	of	precision	that	might	be
required	at	the	perceptual	level.

But	to	compare	the	rotational	axis	of	the	earth	with	the	rotational	axis	of	Mars,
requires	more	elaborate	physical	means.	And,	in	general,	when	one	goes	beyond
direct	perceptual	observation,	one	needs	to	take	these	physical	means	into
account	to	establish	a	meaningful	comparison.	As	Ayn	Rand	puts	it,	“When	you
speak	of	measurement,	you	always	have	to	define	contextually	your	method	of
measurement.”7

On	an	astronomic	scale,	light	rays	(or	electromagnetic	waves)	are	an	essential
part	of	all	geometric	measurement.	The	path	of	a	light	ray	through	space	is	the
straightest	path	known	to	man.	As	such,	a	light	ray	is	used	to	establish	a	line	of
sight,	a	specification	of	the	direction	from	earth	to	other	objects	in	the	universe.

But	the	path	of	a	light	ray	is	not	always	straight.	For	example,	light	rays	bend,
are	refracted,	when	passing	from	one	medium	to	another.	More	critically,	light
rays	bend	when	passing	through	gravitational	and	other	fields.	To	understand	the
meaning	of	a	measurement	by	light	rays	requires	understanding	the	effects	of
such	factors.	For	example,	in	the	case	of	refraction,	this	means	understanding	the
angle	of	refraction.

The	effect	of	gravitation	is	more	subtle.	We	know	that	the	direction	of	a	light
ray,	as	it	approaches	earth	from	a	distant	star,	will	depend,	for	example,	upon	the
position	of	the	sun	in	relation	to	the	direction	of	the	distant	star.	Our	best	current
understanding	of	just	how	the	position	of	the	sun	will	influence	this	angle	is
provided	by	the	General	Theory	of	Relativity.	So	the	relevant	context	in
measuring	the	direction	of	a	distant	star	involves,	first	of	all,	the	fact	that	one	is
measuring	the	direction	of	the	distant	star	as	the	light	ray	flies.	Secondly,	the
context	includes	the	position	of	the	sun	and	of	any	other	massive	bodies	between
us	and	the	distant	star.	Thirdly,	it	includes	our	understanding	of	how	various
massive	bodies	influence	our	measurements	by	means	of	light	rays.	Taken
together,	our	determination	of	the	direction	of	incoming	light	rays	from	the
distant	star	is	a	specification,	as	such,	of	the	direction	of	the	distant	star,	the	only
kind	of	specification	that	is	physically	possible	today.	And	if	we	had	some
alternative	way	of	measuring	its	direction,	that	alternative	would	be	just	that,	an



alternative	way	of	measuring	its	direction	that	would	involve	a	different	set	of
contextual	factors.

I	mentioned	as	a	third	factor	“our	understanding	of	how	various	massive	bodies
influence	our	measurement.”	That	understanding,	however,	involves	solving,	at
least	approximately,	the	Einstein	Field	Equations,	a	nonlinear	set	of	equations
for	which	very	few	exact	solutions	are	known.	To	what	extent	is	that	an	issue?
And	how	does	it	matter?

First,	there	is	a	special	circumstance	in	which	the	effect	of	the	sun	can	be	pretty
much	eliminated.	If	the	sun,	at	one	instant	is	on	one	side	of	the	star	and,	at	the
next,	is	on	the	other	side,	one	can	thereby	quantify	the	influence	of	the	sun	and,
by	taking	the	average	of	the	two	positions,	eliminate	it.	Indeed,	this
circumstance,	exploiting	a	total	eclipse	of	the	sun,	provided	important	validation
of	Einstein’s	Field	Equations.	However,	the	gravitational	field	of	the	sun	affects
the	observed	angles	of	all	incoming	light	rays,	even	rays	that	don’t	pass	so	near
the	sun,	and	the	Field	Equations	are	needed	generally	to	quantify	the	effect	of
the	sun’s	mass	on	all	incoming	light	rays.

Secondly,	specifying	the	direction	of	the	light	ray	and	of	the	factors	that	are
known	to	influence	the	result	of	one’s	measurement	does	,	in	fact,	specify	the
direction	of	the	distant	star,	so	long	as	one	maintains	the	context	of	that
measurement.	However,	without	the	use	of	the	Einstein	Field	equations	to
quantify	the	effect	of	the	sun	on	incoming	light	rays,	one	has	no	way	to	integrate
that	knowledge.	One	can	specify	that	direction	today,	but	one	would	have	no
way	of	relating	the	measurements	one	makes	today	to	the	measurements	one	will
make	tomorrow	when	the	sun	is	in	a	different	position.	So	one’s	understanding
of	the	direction	would	be	limited	to	a	very	special	context,	namely	the	particular
position	of	the	sun	at	the	time	of	the	measurement.	It	is	Einstein’s	Field
Equations	that	provide	the	critical	link;	that	integrates	one’s	measurements	and
makes	them	meaningful,	taken	as	a	whole.

With	all	that	said,	one’s	measurements	of	the	directions	of	the	stars	and	their
distances,	based	upon	the	light	reaching	us	from	those	stars,	offers	a	coordinate
system	applicable	to	the	universe	at	large.	Spatial	relationships	in	the	universe
are	measurable	and	the	base	of	their	measurement	is	Euclidean	geometry.

These	light-coordinates	do	not,	however,	provide	a	Euclidean	coordinate	system.
For	example,	one	cannot	simply	rely	on	the	Pythagorean	Theorem,	together	with



one’s	measurements	of	the	direction	and	distance	of	various	stars,	to	compute
the	distance	between	any	two	of	those	stars	from	each	other.	Not	in	isolation
from	the	laws	of	physics!	One	needs	relativistic	corrections	to	make	these
determinations.

So	the	question	presents	itself:	Is	there	some	formula,	some	recipe	for
appropriately	adjusting	our	measurements	of	distances	and	direction?	Is	there	a
universal	way	to	convert	our	measurements	of	stellar	position	to	the
measurements	that	a	Euclidean	coordinate	system	would	provide?	Is	there	a	way
to	compute	the	“real”	unadulterated	“measurements”	of	direction	and	distance?

Now,	obviously,	such	a	recipe	would	be	a	sort	of	relativistic	correction;	a	way	of
identifying	the	impact	of	massive	bodies	on	the	paths	of	light	rays.	Such	a
correction	would	be	similar	to	the	way	one	adjusts	for	refraction	of	light	on
earth.	Having	made	these	corrections,	if	these	were	possible,	one	would	be	in	a
position	to	apply	the	Pythagorean	Theorem	(in	its	three	dimensional	version)	to
find	the	distances	between	any	two	stars	in	the	galaxy.	And	one	could	apply
standard	trigonometry	to	find	the	angles	in	any	triangle	formed	by	any	three	stars
in	the	galaxy.

But	there	is	a	final	requirement	for	such	a	formula:	One’s	recipe	would	need	to
provide	consistent	answers	regardless	of	which	planet	or	star	one	took	as	one’s
vantage	point.	It	would	be	illegitimate	to	say,	for	example,	that	a	determination
of	distances	and	angles	based	on	data	acquired	on	Sirius	would,	by	the	same
recipe,	give	different	answers	from	a	determination	based	on	data	acquired	on
earth.	The	distance	between	two	stars	cannot	depend	upon	which	Euclidean
coordinates	one	uses.

Simply	put:	It’s	certainly	not	obvious	that	this	can	be	done	and	it	may	very	well
be	impossible.	It’s	a	problem	that	involves	both	physics	and	mathematics.
Physically,	it	has	to	apply	a	physical	theory	such	as	General	Relativity	to
account	for	the	effect	of	gravitation	on	light.	Then	with,	say,	General	Relativity
as	a	given,	one	has	to	solve	a	mathematical	problem	that	is,	at	best,	non-trivial,
and	may	be	impossible.	The	important	point	is	this:	This	is	a	scientific	question,
not	a	philosophical	one	and	not	fully	even	a	mathematical	one.

But	one	need	not	settle	this	question	to	establish	the	validity	of	one’s
measurements.	Nor	would	its	resolution	alter	our	reliance	on	Euclidean
geometry,	including	the	parallel	postulate,	even	as	we	make	relativistic



corrections.	Euclidean	geometry	is	the	frame	of	reference	for	interpreting
relativistic	corrections.	Because	Euclidean	geometry	is	the	geometry	that	applies
on	a	perceptual	scale,	the	scale	to	which	all	of	our	measurements	must
ultimately	relate.8

And	what	about	Euclid’s	criterion	for	parallel	lines,	the	criterion	that,	in
reference	to	Figure	1,	the	angles	1,	2,	and	3	are	equal?

Figure	1

As	it	happens,	in	his	proof	of	Proposition	27,	Euclid	proceeds	by	contradiction:
If	the	two	lines	meet	within	the	relevant	threshold	then	angle	2	cannot	equal	to
either	angle	1	or	angle	3.	Euclid	supposes	that	two	lines	meeting	his	criterion
were	to	intersect	and	then	argues	that	this	would	contradict	the	criterion.
Euclid’s	demonstration	is	valid,	just	as	his	demonstrations	of	earlier
propositions,	provided	it	is	taken	contextually.	It	is	valid	on	any	scale	and
precision	level	on	which	a)	one	actually	achieves	the	required	precision	level	and
b)	his	postulates	are	applicable	to	the	means	by	which	the	relevant	measurements
are	made.

Why	is	Postulate	5	Independent	from	the	other
Postulates?



In	light	of	its	measurement	implications	(and	leaving	aside	the	verdict	of
history),	one	should	expect	Postulate	5	to	be	independent	of	the	other	postulates.
Postulate	5	states	a	condition	for	two	straight	lines	to	intersect.	It	says,	in	effect,
that	converging	lines	in	the	plane	will	continue	to	converge	and	ultimately
intersect,	manifesting	their	difference	in	direction.	Postulate	5	provides	a
criterion	for	a	very	restricted	judgment,	a	judgment	that	two	lines	are	pointing	in
different	directions.	But	of	Euclid’s	postulates,	only	Postulate	5	provides	any
basis	whatsoever	to	compare	directions	from	differing	vantage	points.

Figure	2	illustrates	the	independence	of	Postulate	5	from	the	other	Postulates.	It
addresses	an	attempt	to	define	direction	globally,	by	starting	with	a	reference
line	as	a	standard	direction.	In	this	way,	one	might	simply	define	parallelism,
without	the	benefit	of	Postulate	5.

Figure	2

Had	I	drawn	this	accurately,	it	would	show	two	intersecting	pairs	of	parallel
lines.	However,	I	have	deliberately	distorted	the	drawing	to	make	it	necessary	to
focus	conceptually	on	the	relationships	involved.

Euclid’s	Propositions	27	and	29	establish	that	a	straight	line	cutting	two	other
lines	will	make	the	same	angle	with	both	if	and	only	if	those	two	lines	are
parallel.	OK,	suppose	that	one	starts	with	this	circumstance	and	tries	to	use	it	as
a	definition,	without	the	aid	of	the	specific	warrant	of	Postulate	5	or	some	other



a	definition,	without	the	aid	of	the	specific	warrant	of	Postulate	5	or	some	other
fifth	postulate.	Suppose	one	simply	says	that	two	lines	are	parallel	precisely
when	their	intersections,	with	some	chosen	reference	line,	cut	the	same	angle
with	the	reference	line.

At	first	glance	this	approach	might	seem	enough	to	define	direction,
unambiguously,	everywhere.	But	does	it?	Absent	Postulate	5	and	the	intended
implications	of	Postulate	1,	does	one	really	have	a	warrant	for	thinking	so?	On
one	condition	only:	if	it	turns	out	that	this	criterion,	that	two	lines	point	in	the
same	direction,	be	independent	of	the	choice	of	reference	line.

The	postulates	are	silent	on	this.	However,	Euclid	does	provide	such	a	warrant,
namely	Propositions	27	and	29,	taken	together.	But	these	propositions	depend,	as
least	as	far	as	Euclid’s	arguments	are	concerned,	on	his	five	postulates	and	on
Postulate	5	in	particular.	Euclid	proves	Proposition	27,	on	the	basis	of	his
interpretation	of	Postulate	1	that	there	is	a	unique	straight	line	connecting	any
two	points.9	But	the	importance	and	full	meaning	of	the	concept	of	parallel	lines
depends	on	the	converse	of	Proposition	27,	namely	Proposition	29,	an
elaboration	of	Postulate	5.	Parallel	lines	(i.e.,	lines	in	a	plane	that	never	meet)
matter,	they	represent	a	common	direction,	not	just	because	they	exist,	but
because	that	existence	is	unique.

So	what	goes	wrong	if	one	is	not	allowed	to	use	these	propositions?	For	easier
reference,	I	repeat	Figure	2:
	



Figure	2

Let	line	W,	in	Figure	2,	be	the	chosen	reference	line.	Suppose	that	lines	Y	and	Z
make	the	same	angle	with	W,	that	angle	A	=	angle	D.	Now	choose	a	different
reference	line	X.	For	the	sake	of	the	argument,	select	a	line	X	parallel	to	the
reference	line.	Which	means	selecting	a	line	X	such	that	angle	A	=	angle	B.

But	what	is	angle	C?	Proposition	27	implies	that	lines	X	and	W	will	never	meet.
But	it	does	not	imply	that	angle	C	=	angle	B	or	that	angle	C	=	angle	D:	That
would	require	Proposition	29.	But	Proposition	29	depends	on	Postulate	5;	the
first	four	postulates	are	not	enough.	There	is	no	other	known	basis,	deriving
from	Euclid’s	first	four	postulates,	to	claim	that	angle	C	=	angle	B.

There	is	simply	no	way,	except	by	virtue	of	the	Parallel	Postulate	or	the
equivalent,	that	one	can	guarantee	that	the	angle	C	is	equal	to	the	other	three
angles.	With	respect	to	the	reference	line	W,	the	lines	Y	and	Z	are	pointing	in	the
same	direction.	To	demonstrate	that	Y	and	Z	are	also	pointing	in	the	same
direction	with	respect	to	a	different	reference	line	such	as	X,	would	require	more
than	the	first	four	postulates.10	Granted,	by	Proposition	27,	derived	from	the	first
four	Postulates,	the	lines	will	never	meet.	But,	without	Postulate	5,	how	does
that	establish	that	angle	C	is	equal	to	the	other	three	angles?

An	unambiguous	global	determination	of	direction	depends	upon	the	Parallel



An	unambiguous	global	determination	of	direction	depends	upon	the	Parallel
Postulate.	One	must	have	already	made	a	perceptual	identification	such	as
Euclid’s	fifth	postulate.	And	one	must	have	proven	Propositions	27	and	29	to
validate	this	method	of	measuring	out	parallel	lines.

Attempts	to	prove	the	Parallel	postulate	from	the	other	postulates	has	a	long
history.	That	history	ended	in	the	nineteenth	century	with	several	independent
discoveries	that	such	a	proof	is	not	possible.11

There	is	a	kind	of	surface	known	as	a	hyperbolic	surface.	Roughly	speaking,
from	an	external	perspective,	it	looks	like	a	saddle	at	every	point.	But,	on	a
sufficiently	small	scale,	it	looks	flat.	The	first	four	Euclidean	Postulates	all	hold
on	a	hyperbolic	surface,	without	qualification,	and	they	mean	essentially	the
same	thing	that	they	do	in	Euclidean	geometry.	In	particular,	they	have	the	same
measurement	implications.

In	Chapter	1,	I	discussed	geodesics	in	regards	to	the	earth	as	they	relate	to
Postulate	1.	A	geodesic	is	a	line	that,	on	a	small	enough	scale,	does	not	curve	or
bend;	that	looks	straight,	that	keeps	going	in	the	same	direction	along	the
surface.	Just	as	great	circles	serve	as	geodesics	on	the	earth;	just	as	the	lines	that
we	draw	on	a	concrete	slab	on	the	earth	do	not	curve	or	bend	and	look	straight;	a
hyperbolic	surface	has	geodesics.	Any	two	points	on	a	hyperbolic	surface	can	be
connected	by	a	unique	geodesic.	Any	geodesic	can	be	extended,	as	needed,	in
either	direction.	A	circle	of	prescribed	radius	can	be	drawn	at	any	point	on	the
hyperbolic	surface.	And	all	right	angles	are	equal.

Yet	Postulate	5	fails	on	this	surface.	It	is	entirely	possible	on	a	hyperbolic
surface	for	geodesics	that	are	approaching	each	other	at	one	point	to	ultimately
veer	off	without	ever	intersecting	in	either	direction.	So,	as	a	matter	of	deductive
logic	and	of	measurement,	Postulate	5	must	be	independent	of	the	others.	So	far
as	Euclid’s	postulates	and	the	interpretation	of	those	postulates	are	concerned,	a
hyperbolic	surface	differs	from	a	flat	plane	only	in	that	Postulate	5	is	valid	on
the	plane	and	invalid	on	a	hyperbolic	surface.12

The	Geometry	of	the	Earth

The	word	“geometry”	derives	from	the	Greek	words	ge,	meaning	“earth”,	and
metria,	meaning	“to	measure”.	It	was	used	by	the	ancient	Egyptians	to	do	just
that:	in	order	to	reestablish	property	boundaries	after	each	flooding	of	the	Nile



River.13	Geometry	owes	its	name	to	one	of	its	earliest	uses:	measurement	of	the
earth.

The	earth	is	a	curved	surface,	yet	on	a	small	scale	it	looks	as	though	it	were	flat.
And,	to	add	to	the	confusion,	we	have	established	a	coordinate	system	on	the
Earth,	a	nonEuclidean	coordinate	system,	consisting	of	longitudinal	lines
running	North	and	South	and	latitudinal	lines	running	East	and	West.	At	any
point,	except	for	the	two	poles,	the	latitudinal	East-West	lines	intersect	the
longitudinal	North-South	lines	at	right	angles.

This	coordinate	system	on	the	earth	is	radically	different	than	the	coordinate
systems	one	draws	on	a	sheet	of	graph	paper.	Yet	it	is	easy	to	forget	the
distortions	in	our	flat	maps	of	the	world.	These	maps	employ	a	“Mercator”
projection	of	the	globe	onto	the	plane,	a	projection	that	preserves	angles,	but
distorts	lengths.	The	map	will	accurately	show	that	one	city	is	southwest	of
another	city,	but	it	will	distort	the	distance	between	the	cities.	Such	distortions
are	minimal	near	the	equator,	but	become	ever	larger	as	one	gets	closer	to	either
pole.

An	examination	of	this	longitudinal/latitudinal	coordinate	system	provides	a	way
to	compare	the	geometry	of	the	earth’s	surface,	to	compare	earth	measurement,
with	the	geometry	of	the	flat	plane.

The	coordinate	system	that	we	use	for	the	earth	is	tied	to	the	four	directions,
north,	south,	east,	and	west.	But	these	four	directions	are	not	created	equal.	The
north-south	longitudinal	lines	stretching	between	the	North	and	South	Poles	are
all	straight	lines	or,	more	precisely,	great	circles,	also	known	as	geodesics.	They
all	run	in	the	same	direction,	i.e.,	north	and	south,	but	they	start	converging	near
the	poles	and	ultimately	meet	at	the	poles.	To	run	north	means	to	point	to	the
North	Pole.	On	the	other	hand,	the	lines	that	run	east	and	west	(latitudinal	lines),
intersecting	the	longitudinal	lines	at	right	angles	(90o),	maintain	a	constant
distance	from	each	other	and	never	intersect	each	other.	But	only	one	of	them,
the	equator,	is	a	great	circle,	a	geodesic.	The	others,	to	varying	degrees,	circle
around	one	of	the	poles	and	their	curvature	becomes	pronounced	in	the	vicinity
of	the	poles.	To	go	west	or	east,	on	a	large	scale,	is	to	maintain	a	constant
distance	from	the	poles.

So	suppose	one	starts	by	going	west	from	somewhere	in	the	northern
hemisphere.	The	instant	that	one	tries	to	continue	in	a	straight	line,	i.e.,	a	great
circle,	one	will	stop	going	west.	This	means	that	one	will	leave	the	latitudinal



circle,	one	will	stop	going	west.	This	means	that	one	will	leave	the	latitudinal
circle	and	will	begin	to	veer	to	the	south.	(One	doesn’t	recognize	this	on	a	flat
map	for	which	both	longitudinal	lines	and	latitudinal	lines	are	represented	as
straight	lines.	But	it	becomes	clearer	when	one	looks	at	a	globe.)

This	fact	is	most	clearly	and	dramatically	seen	near	the	North	Pole.	Suppose,	for
example,	that	one	begins	from	a	point	10	feet	south	of	the	North	Pole	and,	with
due	determination,	heads	west.	Heading	west	means	maintaining	a	constant
distance	from	one	of	the	poles.	So	it	means	going	in	a	circle	around	one	of	the
poles:	in	this	case,	the	North	Pole.	It	means	that	one	keeps	the	North	Pole
consistently	to	one’s	right.	In	pursuing	this	plan,	one	finds	oneself	walking	in	a
circle,	a	circle	with	a	radius	10	feet,	around	the	North	Pole.

Now	assume,	instead,	that	one	walks	in	a	straight	line,	a	great	circle,	from	that
same	point,	initially	facing	West	and	10	feet	from	the	North	Pole.	In	that	case,
one	quickly	leaves	the	North	Pole	behind	as	one	would	leave	one’s	house	behind
if	it	happened	to	sit	10	feet	from	the	street	at	the	start	of	a	journey.	In	the	case	of
the	house,	after	a	couple	of	blocks	the	house	is	almost	directly	behind	the
traveler.	Similarly,	in	the	case	of	the	North	Pole,	by	the	time	one	has	walked	100
yards,	with	the	North	Pole	now	almost	directly	at	one’s	back,	one	is,	for	most
practical	purposes,	heading	directly	away	from	the	North	Pole,	that	is	one	is
heading	south.	And	if	one	kept	going	in	a	totally	straight	line,	i.e.,	a	great	circle,
and	if	the	earth	were	a	perfect	sphere,	one	would	ultimately	miss	the	South	Pole
by	just	10	feet.

As	a	final	limiting	case,	if	one	stands	at	the	North	Pole,	then	no	matter	which
direction	one	faces,	one	is	facing	south.
In	sum,	the	Earth’s	surface	does	not	admit	a	grid	of	straight	lines	intersecting	at
right	angles.	The	reason	is	that,	unlike	the	Euclidean	plane,	the	Earth	is	not	flat
and	the	lines	on	its	surface	do	not	satisfy	the	Parallel	Postulate.	On	such	a
surface,	one	has	a	choice.	One	can	walk	in	a	great	circle.	Alternatively,	one	can
maintain	a	constant	distance	from	a	great	circle	such	as	the	equator.	But	one
cannot,	simultaneously,	do	both.
Although	my	primary	interest	has	been	to	characterize	the	measurement
implications	of	the	Parallel	Postulate,	this	example	illustrates	the	force	of
Playfair’s	version	of	the	Parallel	Postulate	(see	Chapter	1),	as	characterizing	the
flatness	of	the	Euclidean	plane.

Perception	is	the	Base



As	I	pointed	out	in	Chapter	1,	in	the	case	of	triangles,	one’s	understanding	of
triangles	is	needed	to	understand	more	complex	figures.	The	same	principle
applies	to	the	Postulates.	For	example,	the	study	of	geometry	on	the	surface	of
the	earth,	of	the	relationships	between	places	and	distances	on	the	earth,	requires
Euclidean	geometry	as	its	base.	This	is	also	true	for	astronomical	measurements
and	remains	true	even	insofar	as	measurement	across	astronomic	distance,	by
means	of	light	rays,	is	nonEuclidean	geometry,	the	geometry	of	the	perceptual
level,	remains	the	frame	of	reference	of	one’s	geometric	measurements	and
provides	the	benchmark	to	which	all	relativistic	corrections	must	relate.	To	make
a	relativistic	correction	is	to	relate	an	observation	to	the	perceptual	level.

Both	cases,	then,	exemplify	the	same	principle:	that	all	conceptual	knowledge
must	be	related	to	the	perceptually	given.	Measurement	is	meaningful	because	it
specifies	a	quantitative	relationship	to	something	that	one	can	perceive.

Parallel	Lines:	The	Key	Propositions

Euclid’s	key	propositions	regarding	parallel	lines	are	Proposition	29,	and	its
partial	converse,	the	earlier	Proposition	27.	The	statements	and	their
consequences	are	far	more	important	than	their	proofs,	which	I	omit.

Proposition	29	states:

“A	straight	line	falling	on	parallel	straight	lines	makes	the	alternate	angles	equal
to	one	another,	the	exterior	angle	equal	to	the	interior	and	opposite	angle,	and	the
interior	angles	on	the	same	side	equal	to	two	right	angles.”14

Proposition	27	states:

“If	a	straight	line	falling	on	two	straight	lines	makes	the	alternate	angles	equal	to
one	another,	the	straight	lines	will	be	parallel	to	each	other.”15

Always	remember	Euclid’s	definition	of	parallel	lines:	two	straight	lines	in	the
plane	that	never	meet.	The	picture	below	illustrates	the	content	of	both
propositions:



Figure	3

The	first	statement,	that	the	marked	angles	are	equal	when	the	lines	are	parallel,
was	the	key	insight	behind	Eratosthenes’s	estimate	of	the	circumference	of	the
earth.

Beyond	its	consequences	for	angles,	parallelism	has	important	consequences	for
lengths,	as	well.	Of	particular	importance	for	Euclid’s	theory	of	geometric	area,
are	Propositions	33	and	34.

Proposition	33	reads

“The	straight	lines	joining	equal	and	parallel	straight	lines	(at	the	extremities
which	are)	in	the	same	directions	(respectively)	are	themselves	equal	and
parallel.”16

The	meaning	and	proof	are	indicated	in	Figure	4.	The	dotted	line	divides	the
quadrilateral	into	two	triangles.	Relying	on	the	demonstrated	properties	of
parallel	lines	and	of	triangles,	Euclid	shows	that	the	triangles	are	congruent.	This
implies,	first,	that	line	AB	equals	line	CD	and,	second,	that	the	corresponding
angles	at	B	and	C	are	equal.	This	second	implication	establishes	that	line	AB	is
parallel	to	CD.



In	this	argument,	once	again,	one	sees	the	common	pattern	illustrated	in	Chapter
1.	One	performs	a	measurement,	drawing	the	line	from	B	to	D,	and	then
identifies	a	series	of	mathematical	relationships,	to	establish	the	conclusion.

Figure	4
	Proposition	34	is	a	partial	converse.	It	states:

“In	parallelogramic	areas	the	opposite	sides	and	angles	are	equal	to	one	another,
and	the	[diagonal]	bisects	the	areas.”17

Once	again,	one	draws	the	diagonal	to	divide	the	parallelogram	into	two
triangles.	One	argues	that	the	triangles	are	congruent.	In	light	of	basic	properties
of	parallel	lines,	one	argues	that	various	angles	are	equal.	One	applies
Proposition	I.26	to	conclude	that	the	triangles	are	congruent.	The	rest	follows
from	congruence	of	the	triangles:



Figure	5

Taken	together,	these	propositions	complete	one’s	knowledge	of	the	key
properties	of	parallel	lines.	And	they	complete	the	prerequisites	for	Euclid’s
theory	of	area.

The	properties	of	parallel	lines	are	the	foundation	of	Euclid’s	theory	of	areas	and
volumes.	To	that	development	I	turn.

Euclid’s	Analysis	of	Geometric	Area

Chapter	2	took	an	avowedly	geometric	approach	to	numbers.	It	focused	much
more	on	the	quantities	that	numbers	measure	and	less	on	the	numerical
expressions	of	these	measurements.	It	focused	on	magnitudes	from	the
perspective	of	measurement	and	on	measurement	from	the	perspective	of	its
object.	But,	compared	to	Euclid,	the	chapter	was	very	number	oriented.	For	all
its	focus	on	the	geometric	perspective,	and,	indeed,	for	all	its	debt	to	Euclid,
Chapter	2	was	a	modern	perspective,	very	much	not	in	the	spirit	of	Euclid’s



Elements,	particularly	in	its	analysis	of	area.

Chapter	2	treated	the	measurement	of	area,	as	it	relates	to	multiplication,	and
ratio,	as	a	relationship	of	magnitudes.	And	Chapter	2	did	not	apply	ratio	to
geometric	proportion.	In	contrast,	Euclid	develops	his	theory	of	area	in
exclusively	geometric	terms	and	uses	it,	together	with	his	theory	of	ratio,	to
establish	his	theory	of	geometric	proportion,	Euclid’s	epochal,	path-breaking
treatment	of	area	and	proportion	epitomizes,	perhaps	more	than	any	other	aspect
of	his	work,	Euclid’s	distinctive	approach	to	measurement.

The	measurement	of	area	as	we	know	it	depends,	inescapably,	on	the	nature	of
parallel	lines.	So,	of	necessity,	my	approach	in	Chapter	2	depends	on	the	nature
of	parallel	lines.	But	Chapter	2	hides	that	dependency,	even	while	hiding	it	in
plain	sight.	The	modern	approach,	which	one	takes	completely	for	granted,	is	to
count	squares	or	rectangles,	as	I	did	in	Chapter	2.	One	knows	that	rectangles	and
squares	are	bound	by	two	pairs	of	parallel	lines.	But	who	would	notice	that	the
nature,	the	very	existence,	of	squares	and	rectangles	reflect	the	existence	and
nature	of	parallel	lines?

In	this,	and	other	ways,	Euclid	stands	in	stark	contrast	to	modern	approaches.	In
Euclid’s	treatment,	parallel	lines	take	center	stage.

The	Eudoxus/Euclid	theory	of	ratio,	offered	in	Book	V,	is	certainly	about
magnitudes,	but	it	is	not	specific	to	geometric	magnitudes	(such	as	length	or
area)	and	is	independent	of	the	parallel	postulate.	But	the	application	of	ratios	to
similar	triangles,	Euclid’s	theory	of	geometric	proportion,	flows	directly	from
his	theory	of	area,	developed	in	Books	I	and	II.	And	the	reliance	of	Euclid’s
theory	of	area	on	the	nature	of	parallel	lines	is	evident	from	his	very	first
proposition	on	area.	In	sum,	his	entire	theory	of	area	derives	explicitly	from
fundamental	properties	of	parallel	lines.

The	Eudoxus/Euclid	theory	of	proportion	is	one	of	the	towering	achievements	of
Greek	geometry.	It	is	the	base	of	trigonometry,	of	our	ability	to	measure
astronomic	and	microscopic	distances	and	other	geometric	relationships.	It
provides	the	mathematical	foundation	for	astronomy,	navigation,	geographic
mapping,	and	all	of	the	physical	sciences.	We	appeal	to	it	whenever	we	make	an
architectural	drawing,	a	scale	model	or	scale	drawing	of	any	kind.	And	the	entire
edifice	rests	on	Eudoxus’s	theory	of	ratio	and	Euclid’s	theory	of	area,	resting,	in
turn,	on	his	theory	of	parallel	lines.



Euclid’s	development	of	area	and	of	geometric	proportion	is	clear	and	beautiful
in	its	elegance.	But,	as	I	noted	in	Chapter	1,	Euclid	had	a	tendency	to	focus	on
the	means	of	measurement	at	the	expense	of	the	object	of	measurement,
focusing,	for	example	on	lines	and	circles	without	mentioning	the	directions	and
distances	that	they	measure.	This	tendency	is	particularly	noticeable	in	Euclid’s
treatments	of	ratio	and	area.	Thus	Euclid	expounds	Eudoxus’s	theory	of	ratio
without	ever	telling	us	what	a	ratio	is.	For	example,	are	ratios	numbers?	Or	are
they	only	sort	of	like	numbers?	Or	are	they	something	else	entirely?

I	provided	and	explicated	Euclid’s	essential	definitions	regarding	ratio	in
Chapter	2.	I	showed	just	why	they	make	the	distinctions	that	one	needs	to	make,
why	they	make	sense,	how	they	relate	to	the	Axiom	of	Archimedes,	and	how
they	relate	to	a	more	modern	perspective.	But,	from	Euclid’s	presentation	of
these	definitions,	one	knows	only	that	two	ratios	can	be	equal	or,	if	they’re	not
equal,	that	one	is	larger	than	the	other	one.

Euclid	certainly	offers	a	criterion	to	determine	which	alternative	holds	in	any
given	instance.	But,	one	of	the	ratios	is	larger?	In	what	respect	is	it	larger?	Can
one	ratio	be	twice	a	second	ratio?	What	does	it	actually	mean	to	be	larger?	No
answer	is	given.	Eudoxus	and	Euclid	knew	what	problem	they	were	trying	to
solve	and	I	must	presume	that	they	understood	how	the	definitions	solved	their
problem.	But	Euclid	did	not	articulate	their	reasons	and	one	is	left	with
apparently	arbitrary	definitions	as	the	foundation	for	the	most	consequential
propositions	in	the	entire	Euclidean	corpus.

Similarly,	Euclid	develops	his	theory	of	area	without	ever	telling	us	what	area
is.	Euclid	tells	us	that	two	triangles	are	“equal”	in	cases	where	they	are	clearly
not	congruent.	But	he	never	tells	us	in	what	respect	they	are	equal.	The	very
word	“area”	is	missing.

In	both	its	virtues	and	its	flaws,	Euclid’s	development	of	area	and	geometric
proportion	epitomize	Euclid’s	distinctive	approach	to	measurement.	It	is
important	and	instructive	to	understand	that	approach,	to	appreciate	both	its
signal	virtues	and	its	limitations.

Euclid’s	Geometric	Treatment	of	Area

I	emphasize	in	Chapter	1	that	Euclid’s	geometry	proceeds	without	ever	selecting
a	standard	of	measurement.	Yet	there	is	a	kind	of	measurement,	an	abstract	form



a	standard	of	measurement.	Yet	there	is	a	kind	of	measurement,	an	abstract	form
of	measurement,	behind	every	proposition.	Every	proposition	expresses	a
quantitative	relationship	and	every	argument	is	a	chain	of	abstract	measurements
that	establishes	or	prescribes	a	quantitative	relationship.	In	pattern,	Euclid	argues
things	like

●	two	geometric	magnitudes	(length	or	angles)	are	equal,	●	one	magnitude	is
greater	than	another,
●	a	magnitude	is	divided	into	a	number	of	equal	pieces,	●	or	the	sum	of	two
magnitudes	is	greater	than	another

magnitude.

As	an	example	of	this	last,	the	celebrated	and	important	“triangle	inequality”,
Euclid’s	Proposition	20,	states	“In	any	triangle	two	sides	taken	together	in	any
manner	are	greater	than	the	remaining	one.”18

I	have	made	much	of	the	fact	that	Euclid	makes	all	of	these	judgments	without
choosing	or	even	alluding	to	a	standard	of	measurement	except	in	the	case	of
angles	where	he	really	had	no	choice.

Euclid’s	approach	to	area	follows	the	same	pattern.	Without	formally	defining	or
otherwise	indicating	the	quantity	he	is	discussing,	Euclid	begins	his	discussion
of	area	without	acknowledging	or	even	hinting	that	he	has	introduced	a	new	kind
of	geometric	relationship.	In	effect,	Euclid	relies	on	an	ostensive	definition,	as
he	had	implicitly	done	for	length	and	direction.	As	Heath,	in	his	notes,	puts	it,
Euclid	introduces	a	new	kind	of	equality.19	Euclid	does	not	explain	what	this
new	equality	is	comparing	and,	in	this	respect,	his	treatment	is	a	puzzle	left
entirely	to	the	reader.	Nonetheless,	once	one	grasps	that	he	is	talking	about	area,
one	can	follow	his	reasoning.	Euclid’s	discussion	covers	enough	ground	that,	by
the	end	of	Book	I,	without	ever	producing	a	formula	for	area,	Euclid	was	able	to
prove	the	fundamental	Pythagorean	Theorem	as	expressing	a	relationship
between	the	areas	of	certain	squares.

Book	II	developed	the	theory	of	area	further,	but	there	is	a	limit	to	what	Euclid
could	say	without	a	theory	of	ratio.	Later,	having	developed	a	theory	of	ratio	in
Book	V,	Euclid	returned	to	complete	his	account	of	area,	among	other	related
topics,	in	Book	VI	and	provided	the	underpinnings	of	the	modern	formulas	for
area.



Euclid’s	treatment	of	area	is	no	longer	in	the	curriculum.	The	modern	focus	is	on
formulas	involving	numbers	that	one	attaches	to	lengths,	areas,	and	volumes.
One	is	asked	to	memorize	formulas	for	the	areas	of	rectangles,	triangles,
parallelograms,	circles,	and	the	surface	of	a	sphere,	with	or	without
understanding	these	formulas.	If	an	attempt	is	made	to	justify,	say,	the	formula
for	the	area	of	a	rectangle,	the	standard	approach	is	to	count	squares,	as	I	did	in
Chapter	2	in	my	discussion	of	magnitude.	If	this	were	done	before	the	formula	is
provided	to	be	memorized,	and	if	some	attempt	were	made	to	lead	the	student	to
such	an	approach,	counting	squares	is	a	good	way	to	look	at	measuring	area.	But
something	is	still	lost	if	one	doesn’t	also,	at	some	point,	look	at	it	from	Euclid’s
perspective.	Measurement	is	a	form	of	identification	but	in	one’s	haste	to	apply	a
number	it	is	too	easy	to	lose	sight	of	the	reality	that	these	numbers	are	used	to
measure.

(And	the	worst	thing	one	can	do	is	to	simply	start	with	a	formula,	treating	it	as
though	nothing	beyond	simply	memorizing	it	were	necessary,	aborting	the
process	of	understanding	before	it	can	begin.)

Its	shortcomings,	notwithstanding,	once	one	grasps	that	Euclid	is	discussing
area,	one	never	loses	sight	of	the	geometric	property	under	investigation.

Euclid	begins	with	Proposition	35,	which	reads:
	“Parallelograms	which	are	on	the	same	base	and	in	the	same	parallels	are	equal
to	each	other.”20

Equal	in	what	respect?	Euclid	is	talking	about	area,	even	though	he	never	tells
us.	Most	importantly,	he	is	not	talking	about	equality	of	numbers.

The	argument	is	outlined	in	Figure	6.	Euclid,	ingeniously,	creates	a	figure	that
contains	both	parallelograms.	He	then	subtracts,	in	turn,	two	distinct	triangles
from	the	composite	figure	leaving,	alternately,	the	respective	parallelograms.
Since	the	triangles	that	he	subtracts	are	congruent	and,	therefore,	have	the	same
area,	the	remainders,	the	two	parallelograms,	have	the	same	area.	Only	Euclid
says	nothing	about	area;	he	doesn’t	give	us	the	word	and	the	reader	is	left	on	his
own	to	infer	the	concept.

The	triangles	are	congruent	because	of	the	properties	of	parallel	lines.	Parallel
lines	are	essential	to	Euclid’s	development	of	areas	and	the	appeal	to	these
properties	of	parallel	lines	begins	with	his	first	proposition	(i.e.,	Proposition	35)
concerning	areas.



concerning	areas.

In	what	follows,	I	will	quote	Euclid’s	propositions	as	they	stand	in	translation.
But	I	will,	in	my	discussions	of	Euclid’s	arguments,	supply	the	word,	area,	that
Euclid	leaves	out.

Figure	6

Interestingly,	Euclid	has	not	demonstrated	a	way	to	cut	one	of	the	parallelograms
into	pieces	to	reassemble	one	into	the	other.	Yet	his	demonstration,	if	one
follows	it,	is	perhaps	more	convincing	than	if	he	had.	His	recipe	works	by
cutting	something	out	of	a	bigger	figure.	If	one	cuts	out	a	triangle	in	one	way,
one	gets	the	first	parallelogram;	if	one	cuts	out	a	different	triangle,	of	the	same
shape	and	size,	another	way,	one	gets	the	second.	The	remainders	must	be	equal
in	both	cases.

“Equals	subtracted	from	equals	are	equal,”	is	the	pivot	point	of	an	argument	that
could	easily	be	taken	as	either	meaningless	or	equivocal.	It	is	a	statement	that
pertains	to	magnitudes,	not	to	shape.	Yet	up	until	now,	Euclid’s	comparisons	of
shape	have	either	involved	congruence	or	have	focused	on	various	parts	of	the
shapes:	the	edges	and	angles.

In	this	case,	the	figures	that	Euclid,	alternatively,	subtracts	from	the	larger	shape
have	exactly	the	same	shape	and,	therefore,	are	equal	in	all	geometric	respects,



have	exactly	the	same	shape	and,	therefore,	are	equal	in	all	geometric	respects,
including	area.	The	figures	that	alternatively	remain	have	different	shapes.	But,
one	realizes,	their	areas	are	equal.	When,	and	if,	it	occurs	to	one	that	Euclid	is
talking	about	area,	one	realizes	that	the	apparent	equivocation,	properly
understood,	is	not	an	equivocation.

Euclid	is	making	measurements	in	the	general	sense	that	I	have	called	abstract
measurement	and	he	is	doing	so	without	anything	more	than	an	ostensive
definition	of	what	he	is	talking	about.	Indeed,	as	ostensive	definitions	go,	this
one	is	completely	implicit.	Euclid	is	measuring	…	something.	And	there	is
nothing	else	that	he	could	be	measuring,	that	could	be	equal	in	the	two
alternative	shapes,	but	the	area	of	those	shapes.

I	pointed	out	in	Chapter	1	that	Euclid	focuses	more	on	lines,	angles,	and	circles
than	on	what	he	uses	them	to	measure.	Four	of	his	five	postulates	measure
direction,	yet	his	closest	use	of	the	concept,	direction,	is	to	identify	the	two
directions	along	a	line	from	a	point	on	that	line.

Euclid	follows	the	same	pattern	with	area.	He	does	not	introduce	the	word
“area,”	he	merely	maintains	that	two	triangles	are	equal	or	that	two
parallelograms	are	equal.	He	does	not	name	the	respect	in	which	they	are	equal.
He	simply	introduces	without	notice,	as	Heath	puts	it,	“a	new	conception	of
equality	between	figures.”21

Proposition	36	takes	the	next	step:
	“Parallelograms	which	are	on	equal	bases	and	in	the	same	parallels	are	equal	to
each	other.”22

Again,	the	picture	(Figure	7)	tells	the	story.	Euclid	leverages	Proposition	35,	the
properties	of	parallel	lines,	and	the	common	notion,	“Things	which	are	equal	to
the	same	thing	are	equal	to	each	other.”



Figure	7

Once	(and	if)	one	grants	and	grasps	Proposition	35,	the	rest	is	easier.
Euclid	continues	in	the	same	vein,	proving,	for	example,	Proposition	38:

“Triangles	which	are	on	equal	bases	and	in	the	same	parallels	are	equal	to	each
other.”23
	And	Proposition	41:

“If	a	parallelogram	have	the	same	base	with	a	triangle	and	be	in	the	same
parallels,	the	parallelogram	is	double	of	the	triangle.”24

So	far,	Euclid	can	compare	areas	of	parallelograms	or	triangles	only	when	they
fit	between	the	same	pair	of	parallel	lines	and	have	their	base	on	one	of	those
lines.	It’s	a	start,	but	only	a	start.	However	there	is	a	surprisingly	simple	device
that	breaks	down	this	barrier	and	it’s	based	upon	Proposition	43:	“In	any
parallelogram	the	complements	of	the	parallelograms	about	the	diameter	are
equal	to	one	another.”25

Figure	8	shows	what	this	means:
	



Figure	8

Euclid	is	still	subtracting	equals	from	equals,	but,	by	now,	one	knows	what	he	is
measuring.
Proposition	43	is	important	because	the	two	equal	parallelograms	are	neither	the
same	shape	nor	do	they	lie	in	the	same	parallels.	And	it	provides	the	key	to	the
following	problem:	Given	a	parallelogram	and	two	parallel	lines,	find	another
parallelogram,	one	of	equal	area,	between	the	two	parallel	lines.	Figure	9	details
the	construction:



Figure	9

With	this	result,	Euclid	still	doesn’t	have	a	formula,	but	he	has	found	a
geometric	process,	an	abstract	measurement,	for	comparing,	by	construction,	the
areas	of	any	two	rectilinear	figures.

Book	I,	on	the	basis	of	his	propositions	on	measuring	area,	culminates	in	the
fundamental	Pythagorean	Theorem,	Proposition	47:

“In	right-angled	triangles	the	square	on	the	side	subtending	the	right	angle	is
equal	to	the	squares	on	the	sides	containing	the	right	angle.”26

As	I	have	noted	earlier,	the	Pythagorean	Theorem	is	not,	for	Euclid,	a	formula
relating	the	sides	of	the	triangle;	he	does	not	have	such	a	formula.	The
proposition	offers,	rather,	a	formula	about	equality	of	areas,	that	the	square	on
one	side,	the	hypotenuse,	is	equal	to	the	sum	of	the	squares	on	the	other	two
sides.	To	emphasize	further:	This	is	not	a	sum	of	numbers,	but,	specifically,	of
areas.

Euclid’s	conclusion	derives	from	a	rather	long	series	of	equalities,	but	each	such
equality	is	established	by	way	of	direct	comparisons	of	geometric	shapes	with
the	aid	of	Euclid’s	Common	Notions.



At	this	juncture,	a	picture	will	be	helpful	to	show	specifically	what	the
Pythagorean	Theorem	is	saying.
	

Figure	10

The	triangle	in	Figure	10	is	a	right	triangle	with	a	right	angle	at	the	top.	The
letters	A,	B,	and	C	represent	areas	of	squares.	Euclid	has	developed	ways	to
compare	areas,	but	has	not	provided	a	way	to	quantify	them,	to	attach	numbers
to	them.	Nonetheless,	his	propositions	to	this	point	are	sufficient	to	argue	that

Area	A	+	Area	B	=	Area	C

Euclid’s	proof	is	difficult	to	follow.	But	in	the	Euclidean	spirit,	I	offer	a	well-
known	alternative	that	makes	the	theorem	almost	obvious	visually.	It’s	roughly
in	Euclid’s	spirit	because	it	only	depends	upon	re-arranging	various	geometric
shapes.	In	Figure	11,	compare	the	first	figure	on	the	left	with	the	last	one	on	the
right.	If	the	four	triangles	are	removed	from	each,	the	remainders	are	the	square
on	C,	in	the	first	figure	and	the	squares	on	the	other	two	sides	(A	and	B)	in	the
last	figure.



Figure	11

Like	Euclid’s	proof,	but	more	transparently,	this	figure	expresses	the	meaning
and	demonstrates	the	truth	of	the	Pythagorean	Theorem	by	means	of	a	process	of
abstract	measurement.	In	general,	Euclid	compares	figures	by	direct	and	indirect
means	according	to	their	equality	or	inequality,	establishing	his	quantitative
relationships	by	a	series	of	such	comparisons.	In	its	deepest	sense,	this	is	the
essence	of	measurement,	considered	as	a	process.

As	a	final	comment,	it	is	well	known	that	the	validity	of	the	Pythagorean
Theorem	depends	upon	the	Parallel	Postulate	and	the	properties	of	parallel	lines.
Thus,	it	is	appropriate	that	it	comes	out	of	Euclid’s	treatment	of	area	which,
itself,	depends	upon	the	Parallel	Postulate.

Book	II	continues	the	study	of	area,	carrying	it	as	far	as	Euclid	can	without	a
theory	of	ratio.	From	a	general	point	of	view,	the	most	interesting	Proposition
provides	the	appropriate	extensions	of	the	Pythagorean	Theorem	to	the	more
complex	statement	that	applies	to	more	general	triangles.27	(See	also	Chapter	7.)
But,	for	my	present	purposes,	the	most	interesting	Proposition	is	the	last,
Proposition	II.14,	which	I	quote	without	proof:



“To	construct	a	square	equal	to	a	given	rectilineal	figure.”28

Prior	to	this	final	conclusion,	Euclid	could	find	a	rectangle,	of	any	prescribed
height,	equal	in	area	to	a	given	rectilineal	figure.	With	II.14	he	can	construct	the
unique	equal	rectangle	that	is	also	a	square.	Yet	he	still	doesn’t	have	a	formula
or	a	way	of	identifying	an	area	numerically!

For	Euclid,	finding	a	square	equal	to	a	given	area	is	measuring	the	area.	Indeed,
when	the	Greeks	spoke	of	“squaring	the	circle,”	they	were	asking	for	a	way	to
construct	a	square	that	would	have	the	same	area	as	a	circle.	The	problem,	as
posed,	as	being	executed	by	straight	edge	and	compass,	cannot	be	solved.	It	was
left	for	Archimedes	to	do	the	next	best	thing:	He	proved	that	the	area	of	a	circle
was	equal	to	that	of	a	right	triangle	with	one	leg	equal	to	the	circumference	of
the	circle	and	the	other	equal	to	its	radius.29

In	this,	Archimedes	looked	both	forwards	and	backwards.	He	looked	backwards
in	the	way	that	he	specified	his	answer.	He	looked	forwards	in	using	a	limiting
process	(Eudoxus’s	method	of	exhaustion)	to	measure	something	that	straight
edge	and	compass	could	not.	Archimedes	could	specify	the	dimensions	of	the
triangle;	but	he	could	not	construct	it.

Euclid’s	strengths	were	his	focus	on	the	geometry	and	his	systematic,	if	only
implicit,	use	of	abstract	measurement	to	reach	his	conclusions.	His	essential
weaknesses,	beyond	the	Platonic	elements	of	his	work,	were	two.	The	first,
introducing	fundamental	quantities	without	even	naming	them,	I	have	already
mentioned.	The	other	was	his	steadfast	avoidance	of	units.	In	order	to	provide	a
formula,	e.g.,	a	formula	for	area,	one	must	multiply	numbers.	But	even	before
that,	one	must	have	assigned	numbers	to	lengths	and,	continuing	the	example,	to
assign	a	number	to	a	length,	one	must	first	choose	units.

Even	in	Book	VII,	in	which	Euclid	presents	number	theory	(illustrated	to	look
like	geometry)	Euclid	only	goes	half	way.	In	Book	VII	Euclid	assumes	a	unit,	a
specific	magnitude	that	divides	every	other	magnitude	under	discussion.	By
intention	and	explicit	definition,	Euclid	treats	his	unit	as	the	number	one	or,
more	precisely,	as	something	that	is	“called	one.”30	Still,	the	principal	use	of
units	in	Book	VII,	for	example	in	his	proof	of	VII.2,	the	famous	Euclidean
Algorithm,	is	to	insure	that	various	repeating	processes	must	terminate.31	It	is
not,	as	one	might	have	expected,	so	that	he	can	assign	numbers	to	lengths.



More	generally,	Euclid	does	not	motivate	his	concepts.	As	one	early	important
example,	at	the	beginning	of	Book	I,	he	offers	a	definition	of	parallel	lines
without	providing	a	reason	to	think	that	pairs	of	lines	satisfying	his	definition
actually	exist	and	without	explaining	why	one	should	care	or	what	the	concept
measures.32In	the	case	of	area,	Euclid	omits	to	even	name	the	concept	and	leaves
the	reader	to	figure	out,	on	his	own,	what	Euclid	is	talking	about.

Euclid,	unlike	the	moderns,	does	not	measure	area	by	counting	squares.	He	does
not	provide	a	way	to	use	numbers	to	identify	area.	Yet	measuring	relationships
involving	areas	was	important	to	him;	first,	as	another	aspect	of	measuring	area,
but	also	because	his	theory	of	geometric	proportion	depended	on	it.	To	this
subject	I	turn.

Ratios	and	the	Theory	of	Geometric	Proportion
Introduction

Book	V	presents	Euclid’s	theory	of	ratio	(after	Eudoxus)	and	lays	the	foundation
for	Book	VI.	I	will	not	repeat	the	elucidation	of	Euclid’s	key	Book	V	definitions
that	I	provided	in	Chapter	2.	However,	it	is	worth	pausing	to	understand	what
was	at	stake;	why	the	complexity	of	Book	V	was	necessary,	why	solving	the
problem	of	ratio	was	so	important,	and	just	in	what	ways	Euclid’s	presentation
of	the	solution	(a	solution	due,	at	least	in	part,	to	Eudoxus)	was	so	typical	of
Euclid’s	approach.

The	power	of	indirect	measurement	is	a	major	legacy	of	Euclidean	geometry	and
its	crown	jewel	is	the	theory	of	geometric	proportion,	presented	in	Euclid’s	Book
VI.

The	theory	of	geometric	proportion	is	at	least	as	old	as	Pythagoras.	But	the
Pythagorean	theory	of	geometric	proportion	had	collapsed,	ironically	by	virtue
of	two	path-breaking	discoveries	by	the	Pythagoreans	themselves.	One	of	these
was	the	celebrated	Pythagorean	Theorem	relating	the	sides	of	a	right	triangle	to
its	hypotenuse.	And	the	other	was	the	finding	that√2	is	irrational,	that	the
diagonal	of	a	square	is	incommensurate	with	its	sides.

Beyond	the	bare	outlines	of	this	story,	little	is	known	definitely;	the
Pythagoreans	left	no	direct	record	of	their	work.	The	knowledge	of	the
Pythagorean	Theorem	and	the	irrationality	of√2,	were	not	lost,	and	a	satisfactory
demonstration	of	geometric	proportion	was	left	as	a	challenge	for	future



demonstration	of	geometric	proportion	was	left	as	a	challenge	for	future
geometers.	But	one	can	only	guess	at	the	Pythagorean	approach	to	geometric
proportion	and	any	guess	is	speculative.

Nonetheless,	it	is	easy	enough	to	speculate	and	I	offer	one	possibility,	not	as	a
serious	hypothesis,	but	only	as	a	way	of	illustrating	the	kind	of	approach	one
might	have	taken	prior	to	the	work	of	Eudoxus.	My	purpose	in	doing	so	is,	by
shedding	some	light	on	the	kind	of	issue	that	the	Pythagoreans	faced,	to	better
appreciate	the	contributions	of	Eudoxus	and	Euclid.

The	Commensurate	Case

Book	VII	of	Euclid’s	Elements	is	thought	to	contain	the	earlier	Greek	approach
to	measuring	proportion,	the	approach	to	ratio	that	predates	the	discoveries	of
Eudoxus	presented	in	Euclid’s	Book	V.	So	I	start	with	the	essential	definitions
for	Book	VII.	Definition	20	in	Book	VII	reads:

“Numbers	are	proportional	when	the	first	is	the	same	multiple,	or	the	same	part,
or	the	same	parts,	of	the	second	that	the	third	is	of	the	fourth.”

By	way	of	further	explication:

Definition	1:	“An	unit	is	that	by	virtue	of	which	each	of	the	things	that	exist	is
called	one.”	Definition	2:	“A	number	is	a	multitude	composed	of	units.”
Definition	3:	“A	number	is	a	part	of	a	number,	the	less	of	the	greater,	when	it
measures	the	greater;”	Definition	4:	“but	parts	when	it	does	not	measure	it.”

In	modern	terms,	if	A,	B,	C,	D	are	the	four	numbers	involved,	Euclid’s	concept
of	proportional	amounts	to	A/B	=	C/D.	But,	though	Euclid	speaks	of	numbers,
what	he	shows	is	line	segments.	These	segments	serve	to	represent	numbers,
according	to	Definition	2,	because	they	are	all	considered	to	be	multiples	of
some	common	unit	a	length	“that	is	called	one.”

And	notice	that	it	is	not	obvious	what	Euclid	is	actually	referring	to.	For
example,	is	5	a	number?	Or	is	a	collection	of	5	things	a	number?	If	Euclid	draws
a	line	segment	that	is	5	times	the	length	of	another	line	segment	designated	as
the	unit,	is	the	line	segment	a	number	because	Euclid	thinks	of	it	as	a	multitude
of	5	units?	Or	is	it	just	a	line	segment	that	happens	to	be,	and	is	taken	to	be,	5
times	the	length	of	his	chosen	unit.	Clearly,	today,	we	would	say	that	5	is	a



number	and	a	multitude	is	something	like	a	collection	for	which	numbers	are
used	to	count.	But	Euclid’s	formulation	says	that	the	number	is	the	multitude
(the	5	things),	or,	in	Book	VII,	the	measured	length,	not	the	count	(5)	of	the
multitude.	According	to	Euclid,	as	I	take	it,	5	is	not	a	number.	Rather,	a
collection	of	5	marbles	is	a	number,	each	individual	marble	being	called	one.

In	Book	V,	Euclid	speaks	of	equal	ratio.	In	Book	VII,	he	does	not.	Rather,	he
speaks	of	two	pairs	of	numbers	being	proportional.	His	generic	term,	“parts”,	is
used	descriptively	in	relation	to	a	common	measure;	and	I	take	the	use	of	the	two
different	terms,	proportional	and	ratio	to	be	deliberate.

As	I	read	Euclid,	if	A	=	3	and	B	=	7,	he	might	say	that	A	is	3	parts	out	of	7.	Yet
if	C	=	6	and	D	=	14,	he	would	say	that	A,	B,	C,	and	D	are	proportional,	i.e.,	that
3	is	the	same	parts	out	of	7	as	6	is	of	14.	For	this	to	make	sense,	one	needs	to
imagine	that	each	part	of	14	consists	of	two	units,	so	that	14	has	seven	2-unit
parts	and	6	includes	three	2-unit	parts.	So,	if	a	single	part	of	14	contains	2	units,
then	6	is	3	parts	out	of	the	seven	2-unit	parts	of	14.	Again,	in	modern	terms,
Euclid	is	essentially	saying	that	if	each	pair	is	reduced	to	lowest	terms,	then	the
corresponding	terms	resulting	reduced	fractions	are	identical.

I	offer	these	translations	purely	to	relate	the	Greek	concept	to	our	modern
perspective.	However,	the	Greeks	did	not	look	at	it	the	way	we	do.	Rather,	they
thought,	implicitly,	of	a	relationship	between	two	numbers.	And	that
relationship	was	specified	when	one	could	find	the	largest	common	divisor,	the
largest	number	dividing	both	numbers,	or,	in	Euclid’s	terms,	“greatest	common
measure”.	So,	if	A	=	6	and	B	=	14,	then	the	greatest	common	measure	of	A	and
B	would	be	2.	So,	taking	each	repetition	of	the	common	measure	as	a	“part”,	one
would	say	that	B	has	7	parts	and	that	A	is	3	parts	of	7.

Euclid’s	Book	VII,	Proposition	2	offers	an	algorithm	(a	series	of	repeatable	steps
known	today	as	the	“Euclidean	Algorithm	to	find	this	common	measure	and	this
algorithm	is	the	foundation	of	Book	VII.

It	is	the	existence	of	a	common	measure	that	makes	two	segments
commensurate.	Simply	put,	two	line	segments	are	commensurate	when	the
Euclidean	algorithm	terminates.	At	that	point	one	has	found	the	greatest
common	measure.	If	the	process	never	ends,	as	in	the	case	when	A	is	the	side	of
a	square	and	B	is	the	diagonal,	then	there	is	no	common	measure	and	the	two
line	segments	are	incommensurate.	This	is	not	an	issue	in	Book	VII	because



Euclid	there	assumes	throughout	that	all	of	his	segments	represent	numbers,	that
is,	that	they	are	all	multiples	of	a	particular	line	segment	called	the	“unit”	and
representing	1.	Numbers,	as	multiples	of	one,	are	always	commensurate	and	the
Euclidean	Algorithm	will	always	terminate.	The	unit	will	not,	in	general,	be	the
greatest	common	measure,	but	it	is	always	a	measure.

Now,	how	might	all	of	this	apply	to	similar	triangles?	Why	might	the	ability	to
find	a	common	measure	be	relevant	to	geometric	proportion?

Suppose	two	triangles	of	the	same	shape	are	given	and	that	one	can	find	a
common	measure	of	the	base	of	each.	In	this	case,	one	demonstrates	that	their
sides	are	in	geometric	proportion	in	three	steps.	Step	1:

Figure	12

Step	2	is	to	use	the	common	measure	of	the	respective	bases	to	cut	off	congruent
triangles	from	each:
	



Figure	13
	Step	3	is	to	fill	each	triangle	with	the	smaller	triangles:
	

Figure	14

In	Step	3,	as	one	adds	each	column	of	smaller	triangles,	successively	to	the	right,
within	each	triangular	figure,	notice	that	every	additional	column	has	one	more
level	of	small	triangles	than	the	previous	column.	So,	in	this	construction,	the



level	of	small	triangles	than	the	previous	column.	So,	in	this	construction,	the
number	of	rows	within	each	figure	will	always	be	equal	to	the	number	of
columns.	It	follows,	that	A	and	B	will	have	the	same	number	of	divisions	and
that	C	and	D	will	have	the	same	number	of	divisions.	Also,	the	size	of	the
divisions	of	A	are	the	same	size	of	the	divisions	of	C	and,	similarly,	for	B	and	D.
It	follows	that	A	is	to	C	(3	horizontal	units	to	horizontal	2	units)	as	B	is	to	D	(3
vertical	units	to	2	vertical	units).	Which	is	to	say	that	A,	C,	B,	D	are
proportional.	That,	in	the	language	of	Euclid	Book	V,	the	ratio	of	A	to	C	is	equal
to	the	ratio	of	B	to	D.	This	is	geometric	proportion.

The	essential	point	is	that	this	analysis	required	finding	a	common	measure
between	A	and	C	to	get	off	the	ground.	When	this	is	possible	between	two
lengths,	these	lengths	are	said	to	be	commensurate.	If	not,	the	lengths	are
incommensurate.

In	modern	terms,	once	again,	if	two	lengths	are	commensurate,	their	ratio	is	a
rational	number.	If	they	are	incommensurate,	their	ratio	is	an	irrational	number.

Pythagoras	had	assumed,	and	needed	to	assume	that	one	could	always	find	a
common	measure.	Fundamentally,	before	the	work	of	Eudoxus,	to	even	speak	of
equal	ratio,	one	had	to	count	units.	To	speak	of	A	being	parts	of	B,	you	had	to
find	a	common	measure	of	both	segments,	at	which	point	you	could	count	the
instance	of	that	common	measure	in	each	segment.	Until	one	could	speak
meaningfully	of	equal	ratio	in	incommensurate	line	segments,	it	was	not	even
possible	to	formulate,	much	less	demonstrate,	a	general	statement	of	equal
proportion	for	similar	triangles.

When	Pythagoras	famously	said,	“All	is	number,”	he	stated	his	major	premise.
He	was	essentially	saying	something	to	the	effect	that	all	relationships	can	be
reduced	to	number,	are,	at	bottom,	numerical,	reducible,	indeed,	to	whole
numbers	(positive	integers).	And	this	would	certainly	include	the	view	that	every
pair	of	lengths	has	a	common	measure.	The	subsequent	discovery	of	a	counter-
example,	the	discovery	that	the	square	root	of	two	is	irrational,	that	the	diagonal
of	a	square	is	incommensurate	with	its	sides,	struck	a	blow	to	the	heart	of	the
Pythagorean	approach.33

The	Eudoxus/Euclid	Theory

Now	consider	the	first	Proposition	in	Book	VI:



Now	consider	the	first	Proposition	in	Book	VI:
	“Triangles	and	parallelograms	which	are	under	the	same	height	are	to	one
another	as	their	bases.”34

Figure	15	illustrates	Proposition	VI.1	for	triangles	sharing	the	same	apex.	As	we
saw	(in	Proposition	I.38),	when	the	bases	are	equal,	the	areas	are	equal.	As	a
result,	if	the	base	of	one	triangle	is	three	times	the	other,	then	it	has	three	times
the	area.	The	same	reasoning	applies	to	subdivisions	of	the	base	and,	by	a	further
implication,	to	any	two	triangles	for	which	the	respective	bases	are	related	by	a
ratio	of	whole	numbers.	Finally,	although	my	picture	shows	triangles	that	share
the	same	apex,	the	only	thing	that	matters	to	the	conclusion	is	that	they	have	the
same	height,	that	they	are	bounded	by	the	same	pair	of	parallel	lines.

But	what	if	the	bases	of	two	triangles	are	incommensurate?	The	existence	of	this
possibility	is	the	reason	for	Euclid’s	Book	V;	the	reason	that	the	all-important
theorems	on	proportion	can	only	appear	after	the	developments	in	Book	V.

Figure	15

Euclid	used	Eudoxus’s	definition	of	equal	ratio	to	present	a	new	theory	of
proportion,	not	subject	to	this	limitation.	Euclid	believed	that	the	meaning	of
equal	ratio	coincided	with	the	previous	concept	of	proportional	for
commensurate	magnitudes.	We	know	this	because,	he	tells	us	so	in	Book	X,



proposition	5.	(His	proof	of	that	proposition	is	rightly	considered	incomplete,	but
not	fatally	so.)35	Presumably,	Euclid	was	aware,	as	well,	that	his	definition	of
greater	and	lesser	ratio	also	coincided	with	the	older	definition	when	applied	to
commensurate	magnitudes,	that	greater	ratio	would	correspond	to	more	parts,
and	lesser	ratio	to	fewer	parts.	In	the	case	of	ratio,	unlike	the	case	of	area,
Euclid	at	least	gives	us	the	word	(ratio)	In	Book	V.	But,	as	with	his	conception
of	area,	Euclid	does	not	tell	us	what	a	ratio	is.

Euclid’s	definition	(from	Eudoxus)	of	equal	ratio	made	sense	to	him,	made	sense
to	Archimedes,	and,	perhaps,	made	sense	to	some	others.	But	its	formulation	is
notoriously	obscure.	Only	in	the	late	nineteenth	century	was	it	re-introduced,
albeit	in	a	different	form,	as	Dedekind	cuts.36

For	all	the	apparent	arbitrariness	of	these	definitions,	Euclid	accomplished
something	very	important:	He	told	us	how	to	compare	ratios.	He	told	us	when
two	ratios	are	equal	and	when	one	ratio	is	greater	than	another.	Ratios	express
the	relationship	of	two	magnitudes,	so	his	definition	determines	when	two	pairs
of	magnitudes	are	related	in	the	same	way,	have	the	same	ratio,	and	when	one
pair	of	magnitudes	has	a	greater	ratio	than	the	other.

This	is	not	a	completely	satisfying	solution,	but	it	solves	the	problem	it	was
intended	to	solve,	making	possible	the	all-important	theory	of	proportion	in
Book	VI.	And	its	limitations	are	of	a	piece	with	the	rest	of	the	Elements.	Euclid
treats	ratios	the	same	way	he	treats	distances,	angles,	and,	certainly,	areas.	In	all
these	cases,	he	starts	out	with	an	ability	to	make	comparisons	of	equality	and
comparisons	of	greater	and	lesser.	For	distances	and	angles,	this	ability	is
conferred	by	the	Postulates.	For	areas,	he	sneaks	it	into	a	Proposition;	the
definition	of	area,	at	best,	is	implicit	and	is,	essentially,	ostensive.	For	ratios	of
magnitudes,	Euclid	offers	the	apparently	arbitrary	Definitions	V.5	and	V.7	in
Book	V,	definitions	that	do	not	tell	us	what	a	ratio	is	or	how	it	relates	to	a	ratio
of	two	numbers;	but	only	when	two	ratios	are	equal	or	when	one	of	them	is
larger	than	the	other.	And	yet,	these	definitions	happen	to	be	exactly	what	Euclid
needed,	are	essentially	correct,	and	they	formulate	the	required	conditions	as
well	as	one	could	possibly	formulate	them	within	the	confines	of	the	conceptual
framework	available	at	that	time.

In	all	such	cases,	one	can	be	frustrated	with	Euclid’s	approach.	But,	as	I	said	in
the	case	of	area,	in	taking	this	approach,	Euclid	is	closer	to	the	actual	subject	of
his	enquiry	than	modern	treatments	that	tend,	much	more	than	Euclid,	to	present
prepackaged	definitions	as	though	they	had	sprung	fully	formed	from	the	head	of



prepackaged	definitions	as	though	they	had	sprung	fully	formed	from	the	head	of
Zeus,	leaving	their	lineage,	their	precise	tie	to	the	world,	shrouded	in	mist.

Euclid	has	much	to	teach	us	beyond	the	actual	content	of	his	masterpiece	and,
perhaps,	his	basic	concepts	should	be	even	more	ostensive,	more	focused	on
their	referents	in	the	world,	rather	than	less.	Mathematicians	still	remember	how
to	arrange	deductive	systems.	But	they	have	mostly	forgotten	how	(or,	at	least,
why)	to	link	those	deductive	systems	to	those	aspects	of	the	world	that	they	were
once	designed	to	capture.

To	recall,	Euclid’s	Definition	5	of	Book	V,	regarding	equality	of	ratio,	reads:
“Magnitudes	are	said	to	be	in	the	same	ratio,	the	first	to	the	second	and	the	third
to	the	fourth,	when,	if	any	equimultiples	whatever	be	taken	of	the	first	and	third,
and	any	equimultiples	whatever	of	the	second	and	fourth,	the	former
equimultiples	alike	exceed,	are	alike	equal	to,	or	alike	fall	short	of,	the	latter
equimultiples	respectively,	taken	in	corresponding	order.”37

In	Chapter	2,	I	explicated	this	definition	in	detail.	To	summarize	that	discussion,
let	A	represent	the	ratio	of	the	first	magnitude	to	the	second	and	B	represent	the
ratio	of	the	third	to	the	fourth.	From	the	modern	perspective	(though	not	from
Euclid’s)	‘A’	and	‘B’	may	be	irrational	numbers.	Then	Euclid’s	definition
translates	to	the	modern	perspective,	as	follows:

A	=	B	if	and	only	if	the	following	is	true:	If	n	and	m	are	any	whole	numbers,
then	A	is	greater	than	n/m	only	if	B	is;	it	is	equal	to	n/m	only	if	B	is;	and	it	is
less	than	n/m	only	if	B	is.

Euclid’s	criterion	manages	to	say	this	without	ever	having	to	recognize	a	ratio	as
a	number.	His	criterion	requires	only	the	ability	to	add	magnitudes	together,	to
take	multiples	of	them.

The	force	of	this	in	application	is	the	following:	generally	speaking,	if	the
equality	of	two	related	ratios	can	be	demonstrated	to	hold	whenever	the	related
magnitudes	are	commensurate,	Euclid’s	definition	implies	that	it	holds,	as	well,
when	the	magnitudes	are	incommensurate.	This	circumstance,	exploited	in
Proposition	VI.1,	is	also	later	exploited	by	Archimedes,	for	example,	in	proving
his	celebrated	law	of	levers.

The	argument	for	Book	VI,	Proposition	1	will	illustrate	the	general	pattern.	I
state	Proposition	VI.1	again:



	“Triangles	and	parallelograms	which	are	under	the	same	height	are	to	one
another	as	their	bases.”38
	Figures	16	-	18	outline	the	general	argument	for	triangles,	appealing	to	the
Definition	V.5	definition	of	equal	ratio:	

Figure	16
	

Figure	17
	Now	apply	Euclid’s	definition	of	equal	ratio	(Definition	V.5):
	



Figure	18

Euclid’s	criterion	applies	because,	as	I	have	already	shown,	the	area	and	base	are
proportional	whenever	the	bases	are	commensurate.	The	area	on	a	base	of	3×B	is
3×A;	the	area	on	the	base	of	2×Y	is	2×X.	If	one	accepts	Euclid’s	definition	and
if	one	sets	up	the	argument	properly	to	prove	the	general	case,	it	is	enough	to
offer	a	direct	proof	for	commensurate	magnitudes.	If	one	understands	this
example,	one	understands	the	force	of	Euclid’s	definition.

It	is	important	to	notice	that	Euclid’s	definition	of	equal	(or	unequal)	ratio
requires	that	the	first	and	second	magnitudes	be	of	the	same	kind	and	that	the
third	and	fourth	magnitudes	be	of	the	same	kind.	A	ratio,	for	Euclid	is	always
between	magnitudes	or	quantities	of	the	same	kind.	But,	of	critical	importance,
his	definition	does	not	require	that	the	first	and	second	magnitudes	be	the	same
kind	of	magnitude	as	the	third	and	fourth.	And	this	is	the	key	point,	because
Euclid’s	argument	for	Proposition	VI.1	depended	entirely	on	the	ability	to
compare	respective	ratios	among	different	kinds	of	magnitudes.	One	ratio	is	a
ratio	of	lengths,	the	bases	of	the	respective	triangles;	the	other	is	a	ratio	of	areas,
the	areas	of	the	respective	triangles.

It	is	astonishing	that	Euclid’s	entire	theory	of	geometric	proportion,	developed	in



Book	VI	hinges	upon	the	fact	that	the	first	and	second	magnitudes	need	not	be
the	same	kind	of	magnitude	as	the	third	and	fourth	for	their	respective	ratios	to
be	comparable.	It	is	almost	as	surprising	that	Euclid	compares,	and,	seemingly,
needs	to	compare,	ratios	of	lengths	to	ratios	of	areas	before	he	can	compare
ratios	of	lengths	to	other	ratios	of	lengths.

As	noted,	Euclid	builds	his	theory	of	proportion	on	this	first	proposition,
vindicating	his	use	of	Definition	V.5.	The	application	of	Proposition	VI.1	to
similar	triangles	begins	immediately	with	VI.2,	which	states:

“If	a	straight	line	be	drawn	parallel	to	one	of	the	sides	of	a	triangle,	it	will	cut	the
sides	of	the	triangle	proportionally;	and,	if	the	sides	of	the	triangle	be	cut
proportionally,	the	line	joining	the	points	of	section	will	be	parallel	to	the
remaining	side	of	the	triangle.”39

Euclid	draws	some	auxiliary	lines	and	then	proceeds	to	relate	the	parts	of	each
side	of	his	original	triangle	to	corresponding	areas	of	various	triangles	within	the
resulting	figure.	In	this,	Euclid	applies	VI.1.	He	equates	the	ratios	of	the
divisions	on	each	side	of	the	triangle	to	a	ratio	of	areas	within	the	triangle.	He
can	establish	that	the	two	ratios	of	areas	are	equal.	Therefore	the	ratio	of	the
divisions	of	one	side	of	the	triangle	equals	the	ratio	of	the	divisions	on	the	other.
(I	omit,	as	tangential,	discussion	of	the	converse,	i.e.,	the	second	half	of	the
proposition.)

Figure	19	should	clarify:
	



Figure	19

And	here	is	the	payoff:	the	proportionality	of	similar	triangles	(triangles	with	the
same	corresponding	angles,	which	Euclid	calls	“equiangular”).	Proposition	VI.4
states:

“In	equiangular	triangles	the	sides	about	the	equal	angles	are	proportional,	and
those	are	corresponding	sides	which	subtend	the	equal	angles.”40

The	proof	is	outlined	in	the	Figure	20.	It	proceeds	by	placing	the	two	triangles	in
a	particularly	helpful	relationship	and	then	drawing	some	additional	lines	to
reduce	the	Proposition	to	VI.2.	By	now	the	pattern	of	abstract	measurement
should	be	familiar:	Add,	by	construction,	whatever	features	the	diagram	requires
to	render	comparable	the	quantities	being	related.	Then	draw	on	previously
known	relationships	to	make	the	comparison.	Euclid	presents	his	measurement
recipe	and	then	helps	you	identify	the	relationship	that	you	would,	thereby,
measure.



Figure	20

Now	this	is	one	of	the	vital	underpinnings	of	indirect	measurement.	It	is	the
foundation	of	an	entire	mathematical	discipline	known	as	trigonometry.	It	is	the
reason	we	can

●	measure	the	locations	of	the	planets,	the	stars	and	the	galaxies
●	understand	the	structure	of	the	microscopic
●	create	blueprints	for	houses	and	skyscrapers
●	create	accurate	maps	of	cities
●	create	plans	for	cars,	boats,	airplanes	and	a	myriad	of	other	industrial	products
●	design	and	build	microscopic	electronic	parts,	notably	semiconductors,	made
of	tiny	pieces	of	silicon.

In	short,	it	is	one	of	the	foundations	of	the	modern	world!	As	I	have	said,	the
Greeks	put	a	much	higher	premium	on	constructability	than	we	do	today.	It’s	as
though,	for	them,	to	construct	was	to	measure,	to	be	constructible	was	to	be
measurable.	They	were	not	always	successful,	but	their	failures	were	regarded	as
problems	that	remained	to	be	solved.	For	example,	they	were	unable	to	trisect	an
angle	or	square	the	circle	through	straight	edge	and	compass.	But	the	challenge
to	carry	out	the	Classical	Greek	program,	by	solving	such	problems,	outlived
both	the	collapse	and	eclipse	of	their	civilization,	outlived	the	very	context	that
had	made	them	important.	Yet,	even	so,	our	understanding	of	mathematics,	of



had	made	them	important.	Yet,	even	so,	our	understanding	of	mathematics,	of
the	constraints	and	needs	of	measurement,	was	vastly	enriched	as
mathematicians	ultimately	discovered	just	why	the	Greek	program	could	not	be
carried	to	completion.

The	Greeks	could	not	trisect	an	angle	with	straight	edge	and	compass.	But	the
theory	of	proportion	gave	them	the	means	to	trisect	a	line	segment;	indeed	to
divide	a	line	segment	into	any	prescribed	number	of	equal	parts.	This	is	the
meaning	of	VI.9,	which	says:

“From	a	given	straight	line	to	cut	off	a	prescribed	part.”
	The	proof	is	outlined	in	Figure	21:
	

Figure	21

Euclid	never	offers	a	formula	for	area.	Not	in	so	many	words.	Even	Archimedes
does	not;	his	“formula”	for	the	area	of	a	circle	is	expressed	as	an	equality	of	the
circle’s	area	to	that	of	a	right	triangle	with	a	prescribed	height	(the	radius	of	the
circle)	and	width	(the	circumference	of	the	circle).41

But,	in	asking	for	a	formula,	one	speaks	from	the	modern	perspective.	Euclid
was	not	looking	for	a	formula;	he	was	looking	for	a	standard	way	to	express	an
area	in	geometric	terms.	For	Euclid,	to	measure	a	magnitude	was	to	relate	a
magnitude	to	another	magnitude.	It	was	not,	per	se,	to	attach	a	number	even
though,	from	a	modern	perspective,	it	creates	a	foundation	to	attach	a	number.

Euclid’s	entire	line	of	development	concerning	area,	from	its	beginnings	in	Book



Euclid’s	entire	line	of	development	concerning	area,	from	its	beginnings	in	Book
I,	is	directed	towards	establishing	the	essential	relationships.	As	we	shall	see
presently,	his	crowning	success	of	that	endeavor	was	VI.14,	which	is	the
essential	fact	that	underlies	the	validity	of	the	modern	formula.

Euclid	did	not	have	our	formula,	but	he	did	grasp	the	magnitude	that	he	was
trying	to	measure,	he	knew	what	he	needed	to	establish,	he	knew	the	form	in
which	he	wanted	to	express	that	measurement,	and,	one	should	presume,	he
understood	the	meaning	of	VI.14	and	why	it	was	so	important.

Proposition	VI.14	reads:

“In	equal	and	equiangular	parallelograms	the	sides	about	the	equal	angles	are
reciprocally	proportional’	and	equiangular	parallelograms	in	which	the	sides
about	the	equal	angles	are	reciprocally	proportional	are	equal.”42

The	final	implications	of	this	statement	are	found	in	VI.16,	which	is	a	special
case	of	Proposition	VI.14,	and	in	VI.17,	which	is	a	special	case	of	VI.16.	We
defer	further	explication	of	VI.14	briefly	until	we	have	stated	VI.	16.

But	first,	Figure	22	outlines	the	proof	of	VI.14.	In	Figure	22,	the	diagram	can	be
completed	with	the	parallelogram	EF	lining	up	with	the	others	because	AB	and
BC	are	equiangular,	i.e.,	have	corresponding	angles	equal:



Figure	22

Proposition	VI.14	is	stated	for	general	parallelograms.	Proposition	VI.16	is
simply	a	specialization	of	VI.14	to	rectangles	and	Proposition	VI.17	is	a
specialization	of	VI.16	to	squares.	These	propositions	are	stated,	respectively,	as:

“If	four	straight	lines	be	proportional,	the	rectangle	contained	by	the	extremes	is
equal	to	the	rectangle	contained	by	the	means;	and	if	the	rectangle	contained	by
the	extremes	be	equal	to	the	rectangle	contained	by	the	means,	the	four	straight
lines	will	be	proportional.”43

And

“If	three	straight	lines	be	proportional,	the	rectangle	contained	by	the	extremes	is
equal	to	the	square	on	the	mean,	and,	if	the	rectangle	contained	by	the	extremes
be	equal	to	the	square	on	the	means	the	three	straight	lines	will	be
proportional.”44

If	one	rectangle	has	sides	A	and	B	and	a	second	has	sides	C	and	D,	Euclid	says



If	one	rectangle	has	sides	A	and	B	and	a	second	has	sides	C	and	D,	Euclid	says
that	their	areas	are	equal	precisely	when	A/C	=	D/B	(in	Euclid’s	language,	A	is
to	C	as	D	is	to	B).

In	Euclid’s	terms,	A,	B,	C,	and	D	are	NOT	numbers;	they	are	magnitudes	and
Euclid	never	multiplied	magnitudes.	He	does	not	express	an	area	by	a	number
but	by	a	rectangle	or,	even	better,	by	a	square	(a	la	VI.17),	because	there	is	a
unique	square	having	any	particular	area.	For	Euclid,	with	Propositions	VI.14,
16	and	17	in	the	context	of	his	earlier	propositions,	he	has	offered	a	complete
solution	to	the	problem	of	area	for	parallelograms	and	triangles.

But	we	moderns	are	used	to	numbers	and	never	hesitate	to	invoke	a	unit	of
measurement.	The	modern	instinct	is	to	treat	A,	B,	C,	and	D	as	numbers	or,	at
least,	of	unknown	numbers	from	the	very	beginning.	One	has	a	strong	resistance
to	doing	otherwise.	One	sees	a	letter,	representing	a	variable,	and,	thinking
algebraically,	one	thinks	of	it	as	an	unknown	number.	So,	from	this	perspective,
one	immediately	concludes,	from	A/C	=	D/B	that	AB	=	CD	(or	A×B	=	C×D,	to
make	the	multiplication	more	explicit),	where	the	lengths	of	the	sides	have	been
expressed	in	multiples	of	a	chosen	unit.

But,	for	Euclid,	to	say	it	one	more	time,	these	letters	do	not	represent	unknown
numbers;	they	represent,	in	the	modern	sense,	unknown	lengths	or,	in	the	general
case,	unknown	geometric	figures	or	quantities/magnitudes.

Euclid	has	answered	the	question	I	posed	earlier.	Because,	as	we	just	saw,	the
areas	of	two	rectangles	are	equal	precisely	when	the	respective	products	of	their
sides	are	equal,	one	can	use	the	product,	area	=	width	times	height,	to	measure
the	area	of	a	rectangle.	To	put	it	another	way:	the	modern	definition	of	area
cannot	be	made	arbitrarily;	it	is	only	Euclid’s	discovery	that	makes	the	product
a	valid	measure	of	area.

Euclid,	as	he	pushed	on	to	Propositions	VI.16	and	VI.17	understood	the
importance	of	these	propositions	and	the	need	for	them.	But	modern	students,
taught	a	pre-digested	formula,	do	not.	A	full	understanding	requires	both	ways	of
looking	at	it:	One	needs	Euclid’s	perspective,	but	one	also	needs	the	modern
approach	of	counting	squares.

I	believe	that	this	point	is	difficult	to	grasp	even	when	it	is	pointed	out,	because
it	forces	one	to	reflect	on	the	origins	of	one’s	knowledge,	to	trace	them	back	to
our	basic	observations	of	the	world.	But	if	understanding	means,	as	it	must,
grasping	mathematical	truths	as	truths	about	the	world	one	inhabits,	one	does	not



grasping	mathematical	truths	as	truths	about	the	world	one	inhabits,	one	does	not
fully	understand	even	elementary	mathematics	until	one	understands	it	the	way
that	Euclid	did,	as	relationships	that	one	discovers	in	the	world.

There	is	nothing	more	dangerous	than	a	pre-digested	formulation.	I	say
dangerous,	because	it	can	lead	one	to	think	that	one	understands	something
when,	in	fact,	in	the	full	sense	of	understanding,	one	does	not.	One	cannot
correct	a	problem	that	one	does	not	know	one	has.	In	the	discipline	of
mathematics,	understanding	the	achievements	of	the	Greek	geometers	is	one	of
the	ways	that	we	possess	to	find	such	limitations	and	to	correct	them.

Conclusion

The	power	of	geometry	is	the	power	of	indirect	measurement.	Much	of	this
power	derives	from	the	Parallel	Postulate	and	it	does	so	despite	the	relativistic
corrections	that	one	makes	to	account	for	the	effects	on	gravity	on	light.	By	the
discoveries	of	geometry,	one	understands	the	structure	of	the	universe	and	of	the
microscopic	because	one	can	relate	the	large	and	the	small	to	the	scale	of	objects
that	one	can	move	and	touch.	The	concrete	measurements	that	one	makes	and
interprets	every	day	are	made	possible	by	the	abstract	measurement	of	Euclid’s
Elements.

As	I	explained	and	illustrated	in	Chapter	1,	every	one	of	Euclid’s	Postulates,
Common	Notions,	and	Propositions	embody	abstract	measurement	The	proofs
and	constructions	of	Euclid’s	Propositions	provide	the	links	in	his	own
deductions	and	also	in	our	interpretations	of	our	own	measurements.	Euclid’s
constructions	provide	the	recipes	by	which	the	measurements	would	apply	in
any	particular	concrete	instance.	To	understand	Euclid’s	Corpus,	as	abstract
measurement,	is	to	more	deeply	understand	geometry	and	Euclid’s	vision	of	it.	It
is	to	understand	the	over-arching	structure	of	his	work.	And	it	is	to	appreciate,
and	to	better	understand,	the	concepts	that	one	may	have	thought	one	understood
already.

It	is,	finally,	to	create	a	foundation	and	an	approach	for	understanding	more
advanced	mathematics	whose	difficulties	are	more	readily	apparent.

One’s	grasp	of	the	large	and	the	small	depends	on	the	application	of	one’s
geometric	knowledge	to	scientific	observation	and	experiment.	Leaving	out	the
caveats,	the	high	points	and	cornerstones	of	indirect	geometric	measurement
include:



include:

●	Light	travels	in	a	straight	line
●	A	triangle	is	completely	determined	by	two	sides	and	the	angle	between	them.
(Proposition	I.4)	or,	alternatively,	by	the	three	sides	(Proposition	I.8),	or,
alternatively	by	two	angles	and	the	side	between	them	(Proposition	I.26).
●	Triangles	are	scalable:	If	corresponding	angles	are	equal,	their	corresponding
sides	are	proportional.	(Proposition	VI.4)
●	“A	straight	line	falling	on	parallel	straight	lines	makes	alternate	angles	equal	to
one	another,	the	exterior	angle	equal	to	the	interior	and	opposite	angle,	and	the
interior	angles	on	the	same	side	equal	to	two	right	angles.”	(Proposition	I.29)

Euclid’s	Elements	is	one	of	the	keys	that	have	unlocked	the	universe	to	human
understanding.
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Chapter	4

Numbers	as	a	System	of

Measurements

Euclidean	Geometry	is	about	shapes	that	exist	in	the	world,

viewed	from	an	abstract	perspective.	Shapes	can	be	measured	and

their	measurements,	the	relationships	of	their	parts	to	appropriate

standards,	can	be	expressed	by	numbers.	Numbers,	however,	do

not	exist,	as	such,	in	the	world.	Rather,	they	are	means	of

expressing	measurements,	means	of	expressing	or	specifying	a

relationship	to	a	unit.	Numbers	are	a	way	of	looking	at	the	world,	of

identifying	a	particular	quantitative	relationship.	Triangles	are

objects	in	the	world,	viewed	from	a	particular	perspective.	Triangles

are	a	kind	of	thing;	numbers	are	a	way	of	looking	at	things,	of	comparing	things.

In	Chapter	2,	I	focused	on	magnitudes	and	I	discussed

numbers	as	measurements	of	magnitudes.	My	interest	in	this	chapter	is	to
understand	numbers	as	a	system	of	measurements,	measurements	of	a	particular
kind.

Numbers	are	a	system	by	virtue	of	their	interrelationships.

But	mathematical	relationships	among	numbers	reflect	quantitative

relationships	among	the	things	that	they	measure.	A	number



relationships	among	the	things	that	they	measure.	A	number

measures	the	relationship	of	a	quantity	(a	multitude	or	a

magnitude)	to	a	unit	or	to	another	instance	of	the	same	kind	of	quantity.1

The	sum	of	two	multitudes	is	the	composite	of	the	two

multitudes,	the	multitudes	being	taken	together	as	one	multitude.

The	sum	of	two	numbers	measuring	these	multitudes	is	the

numerical	relationship	of	the	composite	to	a	unit.	As	for	the	sum	of

two	magnitudes,	see	Chapter	2.

To	anticipate	later	developments	in	this	chapter,	everything

that	we	know	about	numbers	reduces	ultimately	to	counting	units.

Real	numbers	apply	to	magnitudes.	Their	sums	derive	from

counting.	Three	feet	plus	four	feet	is	seven	feet.	One	counts	the

unit,	namely	the	foot.	If	one	subdivides,	one	counts	a	smaller	unit.

Three	fourths	of	a	foot	plus	two	fourths	of	a	foot	is	five	fourths	of	a

foot.	Three	units	plus	two	units	is	five	units,	the	unit	being	one	fourth	of	a	foot.2

The	relationships	that	irrational	numbers	name	are

quantified	by	comparing	irrational	numbers	to	rational	numbers.

One	places	the	irrational	number	between	two	rational	numbers,

sufficiently	close	together,	and,	in	the	appropriate	context,	one

regards	the	irrational	number	as	indistinguishable,	in	application,

from	either	of	the	rational	numbers.



One’s	appreciation	of	natural	numbers	begins	when	one

learns	to	count	and	to	relate	the	numbers	that	one	reaches	to	the

multitudes	that	they	measure.	Adding	one	unit	to	a	collection

increases	their	number	to	the	next	number	in	the	sequence.	One

grasps	that	numbers	are	related	to	each	other	by	succession	and

realizes	that	one	can	reach	any	particular	multitude	by	counting

high	enough.	Practical	limits	aside,	no	matter	how	high	one	counts,

one	can	always	count	higher.

That	one	can	reach	any	multitude	by	counting	high	enough

means	that	there	is	no	actual	infinity.	All	multiplicity	is	finite.	An

infinite	number	would	have	to	be	one	that	could	not	be	reached	by

counting.

As	I	discussed	in	Chapter	2,	Aristotle	recognizes	this	point

when	he	states	the	so-called	“Axiom	of	Archimedes”	during	his

arguments	against	the	existence	of	an	actual	infinity.	He	writes:

“…for	every	finite	magnitude	is	exhausted	by	means	of	any

determinate	quantity	however	small.”3

One	can	always	count	higher	because	the	concept	of

number	is	open-ended.	One	need	not	commit	to	any	particular

number	as	the	highest	one	that	anyone	will	ever	need.	As	Ayn	Rand

put	it,	“A	concept	is	like	an	arithmetical	sequence	of	specifically	defined	units,



…	including	all	units	of	that	particular	kind.”4	Concepts,	including	the	concept
of	number,	are	open-ended.

The	domain	of	positive	integers,	also	known	as	natural

numbers,	consists	precisely	of	the	first	number,	namely	one,	and

any	successor	of	one.	These	are	not	facts	that	one	deduces;	they	are

identifications.	They	are	something	that	one	grasps	about	the	nature	of
multiplicity	and	about	our	most	basic	means	of	measuring

it.

The	value	of	identifying	the

domain	of	positive	integers

consists	in	knowing	that	one	knows	how	to	measure	multitudes,

because	the	number	one	and	its	successors	suffice	to	name	any

multitude	that	one	will	ever	need	to	measure.

One	identifies	that	domain	of	numbers	by	first	grasping

some	particular	numbers	and	then	by	grasping	the	relationships

between	the	numbers	in	the	domain,	the	primary	one	being

succession.

Notice	that	the

scope	of	the	concept	of	number	(i.e.,	of	the

natural	numbers),	once	grasped,	is	independent	of	one’s	context.

The	scope	of	the	concept	does	not	change	when	one	discovers	a

need	for	particular	numbers	that	one	hasn’t	previously	encountered.5	Typically,



one	does	not	even	notice	that	the	new	number	is	new,	for	that	number	is	already
subsumed	within	the

number

system,	as	such.	One	does	not	name	each	number

individually.	Rather,	the	decimal	number	notation	provides	a

system	for	designating	any	number	that	one	will	ever	encounter.

One	grasps	that	system	as	a	totality,	as	a	graspable	domain,

because	numbers	vary	along	a	single	dimension	that	is	isolated

when	one	learns	to	count	and	when	one	understands	what	the

counting	is	accomplishing.

Over	the	eons	since	men	learned	to	count,	the	concept	of

number	has	been	expanded	a	number	of	times,	notably	to	rational

numbers,	negative	numbers,	and	real	numbers.	These	extensions

have	larger	domains	than	that	of	natural	number.	But	the	domain

of	the	original	concept	of	number,	now	distinguished	from	the	wider	concept	by
the	alternative	designations	“natural	numbers”	or

“positive	integers”,	remains	the	same.

I	said	that	one	isolates	the	domain	of	natural	number	when

one	learns	to	count.	This	isolation	is	essentially	ostensive.	Like

ostensive	identifications	generally,	it	provides	a	foundation	for

further	discoveries.

For	example,	one	identifies	the	domain	of	integers	by



specifying	its	relationship	to	the	domain	of	natural	numbers.	In

Chapter	2,	I	indicated	how	negative	numbers	arise	as	they	apply	to

magnitudes.	They	arise,	as	well,	as	differences	between	multitudes.

If	one	considers	a	larger	multitude	in	relation	to	a	smaller,	the

difference	is	positive;	if	one	considers	the	smaller	in	relation	to	the

larger,	the	difference	is	negative.	A	multitude,	as	such,	can	only	be

positive.	But	a	difference	of	compared	multitudes	can	be	negative.

My	immediate	interest,	though,	is	to	specify	the

domain	of

integers.	First,	include	zero.	Second,	include	the	negative	of	any

natural	number.	This	prescription	is	a	complete	characterization	of

the	domain:	Any	integer	is	a	natural	number,	zero,	or	the	negative

of	a	natural	number.

The	same	approach	applies	to	identifying	the	rational

number	domain,	as	well.	Any	rational	number	is	a	ratio	of	integers.

(Integers	are	included	as	special	ratios	with	a	denominator	of	one.)

This,	however,	does	not	quite	characterize	the	domain.	One	must

realize	three	things.	First,	one	cannot	divide	by	zero;	there	are	no

rational	numbers	like	6/0.	Second,	two	distinct	pairs	of	integers	can

represent	equal	ratios.	For	example,	6/9	is	the	same	ratio	as	8/12.

One	way	to	compare	them	is	to	reduce	each	to	lowest	terms.	Since



both	6/9	and	8/12	are	equal	to	2/3,	they	are	equal	to	each	other.

Finally,	one	needs	to	address	the	fact	that,	say,	2/(-3)	=	(-2)/3.

Taking	that	into	account,	since	every	rational	number	can	be

uniquely	reduced	to	lowest	terms,	one	can	now	specify	the	domain

of	rational	numbers	as	consisting	of	all	valid	ratios	of	integers

expressed	in	lowest	terms	with	a	positive	denominator.

In	pattern,	one	identifies	the	domains	of	integers	and

rational	numbers	by	first	identifying	how	these	numbers	relate	to

natural	numbers	and	then,	on	that	basis,	establishing	their	domains

in	relation	to	the	domain	of	natural	numbers.

In	specifying	the	domain	of	rational	numbers,	I	have	drawn

upon	their	relationships	to	natural	numbers.	But	those

relationships	are	multifaceted	and	I	have	not	done	justice	to	them.

First,	most	fundamentally,	a	rational	number	involves

subdivision	of	a	unit.	One	divides	a	foot	into	12	equal	parts	and	says

that	each	part,	of	one	inch	each,	is	one	twelfth	of	one	foot.	And	this

means	simply	that	twelve	times	this	smaller	unit	is	equal	to	the

original	unit.	In	this	way,	a	fraction	reduces	to	counting,	indeed	it	is	counting,	as
viewed	from	the	other	side	of	the	relationship.	From

the	side	of	inches,	one	says	that	twelve	inches	equals	one	foot.	But

this	same	relationship	is	expressed,	from	the	other	direction,	by	saying	that	one
inch	is	one	twelfth	(1/12)	of	a	foot.	One’s	new



fractional	perspective,	then,	is	simply	a	new	way	of	looking	at	the

older,	counting,	perspective.

Because	an	element	of	a	subdivision	is	just	a	unit	viewed

from	the	perspective	of	a	larger	unit,	the	arithmetic	of	natural

numbers	extends	to	the	arithmetic	of	fractions.	Five	inches	is	a

multiple	of	one	inch	just	as	five	marbles	is	a	multiple	of	one	marble.

The	situation	is	no	different	if	one	writes	5	inches	as	5/12	feet.	An

inch	–	1/12	of	a	foot	–	is	a	unit	like	any	other,	so	one	can	also	add

multiples	of	the	fraction	1/12.	Thus	5/12	+	5/12	=	10/12	and	12

times	5/12	=	5.

In	one	sense,	one	can	regard	the	arithmetic	of	fractions	as

an	extension	of	the	arithmetic	of	natural	numbers.	But,	in	a	deeper

sense,	the	arithmetic	concepts	have	not	changed.	Rather,	they	have

been	applied	to	a	new	context	with	a	different	basic	unit.	And	that

basic	unit,	in	any	specific	case	depends	on	the	specific	fraction

under	consideration.	The	arithmetic	of	fractions	is	really	an

application	of	the	arithmetic	of	natural	numbers.

Indeed,	all	relationships	of	fractions	follow	from	the

relationship	of	the	smaller	unit,	represented	by	the	denominator,	to

the	larger	unit.	Thus,	one	establishes	that	4/12	=	5/15	by	showing

that	they	bear	the	same	relationship	to	one	–	that	they	are	both	one



third	of	one.	Or,	alternatively,	one	shows	that	they	are	both	the

same	multiple	of	1/60,	namely	20/60.

Finally,	it	is	important	that	fractions	can	be	compared	as	to

size,	both	to	natural	numbers	and	to	each	other.	Just	as	3	is	larger

than	2,	3/7	is	larger	than	2/7.	And	because	any	fractional	unit	can

be	further	subdivided,	one	can	compare	fractions	of	different

denominators.	For	example,	3/5	is	greater	than	4/7.	This	can	be

seen	by	expressing	each	as	a	multiple	of	a	still	smaller	unit,	namely

1/35.	Thus,	3/5	=	21/35,	while	4/7	=	20/35.

When	I	specified	the	domain	of	rational	numbers,	my

discussion	took	such	relationships	for	granted.	But	to	understand

the	rational	numbers,	one	needs	to	understand	their	relationship	to

the	world.	And	one	key	to	such	understanding	consists	in

identifying	the	fundamental	and	derivative	ways	that	fractions

relate	to	natural	numbers,	as	catalogued	above.

As	noted,	one	does	not	prove	that	the	domain	of	natural

numbers	is	what	it	is.	One	simply	grasps	its	domain	in	the	process

of	forming	the	concepts	of	particular	numbers	and	grasping	the	way

that	these	numbers	all	relate	to	each	other.

The	case	of	integers	and	rational	numbers	are	similar	in

key	respects.	One	discovers	them	and	forms	their	concepts	by



identifying	quantitative	relationships	in	the	world,	such	as	the

relationship	of	a	part	to	a	whole	(fractions),	that	these	numbers	can

be	used	to	measure.	But	notice,	once	again,	that	these	new	kinds	of

numbers	are	expressed	by	means	of	natural	numbers.	This	further

reflects	the	cognitive	need	I	have	just	mentioned:	Understanding	of,

say,	rational	numbers	requires	relating	rational	numbers	to	whole

numbers.	With	the	domain	of	natural	numbers	as	a	base,	one

establishes	the	domains	of	integers	and	rational	numbers	by

reducing	and	relating	these	cases	to	the	domain	that	one	already

knows:	the	domain	of	natural	numbers.

A	number	is	a	type	of	measurement	that	is	used	to	measure

multitudes	and	magnitudes,	that	names	the	relationship	of	a

multitude	or	magnitude	to	another	multitude	or	magnitude	and	in

particular	that	names	the	relationship	of	a	multitude	to	an

individual	or	the	relationship	of	a	magnitude	to	a	standard.	A

number	stands	for	a	relationship,	a	quantitative	relationship,	not	a	quantity.	A
number	measures	a	quantity	by	identifying	the

relationship	of	the	quantity	to	the	applicable	unit.	A	magnitude	is	a

type	of	quantity;	a	number	is	a	type	of	measurement.6

The	principle	of	measurement	omission	applies	to	numbers

in	the	same	way	that	it	applies	to	triangles.	In	the	case	of	a	triangle,

one	focuses	on	the	lengths	of	the	edges	and	the	magnitude	of	the



one	focuses	on	the	lengths	of	the	edges	and	the	magnitude	of	the

angles,	ignoring	their	color	and	the	immaterial	imperfections	in	the

edges	and	angles.	In	the	case	of	number,	one	focuses	on	the

relationship	to	the	unit	and	omits	consideration	of	the	type	of

multitude	or	magnitude	to	which	it	is	applied.

The	relationship	to	a	unit	is	a	relationship	among	real

entities	and	their	attributes.	And	relationships	among	numbers,

generally,	conceptualize	relationships	among	real	entities	and	their

attributes.	But	these	numerical	relationships	do	not	depend	upon	which
particular	multitude	or	magnitude,	or	to	what	type	of

magnitude,	they	might	be	applied.

In	the	case	of	natural	numbers,	the	specific	numerical

values	of	the	numbers	are	treated	mathematically.	But	the	nature	of	the	particular
units	being	counted	is	not	treated	mathematically.

For	the	laws	of	arithmetic	do	not	depend	on	the	specific	units	being

counted.

In	treating	triangles	mathematically,	one	discovers	(or

learns)	trigonometry	to	relate	the	sizes	of	the	angles	to	the	lengths

of	the	edges.	In	treating	numbers	mathematically,	one	learns

addition	and	multiplication.	In	the	realm	of	numbers,	indirect

measurement	begins	with	arithmetic.

Although	the	decimal	system	helps	one	to	deal	with

numbers,	one’s	identification	of	the	domain	of	multiplicity	does	not



numbers,	one’s	identification	of	the	domain	of	multiplicity	does	not

depend	upon	having	found	a	way	to	express	every	number.	The

ancient	Greeks	did	not	have	such	a	system,	but	they	grasped	the	concept,	both	of
number	and	of	its	domain.	Archimedes,	in	one	of	his	extant	works,	developed	a
scheme	to	estimate	the	number	of

grains	of	sand	that	would	be	required	to	fill	up	the	universe	up	to

the	fixed	stars.7	In	this	very	pursuit	it	is	clear	that	he	would	have	invented
notations	for	more	numbers	if	he’d	seen	a	need	for	it.	His

calculations	that	established	his	limits	already	reflected	the	fact

that	anything	beyond	was	lacking	only	a	name,	a	name	that	would

be	supplied	whenever	the	need	arose.	There	was,	however,	no

mystery	in	how	these	new	numbers	would	relate	to	the	numbers

that	had	already	been	named.

The	concept	of	number	is	not	limited	to	the	particular

numbers	that	one	has	named	or	that	one	has	so	far	encountered.

Measurement	of	Continuous	Magnitudes

As	I	discussed	in	Chapter	2,	irrational	numbers	arise	in	the

measurement	of	continuous	magnitudes.	I	indicated,	in	that

connection,	the	fundamental	importance	of	the	axiom

of

Archimedes,	and	our	consequent	ability	to	employ	decimal

expansions	to	achieve	any	required	precision.



But	if	one	can	always	find	a	suitable	approximation,	why

does	one	need	irrational	numbers?
Since	irrational	numbers	arise	in	the	measurement	of

continuous	quantities,	of	magnitudes,	I	begin	by	taking	a	closer

look	at	the	measurement	of	magnitudes.
To	begin	with,	systematic	direct	measurement	of

magnitudes	requires	subdividing	a	standard.	For	example,	to	find

an	answer	within	millimeters,	each	meter	must	be	divided	evenly

into	a	thousand	subdivisions.	Each	measurement	with	this

precision	is	expressed	in	millimeters,	in	thousandths	of	a	meter.

Expressed	in	terms	of	meters,	then,	the	measurement	necessarily

results	in	a	rational	number.
However,	this	measurement	outcome,	a	rational	number,	is

due	to	the	method	of	measuring,	not	to	the	specific	characteristics	of	the
magnitude	being	measured.	Whatever	the	nature	of	these	magnitudes,	whatever
the	actual	magnitude	might	be,	this	method	guarantees	that	rational	numbers	will
be	used	to	express	the	result.

In	other	words,	this	is	a

methodological	distinction,	not	a

metaphysical	one.
To	illustrate	this	point,	notice	that	there	is	an	alternative	to

this	methodology,	at	least	in	some	cases.	For	example,	one	can

measure	out	by	a	geometric	construction	with	straight	edge	and

compass,	a	length	of	√2,	an	irrational	number.	Whether	or	not



Euclid’s	constructive	approach	can	provide	a	systematic	approach	to
measurement,	it	is,	inherently,	no	more	and	no	less	precise	than

laying	out	multiples	of	a	subdivided	unit.
But	there	is	a	more	fundamental	point	to	consider,

stemming	from	the	fact	that	any	measurement	of	magnitudes	is	valid	within	a
particular,	finite	level	of	precision.	As	Ayn	Rand	put	it,

“But	more	than	that,	isn’t	there	a	very	simple

solution	to	the	problem	of	accuracy?	Which	is

this:	Let	us	say	that	you	cannot	go	into	infinity,	but

in	the	finite	you	can	always	be	absolutely	precise

simply	by	saying,	for	instance:	‘Its	length	is	no	less

than	one	millimeter	and	no	more	than	two	millimeters.’”8

A	measurement	is	usually	specified	by	a	number,	but	an

explicit	identification	of	its	precision	requires	or	entails	placing	the

result	within	a	range	of	numbers.	However,	a	finite	range	of	numbers	cannot
distinguish	a	rational	number	from	an	irrational

number.	Direct	measurement	of	a	magnitude	cannot	distinguish	a

rational	number	from	an	irrational	number.	In	other	words,	in	the

context	of	direct	measurement	of	magnitudes,	the	need	for

irrational	numbers	does	not	come	up.

Then	how	can	it	come	up	at	all?	All	measurement,	even

indirect	measurement,	ultimately	resolves	into	a	series	of	direct

measurements.	So	how	can	the	need	arise	for	the	broader	category



of	measurement	when	no	such	need	arises	for	the	concrete	direct

measurements	that	constitute,	in	toto,	the	substance	of	any	specific

measurement?

The	problem,	at	least	to	some	extent,	is	with	the	question.

The	real	issue	regarding	numbers	is	not	with	the	nature	of

measurement,	but	with	the	way	that	one	designates	the	results.	Do

numbers,	as	such,	designate	specific	relationships?

It	is	certainly	true	that,	in	any

application	to	a	specific

context	and	in	relation	to	a	specific	quantity,	a	measurement

determines	a	range	of	possible	numerical	values.	Any	identification

of	a	concrete	quantitative	relationship	is	subject	to	contextual	precision.

But	numbers	are	the	conceptual	form	that	the	identification

takes;	they	are	the	means	of	identification,	of	specifying	the	relation	of	a
magnitude	to	a	standard.	Specifications,	in	general,	are	applied	contextually,	but
the	relationship	that	a	specification

names	is	specific,	independent	of	any	application,	with	its	related	precision
requirements.	If	a	number	did	not	stand	for	a	precise	relationship	then	precision-
intervals	would	also	have	no	precise	meaning,	which	would	mean	that	even
approximations	would	be

meaningless.	Numbers	are	required	to	specify	approximations	and

they	can	only	do	so	if	they	name	precise	relationships.

For	example,	if	one	says	that	a	measurement	is	3	inches



plus	or	minus	one	eighth	of	an	inch,	one	is,	clearly,	saying	that	the	length	cannot
be	3	3/16	inches.	If	one	says	that	3	inches	is	one’s	best	estimate,	one,	thereby,
makes	a	precise	identification	of	one’s	best	estimate.	One	is	naming	a	specific
number	to	express	that	estimate.	One	does	not	say	that	the	length	is	exactly	3
inches,	but	one	does	say	that	one’s	estimate	is	exactly	three	inches.	The	number
3	has	an	exact	meaning,	independent	of	the	precision

context	of	the	measurement,	of	the	quantitative	relationship,	to

which	it	is	applied.	The	number	3	is	not	subject	to	contextual	precision	intervals;
numbers	are	the	means	of	expressing	precision	intervals.

If	one	also	says	that	one’s	measurement	could	be	off	by	as

much	as	1/8	of	an	inch,	this	statement	puts	precise	limits	on	one’s

measurement.	One	is	leaving	open	the	possibility	of	an	error	of

more	than	1/16	inches,	but	one,	quite	as	clearly,	denies	the

possibility	of	an	error	as	much	as	3/16	inches.	Indeed,	one	is

denying	that	the	length	could	be	as	much	as	one	trillionth	of	an

inch	greater	than	3	1/8.

Every	number	involved	in	this	example	has	a	precise

meaning;	each	names	a	specific	mathematical	relationship	to	a	unit.

The	number	3	represents	the	best	estimate	of	length,	as	it	relates	to

the	unit	of	length.	The	fraction	1/8	is	the	largest	possible	deviation

and	the	number,	3	3/16,	represents	a	number	outside	that	range.

That	numbers	designate	precise	relationships	is	easily	seen

directly	with	the	application	of	whole	numbers	to	measurement	and

is	fairly	easily	seen	with	rational	numbers,	as	well.	First,	when	one



counts,	one	relates	a	multiplicity	to	a	unit.	One	can	make	counting

errors,	but	five	is	five,	whether	one	is	counting	objects	or	meters.

The	case	of	rational	numbers,	as	applied	to	magnitudes,

reduces	to	counting.	As	applied	to	a	magnitude,	such	as	length,	the

denominator	of	a	fraction	specifies	a	subdivision	of	a	larger	unit

and	a	fraction	is	simply	a	multiple	of	that	smaller	unit.	An	inch,	for

example,	is	1/12	of	a	foot.	A	length	of	5/12	feet	is	a	number	of

inches,	namely	5	inches.	One’s	physical	identification	of	an	inch	as

a	subdivision	of	a	foot	is,	certainly,	subject	to	precision	limits,	but

one	finds	5/12	of	a	foot	by	counting	inches.	To	count	iterations	of

inches	is	to	count	iterations	of	these	smaller	units.

Whatever	precision	limits	may	apply	to	subdivision	of	a

foot	into	12	inches,	these	limits	apply	to	the	side	of	subdividing,	not

in	the	counting.	In	regards	to	feet,	5	feet	is	an	exact	count	of	the

intervals	one	takes	to	be	feet;	similarly,	5/12	of	a	foot	is	an	exact

count	of	what	one	takes	to	be	inches.	The	relationship,	the	ratio,	of

5	feet	to	one	foot	is	a	quantitative	relationship,	a	relationship	between	two
quantities,	subject,	in	one’s	identifications,	to

precision	limits.	The	relationship	of	5	to	1	is	a	mathematical	relationship,
relating	the	counts.	The	relationship	of	5	to	1	is	independent	of	the	units	one	is
counting	and,	certainly,	independent	of	any	precision	limits	regarding	the
comparability	of

those	units.	As	I’ve	already	pointed	out,	specifications	of	the



specific	objects	being	counted	are	omitted,	are	an	omitted

measurement.

So	far,	whole	numbers	and	rational	numbers	designate

determinate	relationships	to	a	standard.	But,	as	identifiers	of	potential
quantitative	relationships,	they	are	also	distinguishable.

Indeed,	any	two	numerical	relationships	of	a	magnitude	to	a

standard	are	potentially	distinguishable	at	some	finite	level	of	precision.	And	we
saw	in	chapter	2	that,	as	applied	to	quantitative

relationships	to	a	unit	of	magnitude,	any	two	different	magnitudes	can	be
distinguished	by	a	rational	multiple	of	that	unit	lying

between	them.	Numbers	designate	specific	mathematical

relationships;	any	two	different	numbers	potentially	identify

distinguishable	quantitative	relationships.

We	have,	just	now,	directly	observed	the	specificity	of

natural	numbers	and	of	rational	numbers.	But	these	do	not	exhaust

the	relationships	that	a	magnitude	can	have	to	a	standard.	There

remain	irrational	numbers,	designating	relationships	to	a	standard,

or	relationships	between	two	magnitudes,	such	as	the	relationship

of	the	side	of	a	square	to	its	diagonal,	that	cannot	be	expressed	by

rational	numbers.

The	difference	between	rational	numbers	and	irrational

numbers	does	not	represent	a	metaphysical	distinction	among



magnitudes:	the	difference	between	rational	and	irrational	numbers	consists	in
the	means	of	measurement,	in	how	such	numbers	are	specified,	not	with	the
object	of	measurement.	And	it	depends	upon	one’s	choice	of	standard.	For
example,	if	the	length

of	the	side	of	a	square	is	one	inch,	then	the	length	of	the	diagonal,

in	inches,	is	the	square	root	of	two,	an	irrational	number.	But	if	the

diagonal	were	the	standard,	the	situation	would	be	reversed.	If,	say,

the	diagonal	were	an	inch,	the	irrational	number	would	be

represented	by	the	side,	rather	than	the	diagonal.

But	what	does	it	mean,	for	example,	to	say	that	the	ratio	of

a	square’s	diagonal	to	a	side	is	√2?	It	means	two	things.	First,

leaving	aside	physical	limits,	it	means	that	a	sufficiently	precise

squarewouldexhibitaratio	arbitrarilycloseto	√2.Secondly,thisis

the	case	for	no	other	number.	Any	rival	approximation,	different

from	√2,	would,	at	some	point,	fall	outside	the	precision	range.

From	a	geometric	perspective,	that	is,	from	a	universal	perspective,

the	ratio	of	the	diagonal	to	the	side	is	√2.	To	say	that	a	square	has

no	material	imperfection	is,	among	other	things,	to	say	that	the

ratio	of	its	diagonal	to	a	side	does	not	differ	materially	from	√2.

Irrational	numbers	are	no	more	and	no	less	precise	than

rational	numbers.	Qua	measurements	of	quantitative	relationships,

measurements	by	both	rational	numbers	and	irrational	numbers	are	subject	to	the
same	precision	limit.	Qua	numbers,	precision	is



an	omitted	measurement;	both	rational	numbers	and	irrational

numbers	designate	specific,	distinguishable,	mathematical

relationships.	As

Mathematical	relationships,	both	reduce	to

counting,	directly	so	for	rational	numbers	and	indirectly	for

irrational	numbers,	through	their	relationships	to	rational

numbers.

The	important	mathematical	difference	between	rational

numbers	and	irrational	numbers	consists	in	how	they	are	specified,

in	that	it	is	much	easier	to	specify	a	rational	number	than	an

irrational	number.	To	specify	a	rational	number,	two	whole

numbers,	a	numerator	and	a	denominator,	suffice.	But,	to	specify

an	irrational	number	one	specifies	its	relationship	to	rational

numbers	and	to	specify	this	relationship	is	significantly	more

complex	than	specifying	the	relationship	of	a	rational	number	to	a

whole	number.

But	the	essential	method	is	the	same:	One	specifies	an

irrational	number	by	specifying	its	mathematical	relationship	to	other	numbers
that	have	already	been	specified.	Such	specifications

arise	in	the	context	of	indirect	measurement	and	can	take	many

forms.	The	principal	burden	of	the	rest	of	this	section	is	to	show

how	that	is	done.



how	that	is	done.

That	numbers	designate	specific	relationships	is	vital

because	indirect	measurement	is	vital.	Indirect	measurement,	as

such,	requires	an	ability	to	condense	a	series	of	mathematical

relationships	into	a	single	composite	relationship.	For	example,	one

reasons,	through	a	series	of	steps,	that	if	2x	+	5	=	17,	then	x	=	6.	To	traverse
these	steps	is	to	solve	the	equation.	These	steps	constitute

a	mathematical	argument,	identifying	a	series	of	quantitative

relationships	that,	taken	in	sequence,	imply	the	result.	The	validity

of	the	argument	requires	that	each	step	designate	a	precise

mathematical	relationship.

In	this	example,	one’s	first	step	is	to	subtract	5	from	both

sides	of	the	equation.	And,	in	performing	this	step,	one

presupposes	that,	“5	is	5.”	One	presupposes	that	a	specific	number,

distinct	and	distinguishable	from	all	other	numbers,	is	being

subtracted	from	both	sides	of	the	equation.	And	this	presupposition

applies	to	the	unknowns,	x	in	this	example,	as	well,	unknowns	that

may,	for	general	polynomials,	turn	out	to	be	irrational	numbers.

Without	this	presupposition,	that	every	real	number	is	distinct	and

distinguishable	from	all	others,	mathematical	arguments	would

prove	nothing;	mathematical	argument	would	be	impossible.

One	first	encounters	irrational	numbers	when	one	moves



beyond	direct	measurement	and	beyond	the	required	distinctions

of	any	one	particular	case.	To	support	indirect	measurement,	it	is

necessary	to	establish	mathematical	relationships	that	link	other	mathematical
relationships.	In	this	process,	over	and	over,	one	encounters	numerical
relationships	that	cannot	be	resolved	into	the

ratio	of	two	integers;	relationships	that	cannot	be	expressed	by

rational	numbers.

As	I	have	said,	irrational	numbers	are	specified	by	their

relationships	to	rational	numbers	and	as	I	will	catalogue	shortly,

these	specifications	can	take	numerous	forms.	But	to	specify	a

number	is	not	to	know	everything	about	it.	Consider,	for	example,

the	equation,	2x	+	5	=	17.	This	linear	algebraic	equation	specifies	a	unique
number,	namely	the	value	of	x	that	satisfies	the	equation.

One	finds	the	numerical	value	of	that	number,	x,	by	solving	the

equation,	by	applying	a	series	of	mathematical	relationships	to

simplify	the	equation.	But	the	key	point	is	that	such	a	process	is

necessary.	Without	going	through	these	steps,	one	would	not	know

that	x	=	6.

The	same	principle	applies	to	more	complex	cases	such	as

the	ratio	of	the	circumference	of	a	circle	to	its	diameter	or	the	ratio

of	the	diagonal	of	a	square	to	one	of	its	sides.	One	specifies

determinate	relationships	in	each	case,	but	one	does	not	know,

automatically,	that	the	first	ratio	is	between	3	and	4	or	that	the



automatically,	that	the	first	ratio	is	between	3	and	4	or	that	the

second	ratio	is	an	irrational	number.

In	the	case	of	irrational	numbers,	the	most	important	thing

one	wants	to	know	is	how	big	is	it?	How	does	it	compare	in	size	to

other	numbers,	specifically	to	rational	numbers?	Which	rational

numbers	are	larger	than	it	and	which	are	smaller?	For	example,	one

finds	that	the	ratio	of	the	diameter	of	a	square	to	a	side	is	between	1

and	2.	One	narrows	it	down	further	by	establishing	that	the	ratio	is

greater	than	1.4,	but	less	than	1.5.	And,	of	course,	one	can	go	still

further.	In	these	determinations,	one	is	not	limited	to	any	prespecified	level	of
precision,	but	any	specific	determination	of	relative	magnitude	involves
selecting	a	finite	interval,	bounded	by

two	rational	numbers	bracketing	the	irrational	number.	Any

comparison	to	rational	numbers	requires	the	choice	of	some

particular	rational	numbers.	One	chooses	some	level	of	precision	adequate	to	the
demands	of	any	particular	case.	In	any	concrete

context,	some	finite	degree	of	precision	is	required;	any	required

finite	degree	of	precision	is	possible.

Notwithstanding	the	complexities	of	approximation,	an

irrational	number	represents	a	specific	number,	distinguishable

from	any	other.	Accordingly,	in	any	general	mathematical	analysis,

in	any	chain	of	abstract	mathematical	measurements,	one	carries

the	irrational	number	through	the	entire	chain	until	the	end.	Only



when	the	analysis	is	finally	applied	to	a	concrete,	with	a	specific

precision	requirement,	does	one	find	a	decimal	approximation	satisfying	the
required	precision.

One	cannot,	directly,	simultaneously,	and	explicitly,	specify

the	relationship	of	an	irrational	number	to	all	rational	numbers	all	at	once.	But
one	can	do	so	indirectly,	by	specifying	a	system	of	successive	approximations.
One	approximates	because,	in	any	concrete	application	to	a	quantitative
relationship,	one	never	needs,

or	can	achieve,	infinite	precision.	A	sufficiently	precise

approximation,	in	the	concrete,	will	always	serve.	However,	one

creates	a	system	of	successive	approximations	because	there	is	no	prior	limit	to
the	precision	that	might	be	required,	nor	any	limit	to	the	precision	that	is
mathematically	achievable.

Consider	how	the	approximation	of	an	irrational	number

works	out	in	practice.	Take	the	square	root	of	2	(in	the	usual

notation,√2).To	specifythesquarerootof2	as	the	unique	positive

number	with	a	square	equal	two,	is	already	to	specify	a	precise	number	bearing	a
precise	relationship	to	2	and,	therefore,	a	precise

relationship	to	1.	However,	to	establish	√2	as	a	number,	more	is

needed.	One	must	also	establish	it	as	a	potential	measurement	of	a

magnitude,	as	potentially	naming	a	quantitative	relationship.	And

to	do	that,	one	must	be	able	to	compare	it	along	the	appropriate

dimension.	One	must	be	able	to	compare	it,	as	to	relative	size,	with

other	measures	of	magnitudes,	specifically,	with	rational	numbers.

And,	in	that	connection,	one	notes	that	a	positive	rational	number,



And,	in	that	connection,	one	notes	that	a	positive	rational	number,

such	as	3,	with	a	square	greater	than	2	is	too	big,	while	a	positive

rational	number,	such	as	.5,	with	a	square	less	than	2	is	too	small.

Since	the	square	of	a	positive	number	increases	with	its	size,	the

positive	value	of	√2	must	lie	between	any	two	such	numbers.

To	specify	√2	in	relation	to	the	number,	2,	is	easy.	But	to

specify	its	place	among	the	rational	numbers	requires	more	elaborate	means.	For
example,	there	is	a	standard	procedure	for

extracting	square	roots	that	is	somewhat	akin	to	long	division.	The

algorithm	generates	an	ever-lengthening	decimal	expansion	of	√2.

Now	suppose,	in	some	context,	that	one	requires	accuracy	to	six

decimal	places.	Suppose	that	nothing,	in	that	context,	beyond	six	decimal	places
has	any	relevance.	In	such	a	case,	limited	in

application	to	that	context,	there	is	no	meaningful	distinction	between	6-place
accuracy	and	19-place	accuracy.	Decimals	beyond

the	6th	decimal	point,	“accurate”	or	not,	are	simply	meaningless.	In	that	context,
the	expansion,	to	six	decimal	places,	is	√2.9	In	the	same	sense,	an	expansion	to
19	decimal	places,	being

indistinguishable	from	the	shorter	expansion,	is,	in	that	same	context,	also	√2.	In
such	a	context,	if	only	six	figures	matter,	any

number	in	the	series	beyond	six-place	accuracy	will	have	the

required	relationship	to	2.

Yet,	the	sequence	of	approximations	also	offers	further

refinements,	as	needed,	for	more	demanding	contexts.	These



refinements	do	not	contradict	the	less	demanding	contexts	because

the	later	approximations	are	only	meaningfully	distinguishable

from	earlier	approximations	in	the	more	demanding	contexts.	Sixplace	accuracy
is	√2	in	the	first	context,	but	not	in	the	second;	the	place	accuracy	is	√2	in	the
first	context,	but	not	in	the	second;	the

placeapproximationis√2in	both	contexts.	Conversely,	the	two	approximations
are

relevantly	distinguishable	in	the	second

relevantly	distinguishable	in	the	second

	

place	accuracy	whenever	such	accuracy	is	needed,	but	that	19-place

accuracy	is	only	relevant	or	meaningful,	only	relevantly	different

from	less	precise	approximations,	when	it	is	actually	required.

In	the	less	demanding	context,

all	expansions	that	are

accurate	in	the	first	6	decimals,	mean	the	same	thing	and	equally	qualify	as	√2.
In	particular,	the	decimal	expansion	of	√2	to	six

decimal	places	is√2,as	long	as	one	holds	the	particular	context.	In	sum,	the	root-
extraction

process	for	generating	a	decimal

expansion	of	√2,	or	any	other	similar	process,is	a	method	to	specify
√2,amethodthatsupplies,foranyrequiredprecisionlevel,avalid

approximation	to	√2.	Such	a	process	guarantees	that	any	specific

precision	requirement	that	need	be	met	can	be	met.	The	process	sufficesto



specify	√2	in	any	context	that	could	ever	arise.	The

algorithm,	as	such,	simultaneously	addresses	every	potential	finite	precision
requirement	that	could	ever	be	demanded,	serves	to

distinguish	√2,asrequired,	fromanyother	number,andtospecify

its	ordering	relationship	(larger	or	smaller)	with	respect	to	any

rational	number.	To	specify	the	process,	is	to	uniquely	specify	√2.

Theseapproximationsto√2donotreflectanyimprecision,

lack	of	specificity	of	√2,	or	any	inability	to	distinguish	√2	from	any

other	number.	The	need	for	the	sequence	of	approximations	is	not

to	specify	√2;	it	is	to	relate	its	magnitude	to	the	rational	numbers.

Considered	as	a	number,	the	square	root	of	two	is	distinct	from	any

other	number.	Were	this	not	the	case,	the	entire	root-extraction

would	be	meaningless;	to	approximate	√2	presupposes	a	specific

number	that	one	seeks	to	approximate.

So	when	I	say	that	all	numbers	within	a	certain	range	are

effectively	equal,	I	am	not,	strictly	speaking,	saying	that	they	are

equal	qua	numbers.	They	are,	so	to	speak,	effectively	equal	and	that	word,
effectively,	presupposes	a	precision	context	in	which	every	number	within	the
range	of	valid	approximations	bears	the

required	relationship	to	2.	In	the	unqualified	sense	of	number,

there	is	no	range	because,	as	far	as	the	concept	of	number	is

concerned,	the	precision	standard	is	an	omitted	measurement.

Every	number,	as	such,	names	a	distinct	mathematical	relationship,



Every	number,	as	such,	names	a	distinct	mathematical	relationship,

is	distinguishable	from	any	other	number.

But	I

am	saying	something	else.	I	am	saying	that	one	way	to	specify	a	number	is	to
provide	a	process,	such	as	the	root	extraction	process,	a	method	for	determining
suitable

approximations	and	that	applies,	universally,	to	achieve	any

required	degree	of	precision.	The	square	root	extraction	process,	in

exactly	this	sense,	is	a	specification	of	√2.

Notice	that	I	have	now	offered	two	different

characterizations	of	the	square	root	of	2.	In	the	first,	I	characterized

√2	in	relation	to	the	number	2.	The	number	√2	is	that	number

whose	square	is	2.	In	the	second	case,	I	characterized	it	as	the	limit

of	a	root-extraction	process.

The	first	characterization	addresses	the	question,	“Why	do

I	care?”	I	care	because	of	the	relationship	of	√2	to	2.	The	second

characterization	addresses	a	different	question.	Namely,	“What	is

thenumerical	valueof√2,	as	it	compares	with	other	numbers?”	Its

numerical	value	is	the	limit	of	the	root-extraction	sequence	of

decimal	expansions.

These	two	characterizations	provide	two	different

perspectives	on	the	same	mathematical	relationship.	Both

perspectives	are	important	and	meaningful.	But	each	is	directed



perspectives	are	important	and	meaningful.	But	each	is	directed

towards	a	different	question,	addressing	a	distinct	cognitive	need.

Relating	different	ways	of	looking	at	the	same	thing	has

tremendous	importance	in	mathematics,	and,	indeed,	in	all	human

investigations.	So	it	is	important	to	grasp	the	respects	in	which

these	two	characterizations	are	the	same,	but	also,	the	respects	in

which	they	differ.	They	are	the	same	in	that	they	have	the	same

object;	they	pertain	to	the	same	number,	the	same	mathematical	relationship.
They	are	different	in	that	they	involve	two	different

perspectives	on	that	relationship.

In	a	this-worldly	sense,	what	do	these	two	characterizations

mean?	And	why	do	they	characterize	the	same	number?
As	Ayn	Rand	points	out,	“…	a	word	has	no	meaning	other

than	that	of	the	concept	it	symbolizes,	and	the	meaning	of	a	concept

consists	of	its	units.”10	So	what	units	are	embraced	by	my	two	characterizations
of√2?Whatarethespecificreferentsofthesetwo

characterizations?
Processes	providing	successive	approximations	to

irrational	numbers	pertain	to	a	higher	level	of	abstraction	than

concrete	measurements.	They	pertain	directly	to	mathematical

relationships	among	numbers,	and	only	derivatively	to	quantitative

relationships	among	magnitudes.	To	specify	a	concrete	quantitative

relationship,	a	single	approximation	will	always	suffice.	To	specify	a



mathematical	relationship,	one	must	account	for	all	potential	precision
requirements.
But	the	same	basic	principle	applies:	On	the	level	of	concretes,	including	the
application	of	numbers	to	concretes,	there

is	always	a	standard	of	precision.	One	is	looking,	in	relation	to	the

first	characterization,	for	a	number	whose	square	is	within,	say,	one	ten-
thousandths	of	2.	And	one	is	looking,	in	the	second

characterization	(following	the	squareroot-expansion	process)	for

a	decimal	expansion	out	to,	say,	seven	decimal	places.	In	the	first	case,	within
the	required	precision,	any	number	whose	square	is

within	one	ten-thousandths	of	2	is	√2.	In	the	second	case,	and,	again,	within	the
required	precision,	any	decimal	expansion	of	at

least	seven	decimal	places	is	the	limit	of	the	sequence.
I	have,	at	this	point,	claimed	to	provide	two	distinct

characterizations	of	√2.	But	the	question	remains:	Why	do	they	characterize	the
same	number?
It	is	important	to	realize	that	real	work	is	required	to

answer	that	question.	One	does	need	to	establish	a	mathematical	relationship
between	the	two	characterizations.	In	the	first	case,	a

mathematician	characterizes	√2	in	relation	to	its	square,	that	square	being	2.	In
the	second	case,	one	characterizes	the	number	in

relation	to	other	nearby	numbers:	to	the	decimal	expansion	of	√2.
In	pattern,	a	mathematician	shows,	for	example,	that	if	one

considers	an	expansion	of	√2	to	100	decimal	places,	the	square	of

that	decimal	expansion	will	approximate	2	within,	say,	98	decimal

places.	In	other	words,	one	shows	that	one	can	always	get	a	square	sufficiently
close	to	2	by	finding	enough	places	in	the	decimal



expansion	of	√2.	And,	by	the	terms	of	the	first	characterization	of

√2,	that	decimal	expansion,	therefore,	is	√2:	That	is,	the	square	of	the	decimal
expansion	meets	the	precision	requirement.
There	is	nothing	special	about	the	precision	requirement

(98	decimal	places)	I	have	placed	on	the	square	of	the	squareroot

extraction.	The	process	works	for	any	required	precision	level.	The	specific
precision	requirement	does	not	affect	the	outcome,	is

irrelevant	to	the	final	result.	If	the	specifications	agree	in	any	precision	context,
then	they	agree	in	all.	Accordingly,	one	can	treat	the	specific	precision
requirement	as	an	omitted	measurement	and

conclude,	as	mathematicians	put	it,	that	the	limit	of	the	expansion

is	√2,	which	is	to	say	that	its	square	is	2.	The	two	characterizations

of	√2	do,	indeed,	characterize	the	same	number.
Examples	of	irrational	numbers	are	legion.	The	square	root

of	any	positive	rational	number,	expressed	in	lowest	terms,	is

irrational	unless	both	numerator	and	denominator	happen	to	be

perfect	squares.	Thus	the	square	root	of	9/25	is	rational,	but	the

square	root	of	8/25	is	not.	In	the	same	way,	the	cube	root	of	any

rational	number	expressed	in	lowest	terms	is	irrational	unless	both	numerator
and	denominator	happen	to	be	perfect	cubes.	So	the

cube	root	of	1/27	equals	1/3,	a	rational	number,	whereas	the	cube

root	of	1/26	is	irrational	because	there	is	no	whole	number	with	a

cube	of	26.	Similar	statements	apply	to	fourth	roots,	fifth	roots	and,

in	general,	to	nth	roots.	The	roots	of	most	polynomial	equations



with	integer	coefficients,	such	as	x2	+	x	-	1	=	0,	are	irrational.

Finally,	the	relationships	between	the	angles	of	a	triangle	and	the

lengths	of	its	sides	is	almost	always	expressed	by	irrational

numbers,	no	matter	what	unit	one	chooses	to	measure	length	and	no	matter	what
unit	one	chooses	to	measure	the	angles.	Within	the

sphere	of	mathematical	relationships,	ratios	of	integers	are	the

exception	rather	than	the	rule.
It	is	important,	also,	to	realize	that	one	can	identify	or

specify	a	number	without	using	a	standard	naming	system	to	name	it	or	without
even	naming	it	at	all.	As	we	saw	with	√2,	the	meaning	of	a	number,	the	scope	of
its	referents,	does	not	depend	upon,	any	particular	means	by	which	one	identifies
it.
Here,	there	is	almost	a	continuum	of	possibilities,	between

giving	a	specific	number	a	name	and	specifying	it	indirectly.	For

example,	the	ratio	of	the	circumference	of	a	circle	to	its	diameter	is

so	important	that	it	has	been	given	a	name,	namely	the	Greek	letter

π,	also	spelled	out	as	“pi”.	As	a	second	example,	there	is	a	system

for	designating	roots.	To	illustrate,	the	square	root	of	2	is	written

√2.	This	is	not	quite	a	name,	but	it	is	a	standard	designation.	The

fifth	root	of	three,	written	31/5	is	a	similar	case.	Finally,	to	relate	angles	to
lengths,	one	can	write	cos370	to	designate	the	ratio	of	a	leg	of	a	right	triangle	to
the	hypotenuse	when	the	angle	between	them

is	370.
In	all	of	these	examples,	one	indirectly	specifies	a

numerical	measurement	by	specifying	its	relationships	to	numbers



that	have	already	been	defined.	The	basic	principle:	One	reduces	or

relates	the	newly	known	or	the	unknown	to	the	already	known.

Convergent	Series	and	Sequences

There	is	another,	very	general,	method	of	identifying

irrational	numbers	and	finding	rational	approximations	to	any

required	degree	of	precision.	The	ability	to	find	rational

approximations	is	important:	An	irrational	number	may	be

specified	in	any	of	the	ways	I	have	been	discussing,	but	ultimately,	to	apply	it
directly	to	measuring	magnitudes,	one	needs	to	be	able

to	approximate	it	by	rational	numbers,	most	typically,	today,	by

decimal	expansions.

That	general	method	for	dealing	with	irrational	numbers	is

provided	by	convergent	series	and	sequences.11	As	a	first	example,	remembering
that	the	irrational	number	π	is	the	well-known	ratio

between	the	circumference	of	a	circle	and	its	diameter,	Leibniz	was

able	to	establish	that

π/4	=	1	–	1/3	+	1/5	–	1/7	+	1/9	…	.12

As	this	series,	converging	to	an	irrational	number,	already

illustrates,	one	cannot	formulate	a	consistent	mathematical	theory

of	approximation	without	dealing	with	irrational	numbers.

This	example	is	a



convergent	series.	In	general,	a	series,	sometimes	called	an	infinite	series,	is	an
infinite	sum	of	specifically	defined	numbers,	evaluated	from	left	to	right.	The
“partial	sums”

are	the	subtotals	one	reaches	along	the	way.	For	example,	the

second	partial	sum	is	1	–	1/3	=	2/3.	The	third	is	1	–	1/3	+	1/5	=

11/15.	These	successive	partial	sums	form	an	infinite	sequence.	A	series	is
convergent	when	the

sequence	of	partial	sums

is

convergent,	i.e.,	can	be	shown	to	have	a	limit,	to	serve	as	successive

approximations,	sufficient	to	meet	any	finite	precision	requirement,

to	some	definite	number.	My	earlier	example	of	a	sequence	of

decimal	approximations	to	√2	is	a	convergent	sequence.

The	rule	that	determines	this	particular	series,	for	π/4,	is

manifest	from	the	first	few	terms.	One	finds	an	approximation	to

π/4	by	simply	summing	a	sufficient	number	of	terms,	starting	from

the	left,	to	reach	the	desired	precision.

Now	there	are	other	series	for	π,	equally	elegant,	that

converge	much	more	quickly,	but	this	one	does	converge.	In	this

particular	case,	no	matter	what	precision	might	be	required,	a

mathematician	can	specify	the	number	of	terms	required	to	achieve

and	guarantee	such	precision.	Indeed,	a	mathematician	can	write

down	a	formula	to	express	the	number	of	required	terms	as	a



down	a	formula	to	express	the	number	of	required	terms	as	a

function	of	the	sought-for	precision.	Yet,	to	establish	that	a	series,

or	a	sequence,	converges,	it	is	not	always	necessary	to	produce	such

a	formula.

Thataseriesconvergingtoafractionofπcouldfollowsuch

a	simple	rule	is	surprising,	though	hardly	accidental.	However,

defining	a	rule	or	a	formula	that	determines	each	term	in	an	infinite	series	is	not
the	only	approach	that	can	both	specify	and

provide	a	sequence	of	converging	approximations	of	irrational

numbers.	Defining	specific	algorithms	can	be	equally	effective.

For	example,	a	computer	might	apply	the	following

algorithm	to	calculate	the	square	root	of	a	number:	Suppose	that

the	number	is	8	and	the	goal	is	to	approximate	√8.	Start	with	half

of	8,	namely	four.	That’s	the	first	estimate.	Now	divide	8	by	4	to	get

2	and	find	the	average	between	4	and	2.	The	average	is	three,	your

second	estimate.	Proceed	in	the	same	fashion	until	the	differences

between	successive	estimates	become	sufficiently	small.	When	a

term	x	in	the	sequence	is	approximately	equal	to	8/x	(the	first	step	out	of	the	two
that	would	generate	the	next	term	in	the	sequence),	it

follows	that	x2	is	approximately	equal	to	8,	which	is	to	say	that	x	is
approximately	equal	to	√8.

In	comparing	this	process	to	the	series	that	I	provided	to

evaluate	π/4,one	findsone	keyelementthattheyhave	in	common.



Both	of	them	define	a	process	to	generate	rational	approximations,	of	any
required	accuracy,	to	a	particular	number.

Notice	that	in	order	to	demonstrate	that	a	sequence

converges	to	π	one	must	have	already	specified	this	particular	number,	π,	in
some	other	way.	Indeed,	π	was	originally	specified	by	reference	to	an	external
relationship,	namely	the	ratio	of	a	circle’s

circumference	to	its	diameter.	This	specification	was,	in	fact,	an	identification	of
a	particular	geometric	relationship.	However,	as	I	have	already	observed,	to
identify	or	specify	a	mathematical	relationship	is	not	to	know	everything	about	it.
To	establish,	for

example	that	π	is	greater	than	three	but	less	than	four	is	a

discovery,	adding	to	our	knowledge	about	this	ratio.	But	this	determination	is
just	that,	a	discovery	about	a	specific	number,	identified	and	referenced	in
advance.

A	number	arises	in	a

context;	it	provides	a	numerical

measure	of	a	relationship	referring,	ultimately,	to	the	external

world,	to	a	particular	class	of	quantitative	relationships.	When	a

mathematician	finds	a	particular	sequence	of	rational	numbers	to

approximate	a	particular	number	that	has	arisen	in	some	context,

he	is	adding	to	his	knowledge	of	a	number	that	has	already	been	specified.

In	general,	any

given	irrational	number	can	be	expressed	as

the	limit	of	a	sequence	of	rational	numbers	and	can	be

approximated	to	any	desired	accuracy	by	such	a	sequence.13	Although



estimation	can	be	difficult	in	particular	cases,	such	a	sequence	can	easily	be
specified,	as	follows.	To	simplify	the	discussion,	it	is	enough	to	assume,	and	I
will	assume,	that	the	given

number	is	positive:

The	first	term	in	the	sequence	is	the	largest	integer	less

than	or	equal	to	the	given	number.	The	second	term	is	the	largest

decimal	expansion	with	one	figure	past	the	decimal	point	that	is

less	than	or	equal	to	the	given	number,	Term	number	N	is	the

largest	decimal	expansion	containing	N	–	1	figures	past	the	decimal

point	that	is	less	than	or	equal	to	the	given	number.

Depending	on

how	a	particular	given	number	is	given,	it	may,	indeed,	be	very	difficult	to
explicitly	identify	the	terms	in	this	sequence.	Even	finding	the	very	first	term,	the
largest	integer	less

than	or	equal	to	the	number,	may	be	very	difficult.	Yet	if	the

number	is	given,	no	matter	how,	the	sequence	that	I’ve	described	is	also	given,	is
indirectly	specified,	as	well.

Suppose	that	one	is	asked:	What	about	numbers	that	are

never	given	in	some	way?	There	are,	the	argument	continues,	by	Cantor’s
reckoning,	an	in-denumerable	infinity	of	real	numbers,	of

which	only	finitely	many	will	be	encountered	in	anyone’s	lifetime.14

But,	within	a	realitybased	approach,	this	is	not	an	issue.

One	does	not

construct	quantitative	relationships;	one	finds



methods	to	measure	them.	To	isolate	a	system	of	measurements	is	to	establish	a
method	to	measure	whatever	relationships,	of	a

particular	type,	one	encounters	or	might	encounter.

This	relationship	of	a	system	of	measurements	to

quantitative	relationships	does	not	exclude	hypothetical	references

to	potential	quantitative	relationships.	Indeed,	my	very	discussion	was
hypothetical:	given	a	number,	however	specified,	there	exists	a

corresponding	converging	sequence	of	numbers	approximating	the

given	number	to	any	required	degree	of	precision.	It	exists	in	the

sense	that	it	is	specifiable	in	the	fashion	I	have	just	illustrated.

Contrary	to	Cantor,15	a	system	of	measurements	is	not	a	completed	infinity.	To
isolate	a	system	of	measurements	is	not	to	imply	existence	of	every	measurement
that,	if	it	did	exist,	would	be

included	in	the	system.	That	is	not	the	purpose,	nor	the

achievement,	of	a	system	of	measurements.	Rather,	it	is	to	identify

a	place	for	such	measurements,	to	provide	a	method	of	dealing	with	any
measurement	of	that	type	that	does	exist,	that	ever	arises,	in

any	form	in	which	it	might	arise.

To	specify	a

method	of	measurement	is	not	to,	somehow,

bring	into	existence,	even	as	a	thought,	every	particular	measurement	that	might,
one	day,	be	applied	to	a	concrete	quantity

or	geometric	relationship.	On	the	contrary,	to	provide	for	the

possible	existence	of	a	quantitative	relationship	is	to	recognize,	first



of	all,	that	quantitative	relationships	of	that	type	exist.	It	is	to	recognize,
secondly,	that	a	particular	quantitative	dimension	has	been	identified	to	which	it
would	belong	if	it	did	exist.	It	is	to

provide	a	comprehensive	method	to	deal	with	any	measurement	of	the	type,	to
find	and	distinguish	a	place	for	any	particular	measurement	along	the	particular
quantitative	dimension.	It	is	to

provide	for	a	contingency.

A	contingency	is	not,

per	se,	a	potential,	nor	is	a

potentiality	an	actuality.
So	a	number	can	be	specified	by	a	sequence.	What	if	one

starts	from	the	other	direction?	What	if	one	starts	with	a	sequence?

After	all,	one	of	the	ways	that	numbers	can	arise	is	as	limits	to

converging	sequences	of	rational	numbers.
Just	any	kind	of	sequence	simply	won’t	do;	not	all

sequences	converge.	But	there	is	a	particular	kind	of	sequence	that

will	always	converge.	At	least,	it	will	always	converge	as	long	as	there	is
something	for	it	to	converge	to.
But	is	there,	in	fact,	something	for	it	to	converge	to?	What

is	the	ontological	status	of	the	limit	of	the	sequence?	How,	if	at	all,

does	it	relate	to	the	world?
This	was	the

mathematical	issue	that	confronted

mathematicians,	such	as	Dedekind	and	Cantor	during	the	second	half	of	the
nineteenth	century.	In	a	conventional	formulation	of	the

question:	Do	all	sequences	that	should	converge	have	something	to	converge	to?



The	approaches	and	the	answers	that	Dedekind	and	Cantor,	at	about	the	same
time,	provided	are	both	taken	as	standard	answers	today.	Both	answers	are
accepted	as	uncontroversial.	I	will	outline	and	discuss	both	approaches,	and

both	answers,	to	this	question,	at	the	end	of	the	chapter.	For	now,

keep	in	mind	that	this	question	was	taken	seriously	and,	in	my

view,	should	be	taken	seriously.	It	has	a	history	and	it	is	important

to	understand	that	history.
But	my	immediate	objective	is	to	offer	a	this-worldly

answer	to	that	question.
The	kind	of	sequence	I	have	in	mind,	the	sequence	that

should	converge,	as	long	as	there	is	something	for	it	to	converge	to,

is	called	a	Cauchy	sequence.	A	Cauchy	sequence	(a1,	a2,	a3,	…	an,	…	)	is,	first	of
all,	a	sequence	of	numbers	whose	ith	term	can,	for	this	discussion,	be	designated
by	ai,	(where	i	=	1,	…	∞).	The	sequence	is	a	Cauchy	sequence	whenever,	given
any	ε	>	0,	there	exists	a	positive	number	η	such	that	whenever	n	>	η	and	m	>	η,
then

|	am	–	an|	<	ε.16

	
For	example,	the	sequence

	
½,	¾,	7/8,	…,	2n-1/2n

is	a	Cauchy	sequence.	Beyond	a	certain	point	in	a	Cauchy	sequence,	any	two
terms	differ	by	less	than	ε,	no	matter	how	small	a	positive

number	ε	may	have	been	chosen	to	be.

One	point	of	defining	such	a	sequence	is	that	one	doesn’t

need	to	know	the	limit	of	a	Cauchy	sequence	to	know	that	it	is	a	Cauchy



sequence.	A	Cauchy	sequence	will	always	converge,

providing	that	one	grants	that	the	unique	number	that	it	converges

to	actually	exists.17

In	the	standard	mathematical	terminology,	to	say	that	all

Cauchy	sequences	of	rational	numbers	(or	of	real	numbers)

converge	is	to	say	that	the	real	number	system	is	complete.

For	a	realist	account,	my	discussion	of	√2	already

illustrates	the	principle	involved.	A	Cauchy	sequence,	as	such,	as	a	sequence,	is
not	a	number.	But	it	specifies	a	number	in	exactly	the	same	way	that	√2	specifies
a	number:	It	provides	a	rule	for	defining

successive	approximations	to	any	required	precision,	just	as	square

root	extraction	provides	successive	approximations	for	√2.

Indeed,	a	Cauchy	sequence

specifies	a	number	in	just	the

following	sense.	Whatever	level	of	precision	may	be	required,	in	any

concrete	case,	there	is	a	point	in	the	Cauchy	sequence	from	which

every	subsequent	term	in	the	sequence	meets	that	precision	requirement.	Pick
any	one	of	those	subsequent	terms.

That	chosen	term,	whatever	it	may	be,

is	the	limit	of	the	Cauchy	sequence	within	the	required	precision	level.18	Just	as
I	found	for	√2,	the	chosen	term	is	indistinguishable	from	any	“better”
approximation	that	may	occur	later	in	the	sequence.

Within	the	standard	of	precision	they	are	all	equal.

A	Cauchy	sequence	indirectly	specifies	a	mathematical



A	Cauchy	sequence	indirectly	specifies	a	mathematical

relationship	in	exactly	the	same	way	that	the	algorithm	for	√2	does.

Like	the	algorithm	for	√2,	the	Cauchy	sequence	of	approximations

offers	further	refinements,	as	needed,	for	more	demanding

contexts.	These	refinements	do	not	contradict	the	less	demanding

contexts	because	the	later	approximations	are	only	meaningfully

distinguishable	from	earlier	approximations	in	the	more

demanding	contexts.	The	accuracy	it	provides,	whenever	such

accuracy	is	needed,	is	only	relevant	or	meaningful	when	that	degree

of	accuracy	is	actually	required.

In	just	this	way,	the	Cauchy	sequence,	as	a

system	of

approximations,	simultaneously	provides	the	limit	in

every	concrete	instance	according	to	the	standard	of	precision	in	each

case.	From	a	realitybased	perspective,	this	is	what	it	means,	the

only	thing	it	can	mean,	for	a	Cauchy	sequence	to	converge.	As	applied	to
concretes,	the	sequence	simultaneously	supplies	a	valid

approximation	for	every	precision	standard.

To	say	this	slightly	more	technically:	At	any	precision	level,

i.e.,	for	any	given	ε	>	0,	one	can	choose	any	term	an,	for	which	n	>	η,	to	satisfy
the	precision	requirement	expressed	by	ε	>	0.	But	the

fact	that	the	specific	decimal	expansions	may	depend	upon	which



term	one	chooses	from	the	sequence	is	irrelevant	here.	It’s

irrelevant	because	the	term	chosen	in	any	particular	context	is

indistinguishable,	in	that	context,	from	later	terms	in	the	sequence	that	might	be
required	for	a	more	demanding	context.	That	a	value

chosen	in	these	more	demanding	contexts	might	be	more	precise	is	only	relevant
and	meaningful	in	those	more	demanding	contexts.

The	Cauchy	sequence,	then,	applies	to

all	cases,	to	all	finite

levels	of	precision.	It	applies	universally,	measuring	the	designated

relationship	in	every	single	case.	A	number	identifies	a	relationship

and	a	Cauchy	sequence	acts	as	a	number	by	universally	identifying	a	particular
relationship.	The	limit	is	the	relationship	that	it

identifies.

Now	suppose,	as	given,	two	Cauchy	sequences	with	general

terms	ai	and	bi	such	that	the	related	Cauchy	sequence	with	general	term	ai	-	bi
has	a	limit	of	zero.	Then	the	two	Cauchy	sequences	have	the	same	limit.	For	any
required	precision	level,	one	can	find	a

point	in	both	sequences	at	which	all	successive	terms	in	each

sequence	will	simultaneously	provide	a	numerical	value	to	serve	as	a	limit,	a
limit	within	the	required	degree	of	precision.

Unambiguously,	the	two	Cauchy	sequences	identify	the	same

mathematical	relationship.	Conversely,	any	other	Cauchy	sequence

that	converges	to	the	same	limit	as	the	first	sequence	will	be	related

to	it	in	the	same	way.	(I	here	apply	an	insight	of	Cantor,	who,



however,	gave	it	a	far	different	interpretation,	as	we	shall	see.)19

In	particular,	every	decimal	expansion	is	a	Cauchy

sequence.	And,	for	every	Cauchy	sequence,	there	is	a	decimal

expansion	that	converges	to	the	same	number	as	the	Cauchy

sequence.	For	example,	to	find	the	first	100	decimals	of	the

expansion,	simply	find	a	point	in	the	Cauchy	sequence	from	which	all
subsequent	terms	agree	to	100	decimal	places.20	Then,	since	these	terms	will	all
agree	to	100	decimal	places,	any	one	of	these

terms	provide	the	first	100	decimals	of	the	decimal	expansion.	One

can	apply	this	procedure,	in	turn,	to	every	required	term	in	a

decimal	expansion	and	generate,	in	this	way,	a	decimal	expansion

with	the	same	limit	as	the	Cauchy	sequence.21

In	just	this	fashion,	the	use	of	infinite	series	provides	a

general	mathematical	approach	to	successive	approximation.	But,

because	Cauchy	sequences	can	converge	to	irrational	numbers,	one

cannot	develop	a	theory	of	approximation	that	doesn’t	include

irrational	numbers	as	potential	limits	of	a	sequence	of

approximations.

A	theory	of	approximation	is	also	needed	to	justify	our

approach	to	direct	measurement.	A	theory	of	approximation,

appealing	to	the	Axiom	of	Archimedes,	discussed	in	Chapter	3,	is

needed	to	establish	that	one	really	can	approximate	magnitudes,	to



any	required	accuracy,	by	means	of	rational	numbers.

But,	returning	to	an	earlier	point,	rational	numbers,	like

irrational	numbers,	characterize	the	means	of	measurement;	the	distinction
between	rational	numbers	and	irrational	numbers	is

not,	as	I	have	observed,	a	metaphysical	distinction	pertaining	to

magnitudes.	It	is	rather,	a	mathematical	distinction	pertaining	to	the	means	of
identification	of	quantitative	relationships.	And,	as	a	mathematical	abstraction,
to	deny	irrational	numbers	is,	to	deny

the	mathematical	theory	of	approximation,	and,	ultimately,	to	deny

the	possibility	of	measurement	of	continuous	magnitudes.

At	the	end	of	Chapter	1,	I	discussed	the	need	for	precision

in	mathematics.	What	I	said	there	applies	here,	as	well.

Fundamentally,	the	need	for	irrational	numbers	arises	from	a

difference	between	mathematics	and	engineering.	In	engineering,

with	a	concrete	application	in	mind,	one	can	always	identify	the	required
precision	in	advance.	But	the	application	of	mathematics

is	open-ended.	It	applies	to	all	engineering	problems	that	will	ever

be	tackled	and	all	levels	of	precision	that	will	ever	be	required.

There	is	simply	no	way	to	anticipate	the	level	of	precision	that	may,

someday	for	some	reason,	be	required	by	someone.

By	techniques	that	necessarily	involve	irrational	numbers,

mathematicians	are	able	to	achieve	what	an	engineer	cannot.	A

mathematician	can	analyze	complex	chains	of	mathematical



relationships	without	ever	losing	precision.	In	this	way,

mathematics	can	provide	any	required	level	of	precision	without

having	to	know,	in	advance,	the	requirements	for	any	concrete	case.

By	contrast,	any	prior	approximation	by	rational	numbers	would

fail	at	some	finer	level	of	precision	that	may	one	day	be	required.

The	validity	and	universality	of	mathematical	conclusions

depends	on	the	ability	to	analyze	complex	chains	of	mathematical

relationships	without	ever	losing	precision.

One	never	encounters	irrational	numbers	when	one	makes

concrete	numerical	measurements.	But	irrational	numbers	are

utterly	required	at	the	next	level	of	abstraction	to	establish

mathematical	relationships	ranging	from	the	most	mundane	to	the

most	important.	And,	ultimately,	they	are	required	to	ground	the

approximations	involved	in	all	concrete	measurements	of

magnitude.

To	summarize,	a	Cauchy	sequence	provides	unlimited

mathematical	precision	by	providing	a	system	of	approximations,	a	system	that
presupposes	some	finite	precision	requirement	in	any	particular	context,	but	one
that	is	adequate	to	any	finite	precision	requirement,	irrespective	of	context.22

So	what	is	the	status	of	the	concept	of	irrational	numbers?

As	Ayn	Rand	once	put	it,	in	answer	to	a	question	about	imaginary

numbers:



“If	you	have	a	use	which	you	can	apply	to	actual

reality,	but	they	do	not	correspond	to	any	actual

numbers,	it	is	clearly	a	concept	pertaining	to

method.	It	is	an	epistemological	device	to	establish	certain	relationships.”23

As	Ayn	Rand	characterizes	“concepts	of	method”:

“Concepts	of	method	designate	systematic	courses

of	action	devised	by	men	for	the	purpose	of

achieving	certain	goals.”24

She	elaborates,	as	follows:

“The	concepts	of	method	are	the	link	to	the	vast

and	complex	category	of	concepts	that	represent

integrations	of	existential	concepts	with	concepts

of	consciousness,	a	category	that	includes	most	of

the	concepts	pertaining	to	man’s	actions.	Concepts

of	this	category	have	no	direct	referents	on	the

perceptual	level	of	awareness	(though	they	include

perceptual	components)	and	can	neither	be

formed	nor	grasped	without	a	long	antecedent	chain	of	concepts.”25

Based	upon	the	account	of	irrational	numbers	that	I	have

provided,	irrational	numbers,	and,	specifically	the	use	of

convergent	sequences	to	identify	them,	are	a	concept	of	method,	a



methodological	device	to	keep	track	of	distinguishable

mathematical	relationships.	The	specific	“course	of	action”	(or	one	of	them)
involved	in	this	case	can	be	characterized	as:	Providing	a

series	of	successive	approximations	to	measure	magnitudes	to	any

required	accuracy.	I	have	shown	how	irrational	numbers	relate	to

reality,	but	this	is	also	where	consciousness	comes	in.	Irrational

numbers	arise	in	an	abstract	setting	as	relationships	between

magnitudes	that	cannot	be	specified	as	ratios	between	integers

(rational	numbers),	but	can	be	specified	by	relating	or	comparing	them	to
rational	numbers.	The	context	provided	by	this	abstract

setting	is	essential	to	their	meaning,	to	the	particular	way	that	an

irrational	number	relates	to	reality.

Taken	together,	the	rational	numbers	and	irrational

numbers	are	referred	to	as	“real”	numbers.	Like	rational	numbers,

real	numbers	can	be	compared:	any	real	number	is	either	larger	or

smaller	than	any	other	real	number.	Between	any	pair	of	real

numbers	there	is	at	least	one	rational	number	and	at	least	one

irrational	number.	All	the	operations	of	addition,	multiplication,

etc.,	can	be	defined	and	applied	to	all	real	numbers.	Any	real

number	can	be	approximated	to	any	desired	degree	by	a	sequence

of	rational	numbers.	In	specifying	the	way	that	real	numbers	relate

to	rational	numbers,	one	specifies	its	domain.



The	Real	Number	Line

In	Chapter	2,	I	discussed	the	real	number	line	as	a

metaphor.	But	it	is	more	than	this.	Considering	both	real	numbers

and	an	infinite	straight	line	from	an	abstract	perspective,	real

numbers	can	be	put	into	correspondence	with	a	straight	line.	When

real	numbers	are	identified	with	points	on	a	line,	considered

geometrically,	the	result	is	called	the	“real	number	line”.	It	remains

to	examine	the	value	and	the	conceptual	validity	of	this

correspondence.

One	of	the	great	unifications	in	mathematics	was	the

development	of	analytic	geometry,	for	which	the	decisive	steps	were

taken,	independently,	by	Descartes	and	Fermat	in	the	early	17th	century.26
Analytic	geometry	integrates	geometry	and	algebra	by	using	a	coordinate	system
to	express	geometric	shapes.	For

example,	if	x	is	the	horizontal	axis	and	y	is	the	vertical	axis,	the

formula	y	=	2x	+	5	represents	a	straight	line	consisting	of	all

coordinate	pairs	(x,y)	that	satisfy	the	equation.	Thus,	(1,7)	is	on	the

line	because	7	=	2	×	1	+	5.	One	says	that	the	equation	“represents”	a

straight	line	because	the	locus	of	points	satisfying	the	equation	is	a

straight	line.

The	essential	underpinning	of	this	setup	is	represented	by

the	two	axes,	each	of	them	assigning	a	number	to	every	point	of	the



the	two	axes,	each	of	them	assigning	a	number	to	every	point	of	the

axis.	On	this	foundation,	a	coordinate	pair,	based	upon	these	axes,

assigns	a	pair	of	numbers	to	each	point	in	a	plane.

Each	axis	is	a	copy	of	the	real	number	line.
Now,	even	in	the	17th	century,	the	idea	of	associating

numbers	to	points	was	not	altogether	new.	Its	ultimate	genesis	is

the	use	of	number	to	measure	magnitude,	which	has	its	roots	in

antiquity.	The	Greeks	used	line	segments	to	represent	magnitudes

and	their	understanding	of	the	concept,	magnitude,	included

length,	area,	volume,	and,	for	Archimedes,	weight	or	force.27	To	measure	out	a
distance	on	a	line	segment	is	to	measure	a

magnitude.
In	the	final	analysis,	to	associate	points	on	a	line	with

numbers	is	to	say	that	number	can	be	used	to	measure	magnitudes.

Today	we	create	tape	measures	marking	out	multiples	and

subdivisions	of	a	standard	length,	such	as	a	foot	or	a	meter.	The

utility	and	validity	of	tape	measures	should	not	require	an

argument.	Moreover,	the	fineness	of	the	subdivisions	in	a	tape

measure	is	a	physical	limitation,	not	a	mathematical	one.	We	are

limited	by	the	available	precision,	the	thickness	of	the	markings,

and	our	ability	to	discriminate.28
In	sum,	neither	the	validity	nor	the	utility	of	assigning

numbers	to	points	on	a	line	should	be	in	dispute,	nor	is	there	any



trace	of	Platonism	in	using	tape	measures.	The	philosophical	issue,

as	always,	revolves	around	the	mathematical	treatment	of

precision.
In	discussing	triangles	in	Chapter	1,	I	defended	the

mathematical

treatment	of	lines	as	totally	straight,	totally

continuous,	and	without	width.	In	this,	I	argued	that	the	deviations

from	straightness,	the	lack	of	microscopic	continuity,	and	the	width

of	actual	lines,	is	irrelevant	in	an	appropriate	mathematical	context.

Such	deviations	only	become	relevant	in	more	concrete	settings	in

which	something	is	known	about	the	required	or	available	level	of	precision.
In	discussing	irrational	numbers,	I	argued	that	irrational

numbers	are	necessary	to	a	mathematical	theory	of	approximation.

I	argued,	further,	that	they	make	it	possible	for	mathematicians	to

integrate	a	complex	chain	of	mathematical	relationships	without

unnecessarily	losing	precision.	I	showed	specifically	how	irrational

numbers	arise	in	the	context	of	indirect	measurement	when	passing

from	concrete	measurements	to	abstract	mathematical

relationships.	Irrational	numbers	are	a	concept	of	method,	as	is	the

derivative	concept	of	real	number.
The	notion	of	a	real	number	line	pulls	these	concepts

together.	I’ve	discussed	all	of	the	elements	to	this	integration.	But

there	is	one	significant	step	remaining:	In	assigning	a



there	is	one	significant	step	remaining:	In	assigning	a

correspondence	of	all	real	numbers	to	points	on	a	line,	one	passes	beyond	the
ability	to	distinguish	points	on	actual	physical	lines.
Now	the	first	point	one	should	notice	is	that	there	is	really

nothing	very	new	here	beyond	our	previous	discussions.	In	any

application	of	mathematics	to	a	concrete,	one	necessarily	deals	with

the	specifics	of	the	concrete,	such	as	whatever	limits	to	precision

are	inherent	in	the	specific	context.	The	application	of	real	numbers

is	a	case	in	point.	The	results	of	the	mathematics	apply	precisely	to

any	and	all	concretes,	within	the	respective	precision	limits	for	each

concrete.	That	it	does	so	is	inherent	in	the	approach	mathematics

takes	to	approximation;	it’s	inherent	in	the	technical	definitions	of

limit	that	forms	the	foundation	of	its	theory	of	approximation.
The	application	of	numbers	to	a	line	is	different	from	their

application	to	concrete	measurement	only	insofar	as	the	line	is

treated	as	a	geometric	abstraction,	as	discussed	in	Chapter	1.	But	to

show	how	an	irrational	number	corresponds	to	a	point	on	an

abstract	line	is	to	show	how	it	corresponds	to	a	point	on	each	concrete	line
covered	by	that	abstraction.
After	choosing	a	zero	point	and	the	location	of	the	number

one,	it	goes	like	this.	Within	the	limits	of	available	precision,	one

knows	how	to	subdivide	a	concrete	physical	line:	to	find	a

corresponding	point	on	the	line	for	a	rational	number.	Any

irrational	number	can	be	specified	as	the	limit	of	a	convergent



sequence	of	rational	numbers.	Following	Corvini’s	approach	in	her	analysis	of
Zeno’s	paradox,29	for	any	concrete	line,	and	within	any	specific	context,	one
locates	the	irrational	number	by	simply

following	the	sequence	of	rational	numbers	until	one	can	no	longer

meaningfully	distinguish	the	point	one	has	reached	from	the

mathematical	limit	of	the	sequence.	Similar	to	Corvini’s	analysis,	at

that	point,	one	has	located	the	irrational	number	on	the	line.30	It	remains	to
observe	that	this	process	will	apply	to	any	physical

situation,	whatever	the	precision	available	in	and	appropriate	to

each	context.
Having	indicated	how	the	irrational	number	measures	each

line	in	the	category,	I	have,	thereby,	specified	how	it	applies	to	the

category.	Since	the	same	process	works	for	every	irrational	number	(and	also	for
every	rational	number),	I	have	also,	thereby,	specified

a	correspondence	between	real	numbers	and	the	mathematical	line.
The	concept	of	this	relationship	i.e.,	the	concept	of	the	real

number	line	is	a	concept	of	method.	It	is	a	concept	of	method	for

the	same	reasons	that	irrational	numbers	are	concepts	of	method.

As	with	that	case,	by	showing	how	it	applies	to	each	particular,	I

have	specified,	as	one	must,	how	it	relates	to	reality.	But	as	with

irrational	numbers,	this	specification	involves	and	requires	taking	a

specific	abstract	perspective	of	each	of	the	particulars.
This	is	the	essence	of	the	philosophical	justification	of	the

approximation	processes,	of	taking	mathematical	limits,	on	all

levels	of	mathematical	abstraction.



levels	of	mathematical	abstraction.
This	viewpoint	also	justifies	the	process	by	which	irrational

numbers	were	discovered	in	the	first	place.	When	one	proves	that

the	diagonal	of	a	square	is	incommensurate	with	the	sides,	one	is

specifically	dealing	with	the	concept	of	a	line	from	a	mathematical

perspective,	precisely	in	the	ways	that	I	have	discussed	throughout.

One	is	establishing	precise	mathematical	relationships	inherent	in	a

certain	kind	of	shape.
Such	is	the	philosophical	perspective:	the	account	of	how

the	mathematical	concepts	and	methods	correspond	to	the	world.

But	it	has	built	upon	a	specifically	mathematical	perspective,

starting	from	the	insights	of	the	ancient	Eudoxus	to	the	more

modern	form	that	these	insights	take	in	the	work	of,	Cauchy	and,

appropriately	reinterpreted,	of	Dedekind	and	Cantor.
And	this	brings	me	to	the	modern	approach	to	real

numbers,	the	approach	pioneered	by	Dedekind	and	Cantor.

Mathematical	Rigor	and	Philosophy

Cauchy	was	the	first	to	provide	a	rigorous	definition	of	limit

that	could	be	successfully	applied	to	the	calculus.	But	then,	as	the

story	goes,	the	question	became:	How	do	we	know	that	a	sequence

converges	to	something?	What	does	it	converge	to?31

As	Jeremy	Gray	puts	it,	“he	[Cauchy]	took	it	for	granted



that	if	an	increasing	and	a	decreasing	sequence	of	magnitudes

ultimately	differ	by	an	arbitrarily	small	amount	then	they	converge	to	a	common
limit.”32

Cauchy’s	definitions	of	limits	and	his	applications	of	those

definitions	ushered	in	a	new	standard	of	rigor	in	mathematical

thought.	But	Cauchy’s	ultimate	appeal,	as	I	take	it,	was	to	the

external	world.	One	does	not	create	the	world;	one	studies	it.	One

measures	it.	And	so,	Cauchy	did	not	evidence	worry,	any	more	than

Newton	had,	about	such	questions	of	ontology.

Yet	there	was	an	issue	here,	one	that	needed	an	answer.

And	increasing	the	level	of	mathematical	rigor	was	an	important,

and	certainly	a	worthy,	objective.

Unfortunately,	the	new	insistence	on	rigor,	and	the	new

approach	to	rigor,	that	developed	in	mathematics	originated	most

specifically	in	nineteenth	century	Germany.	It	developed	in	the

Zeitgeist	of	the	new	Kantian	philosophy	and	the	currents	of

German	Idealism	and	phenomenology	that	spawned	in	its	wake.

Standards,	including	standards	of	rigor,	do	not	develop	in	a

vacuum.	One’s	views	of	what	needs	to	be	proven,	of	what

constitutes	a	valid	proof,	of	what	it	means	for	something	to	be	true

or	valid,	are	philosophical	issues.

German	mathematicians	belonged	to	many	different



German	mathematicians	belonged	to	many	different

philosophical	camps	and	disagreed	violently	on	very	fundamental

issues.33	But,	generally	speaking,	they	were	looking	to	put	mathematics	on	a
more	rigorous	foundation	and	German

philosophy,	especially	phenomenology,	provided	the	context	and

theater	of	that	endeavor	and	the	debate	surrounding	that	endeavor.

By	the	end	of	the	nineteenth	century,	the	following	pattern

had	emerged	in	treatments	of	key	mathematical	abstractions,	first,

for	example,	in	regards	to	irrational	numbers,	and,	later,	for	positive	integers.34
At	the	risk	of	over-simplification:	1.

Start	with	a	view,	and	sometimes	a	statement,	of	the	basic

properties	historically	associated	with	the	concept.
2.

Construct	a	conceptual	model,	focusing	on	form	and

ignoring	content.
3.

Prove,	very	rigorously,	that	the	model	has	those	basic

properties.
4.

Proclaim	the	new	model	to	be	the	actual	content	of	the

concept	that	one	was	trying	to	elucidate	or	make	rigorous.

As	Dedekind	put	it,	for	example,	his	goal,	and	his

achievement,	was	to	“demand	that	arithmetic	shall	be	developed



out	of	itself.”35

In	this	process,	one	abandoned	any	connection	to	an

external	referent.	Rigor,	it	turned	out,	had	nothing	to	do	with

establishing	the	connection	of	a	mathematical	concept	to	the	world.

Indeed,	mathematicians	now	considered	reliance	on	the	properties

of	magnitudes	or	on	“geometric	intuition”	to	be	the	primary	source

of	vagueness,	of	lack	of	rigor	in	mathematics.

Rigor,	in	the	new	approach	to	mathematics	had	much	to	do

with	internal	consistency,	or	internal	logic,	and	nothing	to	do	with

external	reality.	And	the	basic	role	of	a	model	was,	sometimes

explicitly,	more	to	provide	confidence	in	the	consistency	of	a	mathematical
abstraction	than	to	provide	an	object	of

mathematical	thought,	even	a	constructed	object	of	mathematical	thought.

So,	for	example,	if	two	mathematicians	came	up	with

competing	constructions,	the	model	builders	might	argue	about

which	one	was	better.	And	they	might	look	for	holes	in	the	opposing

proposal.	But,	failing	that,	there	was	no	fundamental	conflict

between	the	two	constructions.	They	would	regard	the	two	models

as,	simply,	two	different	ways	of	achieving	the	same	end.	And	if	one

could	establish	a	cross-reference	between	the	two	constructions,

one	would	consider	them	to	be	equivalent,	to	be	ultimately



indistinguishable	in	any	way	that	matters.36

An	early	example	of	the	new	approach	to	rigor	was

Dedekind’s	theory	of	irrational	numbers.

Dedekind	and	the	Modern	View	of	Number

Dedekind’s	answer	to	the	question	that	Cauchy	had	left

unanswered	started,	implicitly,	with	the	Axiom	of	Archimedes,	that	there	is	a
rational	number	between	any	two	real	numbers.	I	say

implicitly.	The	version	of	real	numbers	that	Dedekind	constructed	satisfies	the
Axiom	of	Archimedes.	But	since	Dedekind	was	not

concerned	to	demonstrate	a	connection	to	any	other	notion	of	real

numbers,	he	did	not	appeal	to	that	axiom	in	his	development.	Yet,	insofar	as
Dedekind’s	development	was	motivated	by	the	idea	of	separating	a	line	into	two
segments	by	a	point	on	the	line,	he	relied

on	the	fact	that	any	two	points	on	the	line	can	be	separated	by	a

rational	number	(once	a	unit	has	been	chosen.)	In	this	sense,	and	only	in	this
sense,	Dedekind	appealed	to	the	Axiom	of	Archimedes.

As	I	discussed	in	Chapter	2,	the	Axiom	of	Archimedes

implies	that	any	number	can	be	distinguished	from	any	other

number	by	finding	a	rational	number	that	separates	them.	But

that’s	a	realist	perspective.	Dedekind’s	explicit	goal	was	to	avoid	the

use	of	geometry	and,	indeed,	to	avoid	any	appeal	to	magnitudes	of

any	kind	that	might	exist	in	the	world.37	Dedekind’s	task	was	to	create	a	new
mathematical	reality,	working	with	the	raw	material	of



the	rational	numbers.

So	Dedekind	offered	a	new	view	of	number:	A	number	is	a

cut	in	the	set	of	rational	numbers.	A	cut	is	a	bifurcation	of	the	set	of	rational
numbers	into	two	sets,	sets	that	one	may	designate	as	L

and	R,	such	that	every	rational	number	is	in	one	of	the	two	sets	and

every	member	of	L	is	less	than	every	member	of	R.	(Think	left	for	L

and	right	for	R)

As	an	easy	example,	L	might	be	the	set	of	rational	numbers

less	than	or	equal	than	9/5	and	R	would	be	the	set	of	all	numbers

greater	than	9/5.	In	this	case,	9/5	is	the	largest	member	of	L.	On

the	other	hand,	one	might,	alternatively,	choose	9/5	as	the	smallest

member	of	R	instead	of	the	largest	member	of	L.	As	in	this	case,

every	rational	number	produces	two	Dedekind	cuts.	Dedekind

himself	pointed	this	out	and	answered	that	the	two	cuts	represent

the	same	number,	namely	the	rational	number	that	produces	the

cut.38

As	a	more	interesting	example,	L	might	include,	first,	all

negative	rational	numbers	and,	in	addition,	all	positive	rational

numbers	whose	square	is	less	than	2.	R	would	include	all	positive	rational
numbers	with	a	square	greater	than	2.

One

thinks	of	the	first	Dedekind	cut	as	being	the	real



number	9/5	and	of	the	other	as	being	the	square	root	of	2.	But,	in	a

literal	sense,	and	in	the	intended	sense,	these	cuts	in	the	rational	numbers,	these
divisions	of	the	rational	numbers	into	two	halves,	are	the	real	numbers.	There	is
no	other	choice	on	Dedekind’s	terms,	because	Dedekind	steadfastly	avoids	any
external	referent	in

the	definition	of	irrational	numbers.	There	is	no	other	sense	in	which	these
irrational	numbers	can	be	said	to	exist.39

To	develop	his	theory,	Dedekind	proceeds	to	define

addition	and	other	arithmetic	operations	of	these	Dedekind	cuts.

For	example,	the	sum	of	two	Dedekind	cuts	1	and	2,	with	left	sets	L1	and	L2,	is	a
Dedekind	cut	with	a	left	set	that	I’ll	call	L.	To	define	L	is	to	determine	a
Dedekind	cut	because	the	right	set	of	the	Dedekind

cut	is	simply	the	complement	of	the	left	set	consisting	of	every

rational	number	to	the	right	of	all	the	rational	numbers	on	the	left.

One	defines	that	left	set	L	as	precisely	containing	all	distinct	sums	that	result
from	adding	a	member	of	L1	to	a	member	of	L2.	In	this	discussion	I	have	used
subscripts	simply	to	distinguish	the	left	sets

associated	with	two	Dedekind	cuts.

Any	rational	number	corresponds	to	a	Dedekind	cut,

namely	the	cut	at	that	rational	number.	Accordingly,	one	verifies	that	the
arithmetic	of	those	“rational”	Dedekind	cuts,	those	that	are

defined	by	rational	numbers,	precisely	agrees	with	the	older

arithmetic	of	rational	numbers.	A	mathematician	creates	symbols

to	express	such	ideas,	but	I’ll	say	it	in	words:	The	Dedekind	sum	of	two
Dedekind	cuts	corresponding,	respectively	to	two	rational	numbers,	is	precisely
the	Dedekind	Cut	that	corresponds	to	the	ordinary	sum	of	those	two	rational



numbers.40

To	express	this	symbolically:	Suppose	that	s	and	t	are

rational	numbers	and	that	L(s)	and	L(t)	are	the	left	setsof	the	Dedekind	cuts
corresponding	to	s	and	t.	(I	use	parentheses	to

distinguish	this	use	of	subscripts	form	the	earlier	use	as	in	L1.)

Similarly,	L(s	+	t)	is	the	left	set	of	the	Dedekind	cut	of	the	rational	number	s	+	t.
Then,	by	Dedekind’s	definition,

	
L(s)	+	L(t)	=	L(s	+	t)

As	a	reminder,	the	left	side	of	this	equation	consists	in	the

Left	set	consisting	of	all	sums	x1	+	x2	where	x1	is	in	L(s)	and	x2	is	in	L(t).

Next,	one	defines	order	simply:	If	L1	is	a	subset	of	L2,	and,	in	addition,	L2
contains	at	least	two	rational	numbers	that	are	not	in	L1,	then	one	says	that	L1	<
L2.	Otherwise,	if	only	the	first	condition	holds,	one	says	that	L1	=	L2.41	In	the
first	case,	L1	is	less	than	L2,	because	L2	contains	more	than	one	rational	number
lying	to	the	right	of	every	rational	number	in	L1.	One	has	to	say	that	L2	contains
at	least	two	rational	numbers	not	in	L1,	because	of	the	technical	issue	noted
earlier:	In	regards	to	any	cut	at	a	rational

number,	that	rational	number	can	be	assigned,	indifferently,	to

either	set.

One	also	verifies	various	laws	of	arithmetic	such	as	that

addition	is	independent	of	order	(A	+	B	=	B	+	A),	etc.42
The	entire	process,	of	course,	presupposes	and	requires

that	one	already	knows	how	to	add	and	compare	rational	numbers.

So,	in	a	typical	Kantian	twist,	one	starts	with	an	antecedently



So,	in	a	typical	Kantian	twist,	one	starts	with	an	antecedently

developed	concept	of	the	rational	numbers,	constructs	something

out	of	these	raw	materials,	and	then	changes,	or	ignores,	the

original	meaning	of	these	raw	materials	to	embed	them	into	the

newly	minted	system	of	real	numbers,	that	is,	of	Dedekind	cuts.
Finally,	it	turns	out	that	one	can	use	a	Cauchy	sequence	to

define	a	Dedekind	cut,	a	Dedekind	cut	that	one	takes	to	be	the	limit	of	the
Cauchy	sequence.	Namely,	one	defines	the	left	set,	L,	of	the	limit	Dedekind	cut
to	include	precisely	any	rational	number	that	is

less	than	or	equal	to	all	but	a	finite	number	of	terms	in	the	Cauchy	sequence.	In
this	fashion,	Dedekind	has	a	solution	to	the

completeness	question:	What	do	Cauchy	sequences	converge	to?

Properly	defined,	they	converge	to	Dedekind	cuts!
One	more	technical	question	remains.	Now	that	one	has

expanded	the	realm	of	numbers	to	include	Dedekind	cuts,	what

happens	if	one	tries	to	repeat	this	process?	What	happens	if	one

creates	cuts	in	the	expanded	set	of	Dedekind	cuts?	Or,	alternatively,

what	happens	if	one	looks	for	the	limit	of	a	Cauchy	sequence	of

Dedekind	cuts	with	the	Dedekind	cuts	playing	the	role	that	the

rational	numbers	play	in	Dedekind’s	construction?	And	it	turns	out

that	a	cut	in	the	set	of	Dedekind	cuts,	or	the	limit	of	a	Cauchy

sequence	of	Dedekind	cuts,	can	always	be	identified	with	a

Dedekind	cut.
Notice	that	I	referred	to	an	expansion	of	the	realm	of



numbers.	And	I	spoke	of	identifying	something	constructed	in	one	fashion	with
something	else	constructed	in	a	different	fashion.	My

very	expression	betrays	the	modern	point	of	view.	The	modern

view,	to	wit,	is	that	it	doesn’t	matter	that	rational	numbers	no	longer	refer	to
ratios	of	whole	numbers.	It	doesn’t	matter	what	things	actually	are	or	what	they
actually	mean,	just	how	they

relate	to	each	other.43	In	that	view,	unthinkable	before	Kant’s	phenomenology,
it	doesn’t	matter	that	rational	numbers	no	longer	refer	to	something	external.
Nor	that	irrational	numbers	have	lost	all	external	reference.
From	the	modern	perspective,	all	that	matters	is	the

relationships	that	these	new	numbers	have	to	each	other,	the

relationships	between	the	ideas.	If	Dedekind	cuts	at	rational

numbers	have	the	same	arithmetic	and	ordinal	relationships	that

the	rational	numbers	do,	then,	from	the	modern	perspective,	they

are	indistinguishable	from	the	rational	numbers.	What	does	matter	is	that	one
can	use	the	rational	numbers	as	bootstraps	to	construct	the	real	numbers,	as,	in
this	case,	bootstraps	to	construct	Dedekind

cuts.	And,	this	accomplished,	it	only	remains	to	then	embed	the

rational	numbers	from	which	one	began	into	the	set	of	constructs,

of	Dedekind	cuts,	that	results.
Form	triumphs	over	substance.	Relationships	among	ideas

trump	and	replace	any	relationship	to	reality.	Like	Kant’s

phenomenological	world,	the	only	world	that	matters,	in	this	view,

is	the	one	that	we	construct	ourselves.
Prior	to	Kant,	castles	in	the	air	started	in	the	sky.	But	a



Kantian	castle	in	the	air	generally	appears	to	start	on	the	ground.

Then,	like	an	Indian	rope	trick,	the	connection	to	the	ground	is

removed	after	the	castle	has	been	built.
Dedekind	knew	exactly	what	he	was	doing.
As	I	explained	in	Chapter	2,	Eudoxus’s	criterion	for	the

equality	of	two	ratios	is	a	complicated	way	of	saying	that	any

irrational	number	can	be	approximated,	to	any	required	precision,

by	rational	numbers.	By	the	Axiom	of	Archimedes,	there	is	at	least

one	rational	number	between	any	two	irrational	numbers.	Any	two

numbers	can	be	distinguished	by	a	rational	number	lying	between

them.	So	a	particular	irrational	number	is	completely	determined	or	specified	by
the	set	of	rational	numbers	less	than	it.
But	there	is	a	world	of	difference	between	finding	a	way	to

identify,	specify,	or	distinguish	an	external	relationship	versus

taking	an	identification	to	be	an	independent,	non-referential,	object.	When	one,
as	a	concept	of	method,	uses	numbers	to	identify

relationships	in	the	world,	one	regards	numbers	as	a	means	of	awareness.	But
when	one	constructs	numbers	as	a	non-referential

object,	one	cuts	all	ties	to	the	world	and	treats	an	idea	in	one’s	head

as	a	self-sufficient	object	of	awareness,	an	object	with	no	reference	to	anything
external.
Dedekind	cuts	were	not	a	rediscovery	of	the	criterion	of	Eudoxus;	Dedekind	was
quite	aware	of	Euclid’s	definition	in	Book

V	of	his	Elements.	Indeed,	Dedekind	took	pains	to	distinguish	his	definition	of
real	numbers,	as	Dedekind	cuts,	from	a	prior

viewpoint,	that	some	attributed	to	J.	Bertrand,	that	“an	irrational



number	is	defined	by	the	specification	of	all	rational	numbers	that

are	less	and	all	those	that	are	greater	than	the	number	to	be	defined.”44	Dedekind
considered	this	view	“common	property	of	all	mathematicians	who	concerned
themselves	with	the	notion	of	the

irrational.”	He	wound	up:

“if,	…,	one	regards	the	irrational	number	as	the

ratio	of	two	measurable	quantities,	then	is	this

manner	of	determining	it	already	set	forth	in	the

clearest	possible	way	in	the	celebrated	definition	which	Euclid	gives	of	the
equality	of	two	ratios.”45

Dedekind	did	not	share	this	regard	for	ratios	of	measurable

quantities.	He	said	that	Bertrand’s	notion,	“has	no	similarity

whatever	to	mine	inasmuch	as	it	resorts	at	once	to	the	existence	of	a

measurable	quantity,	a	notion	which	for	reasons	mentioned	above	I	wholly
reject.”46

As	the	goal	of	his	entire	investigation,	Dedekind	sought	a

new	kind	of	rigor,	a	rigor	that,	by	his	lights,	could	not	be	grounded

by	reference	to	actual	magnitudes	or	relationships	between

magnitudes	existing	in	the	world.	He	stated	his	intention,	thus:

“For,	the	way	in	which	irrational	numbers	are	usually

introduced	is	based	directly	upon	the	conception	of	extensive

magnitudes,	which	itself	is	nowhere	carefully	defined,	and	explains

number	as	the	result	of	measuring	such	a	magnitude	by	another	of



the	same	kind.	Instead	of	this	I	demand	that	arithmetic	shall	be

developed	out	of	itself.”47

Dedekind	understood	the	connection	of	his	theory	to

Eudoxus	and	he	also	understood	what	made	it	different.	Eudoxus

had	sought	a	way	to	measure	ratios	between	magnitudes.	But

Dedekind	determined	to	ignore	magnitudes	altogether,	to	develop

arithmetic	“out	of	itself”,	to	“define	irrational	numbers	by	means	of	the	rational
numbers	alone.”48	Number,	said	Dedekind,	“are	free	creations	of	the	human
mind.”	Real	numbers,	for	Dedekind	were	a

certain	kind	of	object	that	one	constructs	out	of	the	rational

numbers.

So	when	Dedekind	characterized	real	numbers	as	being	a

certain	kind	of	splitting	of	the	set	of	rational	numbers	into	two

subsets,	he	meant	it	literally.	When	he	“identified”	the	rational	numbers	with
specific	Dedekind	cuts,	a	cut	at	the	point	determined

by	the	rational	number,	he	betrayed	an	unconcern	with	what

rational	numbers	themselves	measure.	And	when	he	defined

arithmetical	operations,	ordering	relationships,	and	limiting

processes	on	these	pairs	of	subsets,	the	all	but	explicit	implication	is

that	the	only	thing	that	matters	is	that	these	constructions	all	relate	to	each	other
in	a	certain	way.	That	they	relate	in	the	very	way	that

mathematicians	had	hitherto	attributed	to	actual	numbers,	i.e.,	to	numbers
standing	for	quantitative	relationships.

With	Dedekind,	number	lost	the	referential	character	that



With	Dedekind,	number	lost	the	referential	character	that

it	had	always	had.	Constructed	objects,	as	such,	became	the	objects

of	mathematics.	To	the	question,	“What	does	a	Cauchy	sequence

converge	to?”	Dedekind	answered,	in	effect,	“It	converges	to	a

constructed	object	with	no	referential	content.”49

Dedekind	was	not	alone.	The	end	of	the	nineteenth	century

saw	numerous	similar	attempts	to	provide	more	rigorous	accounts

of	the	real	numbers.	Indeed,	Dedekind	rushed	into	print	with	his

own	account	of	real	number	to	establish	priority	over	competing	efforts	by	Heine
and	Cantor.50	In	general,	the	various	competing	attempts,	like	Dedekind’s,
involved	constructions,	shared	the

objective	of	avoiding	reference	to	geometry,	and	offered	their

constructions	as	the	actual	referents	of	the	concept	of	a	real	number.

Most	prominent,	besides	Dedekind’s,	were	the	two,	very

similar,	but	separate	proposals	offered	by	Cantor	and	Heine,	as	well

as	a	somewhat	different	proposal	of	Weierstrass.51	These	attempts	shared	a
common	theme.	They	singled	out,	took	their	starting	point

from,	some	method	by	which	one	might	distinguish	one	real	number	from
another.	And	then	they	elevated	this	method	into	the	object,	as	the	real	number
that	it	might	have	served,	from	a	realist	perspective,	to	have	distinguished.

For	example,	Cantor’s	idea	(and	Heine’s)	was	to

define	a

real	number	as	a	Cauchy	sequence	of	rational	numbers.	But,	since

two	different	Cauchy	sequences	can	converge	to	the	same	number,



two	different	Cauchy	sequences	can	converge	to	the	same	number,

one	had	to	define	a	so-called	equivalence	relation.	One	compares	two	Cauchy
sequences	by	subtracting	one	from	the	other:	In	this

way,	one	creates	a	new	Cauchy	sequence	by	subtracting	the	first

term	of	one	from	the	first	term	of	the	second,	the	second	term	of

the	first	sequence	from	the	second	term	of	the	second	sequence,

and	so	on	for	all	corresponding	terms.	If	the	new	sequence

converges	to	zero,	then	the	two	compared	sequences	are	regarded

as	equivalent.	From	a	technical	mathematical	perspective,	one	says	that	the	two
Cauchy	sequences	belong	to	the	same	equivalence	class.

In	symbols,	if	the	first	sequence	has	terms	a1,	a2,	a3,	…	an,	…

and	the	second	sequence	has	terms	b1,	b2,	b3,	…,	bn,	…	then	the	two	sequences
belong	to	the	same	equivalence	class	if	and	only	if	the

sequence	with	terms	a1	–	b1,	a2	–	b2,	a3	–	b3,	…,	an	–	bn,	…	converges	to	0.	A
real	number,	for	Cantor	and	for	Heine	is	an	equivalence	class	of	Cauchy
sequences.52

To	the	question,	“What	does	a	Cauchy	sequence	converge

to,”	Cantor	and	Heine	provide	a	very	curious	answer.	Namely,	a

Cauchy	sequence	converges	to	itself,	to	the	equivalence	class	to

which	it	belongs.

The	proposals	of	Weierstrass,	Dedekind,	Cantor,	and	Heine

were	(and	are)	all	regarded	as	satisfactory	proposals.	Dedekind’s

proposal	became	the	most	standard	construction	and	the	clumsier

construction	of	Weierstrass	is	no	longer	taught	today.	But,	from	a



construction	of	Weierstrass	is	no	longer	taught	today.	But,	from	a

formal	perspective,	they	are	all	regarded	as	equivalent.

For	example,	the	proposals	of	Dedekind	and	Cantor	are

formally	equivalent	in	the	following	sense:	One	can	put	Dedekind’s

real	numbers	into	one-to-one	correspondence	with	Cantor’s	real

numbers,	a	correspondence	that	preserves	all	arithmetical	and

ordering	relationships.

In	one	direction,	corresponding	to	any	Dedekind	cut,	one

can	construct	a	corresponding	Cauchy	sequence.
For	this	discussion,	it	is	enough	to	assume	that	the

Dedekind	cut	represents	a	positive	number.	Start	by	finding	the

largest	whole	number	in	the	left	set	of	the	Dedekind	cut.	That’s	the	first	term	of
the	Cauchy	sequence.	The	second	term	in	the	Cauchy

sequence	is	the	largest	decimal	expansion	that	contains	just	one	numeral	to	the
right	of	the	decimal	point	and	is	also	contained	in

the	left	set	of	the	Dedekind	cut.	For	the	third	term,	one	finds	the

largest	left-set	decimal	that	contains	no	more	than	two	numerals	after	the
decimal	point.	Continue	in	this	way	indefinitely.	The

resulting	sequence	is	a	Cauchy	sequence,	that	is	to	say,	a

representative	of	an	equivalence	class	of	Cauchy	sequences,	that	is

to	say,	a	Cantorian	or	Heinian	real	number.
Conversely,	to	define	a	Dedekind	cut	from	a	Cantorian	real

number,	pick	a	Cauchy	sequence	from	the	equivalence	class	and

proceed	as	I	indicated	earlier:	Namely,	the	corresponding	Dedekind



proceed	as	I	indicated	earlier:	Namely,	the	corresponding	Dedekind

cut	is	the	Dedekind	limit	of	the	Cauchy	sequence.	It	is	the	Dedekind

cut	for	which	the	left	set,	L,	includes	precisely	any	rational	number	that	is	less
than	or	equal	to	all	but	a	finite	number	of	terms	in	the	Cauchy	sequence.
One	verifies	that	this	determination	does	not	depend	upon

which	Cauchy	sequence	one	selects	from	the	equivalence	class.

Thus,	one	checks	that	both	of	these	relationships	are	well-defined

and	that	they	establish	a	one-to-one	correspondence	between	the

two	domains.	And	one	checks	that	the	rules	of	arithmetic,	of

ordering,	and	of	limits	correspond	exactly.
From	the	modern	perspective,	then,	these	various

proposals	are	completely	equivalent.	Either	alternative	is	equally

satisfactory.	It	really	doesn’t	matter	whether	one	thinks	of	real

numbers	as	Dedekind	cuts	or	as	equivalence	classes	of	Cauchy

sequences.	As	formal	systems	they	stand	in	one-to-one

correspondence	and	the	relationships	between	their	elements	are	identically
preserved	in	that	correspondence.	There	is	no	important

difference	because	the	ontological	status	of	real	numbers,	what	real	numbers
actually	are	is	unimportant.	All	that	matters	are	the	relationships	between	the
elements.53	It’s	important	that	one	provide	a	construction	of	some	kind,	but	the
precise	construction	that	one	adopts	simply	doesn’t	matter.	Real	numbers,	on
this	view,

are	not	the	means	of	awareness;	they	are	the	object	of	awareness.

But	even	this	object	has	only	a	formal	significance.
The	only	thing	that	the	modern	viewpoint	absolutely



forbids	is	imparting	any	referential	character	(that	is,	any	reference	to	the
external	world)	to	the	objects	that	one	creates.	For

to	do	so	would	be	to	abandon	the	Cartesian	certainty	purchased	by

these	constructions.	The	modern	view	avoids	referential	content	on	principle.
That	late	nineteenth	century	mathematics	started	down

this	path	was	by	no	means	inevitable.	In	the	avowedly	referential,

realitybased	account	of	numbers	I	have	given	in	Chapter	2,	as	well

as	the	current	chapter,	I	have	drawn	freely	on	mathematical	ideas

that	were	either	known	in	the	late	nineteenth	century	or,	in	some

cases,	contributed	by	the	very	mathematicians,	notably	Dedekind	and	Cantor,
most	responsible	for	the	modern	turn.	From	a

mathematical	perspective,	no	further	erudition	is	required	to

pursue	a	realitybased	approach	to	number.
There	was	no	mathematical	necessity	for	Dedekind	and

Cantor	to	lead	mathematics	down	this	path.	But,	particularly	in

Germany,	there	was	a	philosophical	context	that	had	paved	the	way,

a	context	that	had	fashioned	this	particular	path	into	an	open

highway.
Kant’s

phenomenology	provided	the	most	important

underpinning.	Kant	held	that	the	entire	world	of	experience	was	the

construction	of	our	own	senses	and	intellect.	By	contrast,	the	world

that	actually	exists	was	held,	by	virtue	of	those	very	senses	and

intellect,	to	be	unknowable	in	principle.	As	to	content,	the



intellect,	to	be	unknowable	in	principle.	As	to	content,	the

phenomenal	world	was	a	free	creation	of	the	human	senses;	but	its

form	was	constrained	by	the	particular	structure	of	our	sensory

apparatus	and	our	intellect,	as	manifested,	respectively,	in	forms	of	intuition	and
Kant’s	categories.	That	the	universe	appears	orderly	is	not	because	it	really	is
orderly.	Per,	Kant,	we	would	have	no	way

of	knowing	whether	the	universe	is	actually	orderly	one	way	or	the

other.	On	the	contrary,	our	senses	and	intellect	are	solely

responsible	for	all	appearance	of	order	in	the	world	of	experience.
The	constructions	of	Dedekind	and	Cantor	are	faithful

renderings	of	this	basic	outlook:	Forget	about	external	reality.

Reality	is	too	vague!	It	will	only	interfere	with	the	rigor	that

mathematics	now	requires.	Structure	is	all	that	matters.

Consciousness	is	its	own	object.	Accordingly,	in	typical	Kantian

fashion,	the	German	mathematicians	took	the	very	tools	by	which

earlier	mathematicians	had	studied	quantitative	relationships,	the

criterion	of	equal	ratio	by	Eudoxus	and	the	Cauchy	sequences	of

Cauchy,	and	made	them	the	original	objects	of	mathematics,

standing	in	for	the	external	relationships	that	they	had	been

fashioned	to	study.	Faithful	to	the	impetus	of	Kant’s	Critique	of	Pure	Reason,
the	means	of	awareness	became	the	object	of	awareness.
The	paradox	is	that	mathematics,	the	unacknowledged

science	of	measurement,	the	study	of	quantitative	relationships,

managed	to	survive.	The	disaster	in	the	foundations	of	mathematics



managed	to	survive.	The	disaster	in	the	foundations	of	mathematics

and	the	Kantian	trappings	persist	to	this	day.	But	so,	in	my	view,

does	the	study	of	quantitative	relationship.	I	return	to	this	question

in	Chapter	6.
In	this	regard,	the	final	irony,	which	may,	in	part,	shed	light

on	how	mathematics	has	survived,	is	this:	At	the	same	time	that

Dedekind,	Heine,	and	Cantor	were	disastrously	wrong,	they	were,

in	a	different	sense,	almost	right.	As	I	say,	they	took	tools	designed

to	study	quantitative	relationships,	tore	them,	by	brute	force,	from

their	original	context	and	enshrined	them	as	number	in	place	of	the	very
relationships	that	they	had	been	designed	to	measure.	But,	by

the	same	token,	both	the	criterion	of	Eudoxus	and	equivalence

classes	of	Cauchy	sequences	do,	in	fact,	distinguish	particular

mathematical	relationships,	in	precisely	the	ways	that	I	have

discussed	in	Chapter	2	and	throughout	this	chapter.
Officially,	all	ties	to	the	world	are	broken.	But	I	suspect	that

mathematicians	know,	implicitly,	and	on	some	level,	what	these

formulations	actually	mean;	and	that	they	regard	Dedekind’s	and

Cantor’s	definitions	as,	simply,	precise	ways	of	getting	at	it.	For,

there	is,	in	fact,	a	germ	of	truth	here.	One	can,	in	fact,	restore	the

discoveries	of	Dedekind,	Heine,	and	Cantor	to	their	rightful

context,	to	a	referential,	realitybased	context.
Dedekind	did	not	invent	the	idea	of	using	rational	numbers

to	distinguish	irrational	numbers.	He	himself	quotes	a	nineteenth



to	distinguish	irrational	numbers.	He	himself	quotes	a	nineteenth

century	expression	of	that	idea	and	correctly	identifies	its	historical

origin	in	Eudoxus’s	criterion	for	equal	ratio.	And	Cantor	did	not

invent	the	practice	of	doing	arithmetic	on	infinite	series.	Euler,	for

one,	is	famous	for	his	flamboyant	engagement	in	that	very	practice.

But	while	the	prices	that	Dedekind	and	Cantor	each	tried	to	extract

was	too	high,	indeed	gratuitous,	they	each	contributed	something

important	to	a	proper	mathematical	understanding.
Eudoxus	gave	us	a	way	to	compare	ratios,	but	he	never

provided	a	way	to	add	them.	But	Dedekind	did.	To	the	extent	that	one	can
specify	two	irrational	numbers	by	specifying	their

respective	relationships	to	rational	numbers,	Dedekind	showed	that

one	can,	thereby,	specify	the	sum	of	those	irrational	numbers	in	the

same	terms,	can	specify	the	relationship	of	the	sum	of	the	two

irrational	numbers	to	the	rational	numbers.	When	one	keeps

external	referents	in	mind,	it	is	meaningful	to	perform	arithmetic

on	Dedekind	cuts.	And	Dedekind	was	thorough	in	that	regard,

applying	it	to	arithmetic	operations,	to	ordering	relationships,	and

to	limiting	processes.	If	one	places	Dedekind’s	work	in	a	realitybased	context,
Dedekind	has	supplied	a	systematic	way	to	work	with	a	certain	species	of
indirect	specifications	of	irrational	numbers,	a	way	that	extends,	however
trivially,	to	rational

numbers,	as	well.
There	is	even	a	sense	in	which	Dedekind	cuts	are	numbers,

just	as	110	is	a	number.	They	have,	of	course,	one	essential



just	as	110	is	a	number.	They	have,	of	course,	one	essential

difference:	The	figure	110	functions	like	a	word;	a	Dedekind	cut

functions	like	a	description.	Even	so,	both	a	Dedekind	cut	and	a

decimal	expression	such	as	110,	identify	specific	quantitative	relationships,
ratios,	in	the	world.	Both	the	Dedekind	cut	and	the

decimal	expansion	provide,	arithmetically,	systematic	ways	to

establish	indirect	measurement	of	quantitative	relationships,	by

exploiting	the	relationships	between	these	quantitative

relationships.	One	of	these	ways,	specifying	a	Dedekind	cut,	is

much	more	complex	than	the	other,	but,	properly	viewed	and	used,

both	ways	serve	the	same	ends.
Cauchy	sequences	are	a	similar	case.	Earlier	in	this	chapter,

I	identified	just	how	a	Cauchy	sequence	specifies	a	quantitative	relationship.
Cantor	and	Heine	did	not	invent	Cauchy	sequences

nor	did	they	invent	arithmetic	operations	on	sequences.	But	they

did	provide	a	systematic	approach	to	these	operations,	just	as

Dedekind	did	for	Dedekind	cuts.	And	when	they	defined	an

equivalence	relationship	between	Cauchy	sequences,	they	were

isolating,	precisely,	the	condition	under	which	two	Cauchy

sequences	converge	to	the	same	number.	A	Cauchy	sequence	is	not

just	a	number	nor	a	number,	as	such.	But	when	a	Cauchy	sequence

is	used	to	specify	a	particular	quantitative	relationship,	to	specify	a	particular
ratio	between	magnitudes,	and	when	one	defines



arithmetic	operations	on	Cauchy	sequence,	then	a	Cauchy	sequence

functions	as	a	number,	in	the	same	way	that	a	Dedekind	cut	can	function	as	a
number.
Finally,	when	mathematicians	decided	that	either

Dedekind	cuts	or	Cauchy	sequences	could	be	taken	as	numbers,

they	were	right,	but,	again,	for	the	wrong	reasons.	In	a	realitybased,	referential
approach	to	mathematics,	there	are	generally	many	ways	to	specify	any
particular	quantitative	or	mathematical

relationship.	And	all	of	these	ways	are	specifications	of	the	same	relationship.	I
discussed	this	principle	earlier	in	my	discussion	of

√2.	As	in	that	example,	it	is	reality;	that	ties	them	together.	It	is	the	fact	that	they
all	relate	to	the	same	existents,	that	they	all	identify

the	same	relationships,	that	ties	together	all	the	various

characterizations	of	the	same	external	relationship.54
When	mathematicians	subsequently	demonstrated	a	oneto-one	relationship
between	Dedekind	cuts	and	Cauchy	sequences,	they	showed,	in	reality,	in	my
context,	how	one	kind	of	specification	of	ratio	could	be	translated	into	another.
For	example,	they	showed

how	the	limit	of	a	Cauchy	sequence	could	be	identified	in	the	form

of	a	Dedekind	cut,	by	specifying	the	relationship	of	the	limit	to	the

rational	numbers.	In	general,	navigating	between	different	ways	of

specifying	or	identifying	quantitative	relationships	is	tremendously

important	in	mathematics.	Every	such	navigation	enhances	one’s

ability	to	establish	quantitative	relationships,	to	perform	abstract

measurement.	It	is	one	of	the	keys	to	indirect	measurement,	akin	to



the	importance	of	intersections	in	Euclid’s	Elements,	mentioned	in	Chapter	1.
In	relating	Dedekind	cuts	to	Cauchy

sequences,

mathematicians	confirmed	that	the	two	kinds	of	specifications	were

consistent.	Take	addition.	From	a	referential,	realitybased

perspective,	one	adds	Cauchy	sequences	to	specify,	in	the	form	of	a

Cauchy	sequence,	the	sum	of	the	ratios	that	they	represent.	One

adds	two	Dedekind	cuts	for	the	same	reason:	to	specify,	in	the	form

of	a	Dedekind	cut,	the	sum	of	the	two	ratios	that	these	Dedekind

cuts	represent.	Assuming	that	both	measurements	are	correct,	they

must	give	the	same	answer	because	they	refer	to	the	same	external	relationship.
If	they	failed	to	give	the	same	answer,	it	would	signal	a

mistake	either	in	the	formulation	of	Dedekind	cuts	or	of	Cauchy

sequences.	To	show	that	the	two	formulations	match	is	exactly	what

an	accountant	does	when	he	calculates	a	balance	in	two	different

ways	and	compares	the	results.	It’s	a	confirmation,	one	way	of

detecting	possible	error.
The	German	mathematicians	provided	two	ways	to	define

real	numbers	and	the	mathematical	community	decided	that	it

didn’t	matter	which	choice	one	made	because	they	were	formally

equivalent.	But,	from	a	realitybased	perspective,	no	choice	is

required	for	quite	a	different	reason.	First,	there	is	positive	value	in

both.	Both	provide	systematic	ways	to	identify	ratios	of	magnitudes.



both.	Both	provide	systematic	ways	to	identify	ratios	of	magnitudes.

Secondly,	they	do	not	compete	with	each	other;	they	supplement

each	other.	One	does	not,	once	and	for	all,	choose	one	way	of

identifying	a	quantitative	relationship	over	another;	one	leverages

both.	Finally,	one	relates	the	two	formulations,	not	because	form	is

all	that	matters,	but	because	translation	matters.	And	translation

between	two	formulations	is	both	possible	and	desirable	when	and

because	they	both	formulate	the	same	underlying	reality	and

provide	different	perspectives	on	that	underlying	reality.

Final	Comments

Dedekind’s	work,	and	Cantor’s	use	of	Cauchy	sequences,

properly	interpreted,	exhibited	the	relationship	of	irrational

numbers	to	rational	numbers	and	gave	meaning	to	the	operations

of	arithmetic	as	they	apply	to	irrational	numbers.	Restored,	over

Dedekind’s	dead	body,	to	its	proper	referential	context,	Dedekind

cuts,	in	particular	provide	a	systematic	way,	a	modern

implementation	of	the	fundamental	insights	of	Eudoxus,	to	utilize

rational	numbers	to	characterize	irrational	numbers	and	to

establish	the	domain	of	real	numbers	as	comprising	both	rational	numbers	and
irrational	numbers.55

Cauchy’s	earlier	work	had	established	the	definitions	of

limits	and	continuity	that	were	later	formalized	in	the	well-known



limits	and	continuity	that	were	later	formalized	in	the	well-known

“epsilon-delta”	approach	to	continuity	and	limits.	Cauchy’s	work

completes	the	theory	of	approximation	by	establishing	the	proper

definition	of	a	limit:	One	says,	for	example,	that	a	function	y	=	f(x)

has	a	limit	y	=	y0	at	x	=	x0	if,	no	matter	how	close	one	needs	to	approximate	y0,
one	can	guarantee	the	required	precision	by	selecting	an	x	sufficiently	close	to
x0.56These	insights	are	essential	and	fundamental.	But	they	are	not	sufficient	to
understand	the	way

that	limiting	processes	relate	to	the	world	that	they	measure.	So

they	left	a	gap,	a	gap	that	Dedekind	and	Cantor	rushed	to	fill	later

in	the	century.

Properly	interpreted,	both	Dedekind	cuts	and	Cauchy

sequences	provide	valuable	tools.	As	I	have	shown	in	my	positive

treatment,	Cauchy

sequences,	in	particular,	provide	infinite

mathematical	precision	by	providing	a	system	of	approximations,	a	system	that
presupposes	that	all	specific	precision	requirements	are

finite,	but	provides	a	contingency	for	any	specific	precision

requirement	that	might	ever	arise.

At	this	point	in	the	discussion,	we	still	stand	at	the

threshold	of	mathematical	abstraction.	But	as	one	proceeds	to

study	higher	mathematics,	the	same	issues	resurface	repeatedly.

For	example	to	solve	differential	equations	one	needs	to	extend	the



theory	of	approximation	to	include	mathematical	functions.	Yet	the

essential	principles	and	required	understandings	are	encountered

at	the	beginnings	of	the	subject.	The	principles,	though	their

application	may	require	specialized	knowledge,	remain	the	same.
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the	reals	are	Dedekind	cuts	and	the

other	of	whom	that	they	are	Cantor’s	fundamental	sequences.	The	rest	of	the	story	follows	as	before,	and
the	conclusion:	real	numbers	aren’t	sets.”	Kline,	p	986,

quoting	Dedekind	“[the]	irrational	number	a	is	not	the	cut	itself	but	is	something	distinct,	which
corresponds	to	the	cut	and	which	brings	about	the	cut.”	is	also

relevant	here
50	Dedekind	p	3
51	Gray,	p	131-133.	Epple,	p	295-301
52	Epple,	p	300
53	Stewart	Shapiro,	p	258,	again,	“The	essence	of	a	natural	number	is	its	relations	to	other	natural
numbers.”
54	Maddy,	is	on	a	very	similar	track	and	even	brings	in	the	issue	of	measurement.

Regarding	natural	numbers,	she	writes,	p	89,	“The	choice	between	the	von	Neumann

and	the	Zermelo	ordinals	is	no	more	than	the	choice	between	two	different	rulers

that	both	measure	in	metres.	The	debate	between	Ernie	and	Johnny	is	like	an

argument	over	whether	an	inch	is	wooden	or	metal.”	Even	more	to	the	point,	on	p

94,	“…	what	makes	one	set	theoretic	version	of	the	reals	preferable	to	the	others?

Answer:	nothing;	each	version	serves	to	detect	and	measure	the	same	underlying

properties.”
55	Dedekind
56	Grabiner,	pp	93-112

The	following	pattern	was	known	to	Pythagoras:



Chapter	5	Geometry	and	Human	Cognition

Introduction

The	following	pattern	was	known	to	Pythagoras:1
	

It	turns	out	that	this	pattern	is	no	coincidence,	is	true	in	general,	and	can	be
proven	as	a	general	fact	by	algebraic	methods.	But	this	is	neither	the	way	it	was
discovered	nor	validated	by	the	Greeks.	In	essence,	they	saw	it	directly	from	the
following	picture:

Think	of	the	figure	as	being	built	in	stages	from	the	bottom	left	corner.	Start	with
the	smallest	square	consisting	of	one	dot.	Then	add	an	L-shaped	figure	(known
as	a	“gnomon”)	of	three	dots	to	form	a	two	by	two	square.	Next	add	five	dots	to
form	a	three	by	three	square.	And	so	on.	Each	gnomon	has	two	more	dots	than
the	previous	one	and	one	is	left	each	time	with	a	larger	square.	Since	the	process
starts	with	one	dot,	the	series	of	dot	counts	in	successive	gnomons	is	the	series	of
odd	numbers.	Once	you’ve	grasped	the	process,	the	entire	generalization	is
captured	in	one	picture.



If	it’s	not	immediately	obvious	that	successive	gnomons	differ	by	two	dots,	a
further	elaboration	should	help.	Namely,	matching	dots	for	two	successive
gnomons,	yields:

The	top	dark	grey	box	matches	three	dots	of	the	outer	gnomon	to	three	dots	of
the	previous	one.	The	dark	grey	box	on	the	right	matches	two	dots	of	the	outer
gnomon	to	the	remaining	two	dots	in	the	previous	gnomon.	When	this	is	done,
there	are	two	remaining	dots	in	the	outer	gnomon.	These	dots,	located	in	the
light	grey	boxes,	are	left	unmatched.

On	reflection	one	sees	that	the	same	pattern	would	hold	no	matter	how	many
gnomons	one	might	add,	without	regard	to	the	size	of	the	square.

What	can	one	learn	from	this?	First	notice	the	way	that	the	first	figure	gave
perceptual	reality	to	an	abstract	relationship.	One	looks	at	the	figure;	one	grasps
the	relationship.

Now	this	does	not	happen	automatically.	One	needs	to	regard	the	picture	as
being	built	in	stages.	It	would	have	been	helpful,	for	example,	to	see	a	sequence
of	pictures:



In	effect,	if	one	is	able	to	grasp	the	relationship	from	the	very	first	diagram,	it	is
by	going	through	this	sort	of	sequence	in	one’s	head.	One	performs	a	process	to
grasp	mentally	the	abstract	relationship	illustrated	or	embodied	in	the	diagram.
The	diagram	is	as	stylized	as	possible	to	point	one	in	the	right	direction.

The	picture	is	just	a	picture,	but	it	is	a	picture	of	an	abstract	relationship.	It	is	a
concretization	of	that	relationship.	With	the	right	mental	focus,	it	enables	one	to
see,	in	one	concrete,	a	generalization	that	holds	no	matter	how	far	one	goes	in
the	series,	no	matter	how	many	gnomons	have	been	added.	And	once	the
integration	is	complete,	one	sees	it	as	an	embodiment	of	a	universal	principle.

One	does	not	require	a	formal	algebraic	proof	to	grasp	the	relationship	as	a
universal	pattern.	This	stylized	geometric	representation	conveys	an
understanding	of	a	mathematical	principle	that	no	algebraic	derivation	could
equal.

I’ve	now	mentioned	stylization	twice.	How	have	I	stylized	this	picture?	First,	I
made	all	of	the	dots	the	same	size,	color,	and	shape,	because	my	intent	is	to
regard	them	as	units	of	a	particular	kind.	Differences	in	size,	color,	or	shape
would	have	created	a	distraction	from	the	essential	relationships.	I	spaced	them
evenly	for	the	same	reason.	I	made	an	effort	to	make	the	vertical	spacing	the
same	as	the	horizontal	spacing.	I	included	nothing	in	the	picture	that	was	not
relevant	to	the	point	it	was	supposed	to	convey.

The	effect	of	such	a	stylization	is	to	treat	attributes	such	as	size,	color,	shape,
and	spacing	as	omitted	measurements,	as	irrelevant	to	the	pattern,	as	potential
distractions	to,	therefore,	be	ignored.	In	the	end,	the	figure	is	an	organized	whole
that,	in	totality,	conveys	the	intended	abstraction.



The	use	of	stylization	to	visually	convey	an	abstraction	is	not	unique	to	this
example,	nor	unique	to	mathematics.	It	is	one	of	the	ways	we	present	and
concretize	abstract	ideas.	An	organization	chart,	for	example,	captures	a
complex	set	of	human	relationships	on	one	sheet	of	paper,	providing	a	way	to
quickly	zero	in	on	any	particular	detail	without	losing	sight	of	the	whole.

The	power	of	stylized	representations	to	crystallize	a	conception	is	important
generally,	but	that	power,	and	its	personal	importance,	is	most	striking	in	the
visual	arts.	And	stylization,	a	focus	on	the	essential,	is	what	makes	it	possible.
As	Ayn	Rand	explains:
“…an	artist	isolates	the	things	which	he	regards	as	metaphysically	essential	and
integrates	them	into	a	single	new	concrete	that	represents	an	embodied
abstraction.”2

and

“The	so-called	visual	arts	(painting,	sculpture,	architecture)	produce	concrete,
perceptually	available	entities	and	make	them	convey	an	abstract,	conceptual
meaning.”3

Finally,	discussing	a	stylized	painting	of	some	apples,	she	concludes	with	the
stronger	statement:
	“What	is	it,	then	that	the	artist	has	done?	He	has	created	a	visual	abstraction.”4
	A	longer	excerpt	will	help	elucidate	her	context:

“It	is	a	common	experience	to	observe	that	a	particular	painting	–	for	example	a
still	life	of	apples	–	makes	its	subject	“more	real	than	it	is	in	reality.”	The	apples
seem	brighter	and	firmer,	they	seem	to	possess	an	almost	self-assertive
character,	a	kind	of	heightened	reality	which	neither	their	real-life	models	nor
any	color	photograph	can	match.	Yet	if	one	examines	them	closely,	one	sees	that
no	real-life	apple	ever	looked	like	that.	What	is	it,	then,	that	the	artist	has	done?
He	has	created	a	visual	abstraction.

He	has	performed	the	process	of	conceptformation	–	of	isolating	and	integrating
–	but	in	exclusively	visual	terms.	He	has	isolated	the	essential,	distinguishing
characteristics	of	apples,	and	integrated	them	into	a	single	visual	unit.	He	has
brought	the	conceptual	method	of	functioning	to	the	operations	of	a	single	sense
organ,	the	organ	of	sight.”5	(Emphasis,	mine)

One	can	distinguish	two	broad	parallels	between	this	square-of-dots	example	and



One	can	distinguish	two	broad	parallels	between	this	square-of-dots	example	and
Ayn	Rand’s	theory	of	the	cognitive	role	of	art.	First,	in	what	is	achieved:
increasing	ones	grasp	of	abstract	relationships	by	integrating	them	into
concretes.	And	second,	in	how	it	is	achieved:	through	a	process	of	stylization,
directing	one’s	attention	to	certain	essentials	of	the	abstraction	it	is	designed	to
convey.	The	geometric	illustration	is,	on	the	one	hand,	a	concrete	embodiment	of
the	general	principle.	But	it	conveys	this	wider	principle	insofar	as	it	enables	the
viewer	to	isolate	the	wider	principle,	to	perceive	the	operation	of	that	principle
within	the	particular	concrete,	and	to	realize	that	the	principle	in	no	way	depends
upon	the	specific	dimensions	of	the	particular	square	nor	the	particular
arrangement	of	the	dots,	nor	the	particular	object	being	counted	that	the	dots
might	represent.

Regarding	stylization,	my	central	interest	in	this	example	is	what	it	illustrates
about	the	role	of	geometry	in	mathematics.	Stylization	in	the	square-of-dots
example	consists	in	simultaneously	capturing	and	isolating	the	abstract
relationship	it	is	intended	to	convey.	And	this	aspect	is	common	to	all
applications	of	geometry	to	embody	mathematical	relationships.

Throughout	this	book,	I	have	emphasized	two	complementary	and	inextricably
bound	perspectives	on	mathematical	phenomena.	Measurement,	the	essential
purpose	of	mathematics,	ultimately	involves	an	identification	of	a	quantitative
relationship	between	concretes	in	the	world.	The	very	process	of	measurement
involves	a	relationship,	a	relationship	between	the	identification,	including	the
means	of	that	identification,	versus	the	objects	one	is	relating	quantitatively.
This	is	a	relationship	between	the	means	of	measurement	and	the	objects	of
measurement,	objects	viewed	from	an	abstract	perspective.

When	I	discussed	numbers,	as	in	Chapter	4,	I	focused	on	a	system	of
measurements	by	which	specific	relationships	can	be	identified,	but
independently	from	any	particular	concrete.	And	here	I	appeal,	once	again,	to
Ayn	Rand’s	theory	of	omitted	measurements:	the	meaning	of	the	number	does
not	depend	on	any	one	specific	concrete	to	which	it	might	apply,	but	pertains
equally	to	all	of	these	concretes.	This	is	the	focus	on	the	means	of	measurement.

When	I	provided	an	account	of	magnitudes	and	on	the	relationships	between
them,	as	in	Chapter	2,	I	focused	on	the	objects	of	measurement.	I	did	not	treat
them	as	objects	apart	from	measurement,	but,	rather,	as	the	objects	of
measurement,	as	objects	relatable	quantitatively.	I	viewed	them	from	an	abstract
perspective,	as	representative	of	a	broad	category	of	existents	to	which	one	can



apply	a	specific	measurement,	either	a	specific	relationship	to	a	standard	or	a
specific	relationship	between	two	concretes	and	embodied	in	those	concretes.
This	is	the	geometric	perspective.

Identification	versus	object	identified:	This	is	the	contrast	between	Chapters	2
and	4.	Chapter	2	presented	a	geometric	perspective	on	magnitude,	the	object	of
measurement,	and	Chapter	4	treated	numbers,	as	comprising	a	system	of
measurements	to	identify	relationships	between	magnitudes.	This	latter	is	the
focus	on	the	means	of	measurement	or,	more	precisely,	on	one	key	aspect	of	that
means:	not	the	physical	process,	but	the	system	of	concepts	by	which	a	specific
relationship	is	named,	by	which	it	becomes	a	mental	unit	that	can	be	retained
and	distinguished	from	other	similar	mental	units	naming	different	quantitative
relationships.

Geometric	objects,	in	general,	are	actual	objects	and	relationships	in	the	world,
viewed	from	an	abstract	perspective.	By	means	of	geometry,	one	isolates	the
essential	features	of	certain	relationships	in	the	world	while	retaining	a
perspective,	as	well,	on	the	objects	that	exemplify	those	relationships.

Geometry	is	a	concretization	of	quantitative	relationships	that,	in	general,
transcend	spatial	relationships.	Yet,	at	the	same	time,	geometric	objects	are
abstractions	that	integrate	and	embody	a	vast	range	of	concretes	in	the	world.
When	one	focuses	on	the	concrete	meaning	of	a	mathematical	relationship,	one’s
perspective	is	geometric.

The	square-of-dots	example	embodies	two	aspects	of	geometry	that	go	beyond
these	general	observations.	First,	geometry	is	not	just	about	shapes	and	spatial
relationships.	Second,	one	can	utilize	geometrics	means,	including	visualization,
to	exemplify	general	mathematical	relationships	between	numbers	and,	more
broadly,	between	concrete	measurements	of	any	sort	within	a	system	of
measurements.	I	add	this	last	elaboration	because	numbers	are	only	the	most
important,	not	the	only	important	system	of	measurements	in	mathematics.	For
example,	Chapter	8,	introducing	group	representations,	treats	an	important
category	of	measurement	unrelated	to	magnitudes,	as	such.

The	square-of-dots	example	is	a	concretization	of	a	mathematical	relationship.
The	stylization	in	this	example	is	a	way	of	isolating	and	focusing	one’s	attention
on	the	aspects	of	that	concretization	that	pertain	to	the	relationship	one	intends	to
exemplify,	a	concretization	that	makes	it	possible	to	grasp	a	broad	principle	by	a



focused	attention	to	a	single	example.	And,	although	my	focus	in	this	short
chapter,	expanding	a	major	theme	throughout	the	book,	is	on	the	role	of
geometry	in	mathematics,	the	square-of-dots	example	illustrates,	as	well,	the
cognitive	role	of	a	well-chosen	example	in	mathematics.	But,	to	return	to	my
theme,	one	of	the	things	that	this	particular	example	illustrates	is	that	geometric
examples	can	be	applied,	in	general,	to	mathematical	relationships.	And	the
deepest	reason	for	this	is	that	all	mathematical	relationships	pertain	ultimately	to
relationships	among	concretes.

The	essential	role	of	geometry	in	mathematics	is	to	conceive	of	a	constellation	of
mathematical	relationships	as	embodied	in	an	object,	an	object	taken	to
exemplify,	yet	embrace,	the	wider	class	to	which	the	constellation	applies.	The
cognitive	role	of	the	geometric	perspective,	its	ability	to	concretize	an
abstraction,	is	one	key	to	the	unique,	powerful,	and	fascinating	role	that
geometry,	throughout	the	history	of	mathematics,	has	played	in	mathematics	and
in	the	fields	that	use	mathematics.

I	spent	two	chapters,	Chapters	1	and	3,	expounding	my	perspective	on	Euclid’s
system	of	geometry,	as	it	pertains	to	plane	figures.	Chapter	2,	following	Euclid’s
general	approach,	provided	a	geometric	treatment	of	magnitude.	The	purpose	of
the	current	chapter	is	to	further	delineate	the	role	that	geometry	plays	in
mathematics.	To	that	end,	I	challenge	the	naïve	views	that	geometry	is	just	about
two	and	three	dimensional	objects	and	that	its	value	consists	exclusively	in
providing	pictures	to	support	geometric	arguments.	Geometry	does	indeed	study
shapes;	pictures	are	indeed	important.	However,	these	do	not	exhaust	the	domain
of	geometry	nor	its	role	in	mathematics,	nor	its	role	in	the	applications	of
mathematics.

Beyond	Plane	and	Solid	Geometry	Magnitudes

Geometry	is	not	limited	to	the	study	of	plane	and	solid	figures	and	it	was	not	so
limited	even	in	Euclid’s	Elements.	Numerous	chapters	(called	Books)	of	Euclid
are	devoted	to	studying	relationships	between	magnitudes	or	between	numbers.
Euclid’s	treatment	applies	purely	geometric	methods	to	both	magnitudes	and
numbers,	representing	both	magnitudes	and	numbers	by	line	segments.6	Such
segments	are	usually	depicted	horizontally,	occasionally	vertically,	but	it	is	clear
from	the	outset	that	the	orientation	of	these	segments	is	irrelevant	to	the
discussion	and,	from	our	vantage	point,	to	be	considered	an	omitted



measurement.

The	magnitudes	represented	by	these	line	segments	in	Euclid	might	be	thought
of	as	lengths,	areas	of	geometric	shapes,	volumes	of	geometric	solids,	or	whole
numbers,	though	numbers,	Euclid’s	viewpoint	notwithstanding,	are	not
magnitudes.	But	the	magnitudes	found	in	Euclid	hardly	exhaust	the	possibilities.
In	a	physical	context,	weight,	mass,	velocity	and	acceleration	are	all	magnitudes.
Already	in	Greek	antiquity,	one	finds	Archimedes	using	line	segments	to
represent	force	in	his	study	“On	Floating	Bodies”.7

The	most	important	goal	of	Euclid’s	studies	of	both	numbers	and	magnitudes	is
to	develop	a	theory	of	ratio.	The	theory	of	ratio	plays	a	major	role	in	Euclid	and
one	finds,	in	Euclid’s	Elements,	ratios	of	lengths,	of	areas,	and	of	numbers.	One
also	finds	Euclid	expressing	equalities	between	a	ratio	of	lengths	versus	a	ratio
of	areas	and	versus	a	ratio	of	numbers.	In	regard	to	magnitude,	following
Eudoxus,	Euclid	goes	to	considerable	length	to	justify	such	equalities.8

But	one	never	finds	Euclid	taking	a	ratio	of	a	length	to	an	area.	And	this	is	for	a
very	good	reason.	Ratios,	in	Euclid,	presuppose	an	ability	to	compare	the	sizes
of	the	two	participants	in	the	ratio.	But,	one	cannot,	with	respect	to	size,	compare
a	length	to	an	area.

To	make	this	concrete,	consider	a	square	that	is	one	foot	long	in	both	directions.
Is	the	length	of	the	side	greater	or	less	than	the	area?	Suppose,	for	example,	that
one	attempts	a	numerical	answer.	Well,	if	one’s	unit	is	inches,	the	length	of	the
side	is	12	inches	and	the	area	is	144	square	inches.	One	might	observe	that
144>12and	betempted	toconcludethat	theareaisbigger,butone	would	still	be
comparing	apples	and	oranges.	For	the	numerical	answers	and	their	rankings
depend	totally	on	one’s	choice	of	units.	For	example,	notice	that,	measured	in
yards,	the	length	of	each	side	is	1/3	and	the	area	of	the	square,	in	square	yards,	is
1/9.	As	numbers,	1/9	is,	clearly,	less	than	1/3.	In	sum,	by	one	measure	the	area	is
greater;	by	the	other,	it	is	smaller.	One	cannot,	then,	compare	the	size	of	an	area
to	the	length	of	a	line.

Although	one	cannot	add	and	subtract	magnitudes	of	different	kinds,	it	is
commonplace	today	to	divide	miles	by	hours	to	get	miles	per	hour.	But	this
ability,	taken	for	granted	today,	was	dearly	won	and	involves	choices	of	units,
such	as	miles	and	hours,	for	each	factor.	Such	ratios	cannot	be	found	in	Euclid’s
Elements.	Euclid’s	geometric	study	eschewed	all	consideration	of	units	and	his



definition	of	ratio	was	strictly	and	explicitly	limited,	was	only	applicable,	to
ratios	between	magnitudes	of	the	same	kind.	Euclid	could	define	ratios	between
lengths	and	ratios	between	areas.	He	could	even	equate	a	ratio	between	areas	to	a
ratio	between	lengths.	But	he	simply	could	not	conceive	of	a	ratio	of	a	length	to
an	area.	For	more	on	this	point,	recall	my	discussion	in	Chapter	2.

In	general,	Euclid	treats	magnitudes	as	he	treats	triangles.	He	treats	them	as
abstract	entities	that	can	be	related	to	each	other	in	various	ways	without	explicit
reference	to	a	chosen	unit.	For	the	relationships	he	uncovers	do	not	depend	on
such	choices.	In	this,	Euclid	takes	an	abstract	perspective	on	physical
magnitudes	whose	mathematical	relationships	to	each	other	exist	independently
from	any	particular	measurement	or	choice	of	unit.	The	line	segments	that
Euclid	uses	to	represent	magnitudes	are	visual	abstractions,	used	to	provide	a
concrete	reference	point	to	support	his	geometric	arguments.

Cartesian	Coordinates

If	you	have	ever	seen	a	graph,	you	have	seen	the	use	of	Cartesian	coordinates.
Graphs	are	everywhere	in	today’s	world.	For	example,	historical	movements	of
stock	prices,	revenue,	and	profitability	are	all	routinely	displayed	graphically.
There	is	a	horizontal	axis,	usually	considered	the	x	axis	(measuring	time	in	these
examples).	And	there	is	a	vertical	axis	(usually	considered	the	y	axis)
representing	the	particular	quantity	being	measured	and	compared	across	time	or
across	whatever	variable	the	x	axis	represents.	Corresponding	to	each	axis	is	a
unit	representing	the	quantity	measured	by	that	axis.	The	specifications	of	the	x
and	y	axis,	the	zero	point	of	each	axis,	and	of	the	units	in	both	directions,	all
collectively	constitute	the	set	of	Cartesian	coordinates.

Descartes	introduced	Cartesian	coordinates	as	part	of	his	program	to	reduce
geometric	questions	to	algebraic	questions.9	In	his	treatise,	Descartes	derived
formulas	for	straight	lines,	circles,	and	other	geometric	figures.	Much	of	his
work	consisted	in	relating	his	approach	to	the	study	of	conic	sections	and	other
shapes	by	the	Greeks.10

The	most	important	relationship	between	the	Greek	and	Cartesian	perspectives	is
the	Cartesian	use	of	algebraic	equations	to	find	the	intersections	of	geometric
shapes.	When	one	uses	coordinates,	one	finds	the	intersection	of	a	line	and	a
circle	by	finding	the	solution	of	two	equations	in	two	unknowns.	One	begins
with	the	two	equations	that	define,	respectively,	the	circle	and	the	straight	line	in



with	the	two	equations	that	define,	respectively,	the	circle	and	the	straight	line	in
question.	The	unknowns	in	each	of	these	equations	are	the	x	coordinate	and	the	y
coordinate.

For	example,	3y	=	4x	is	the	equation	of	a	line	and	x2	+	y2	=	25	is	the	equation	of
a	circle.	A	pair	consisting	of	x	and	y	coordinates	falls	on	the	line	precisely	when
their	substitution	into	the	equation	of	the	line	produces	an	equality.	Thus,	the
point	(x,	y)	=	(9,	12)	or,	equivalently,	x	=	9	and	y	=	12,	is	a	point	on	the	line
because	3	times	12	equals	4	times	9.	Similarly,	the	point	(5,	0)	is	on	the	circle.	In
such	cases	the	coordinate	pairs	are	said	to	satisfy	the	equation	of	the	line	or,
respectively,	the	circle.	A	pair	of	x	and	y	values	can	be	an	intersection	point	only
if	it	simultaneously	satisfies	both	equations.	In	this	example,	the	points	(x,	y)	=
(3,	4)	and	(x,	y)	=	(-3,	-4)	satisfy	both	equations	and	identify	the	two	points	at
which	the	line	and	the	circle	intersect.

Prior	to	Descartes,	the	Western	world	used	Euclid’s	Elements	as	its
mathematical	framework	to	study	question	in	physics.	This	can	be	seen	in	Two
New	Sciences11	by	Galileo	and	even	Newton’s	Principia,12	written	after	the	time
of	Descartes.	But	ultimately,	the	tables	were	turned	(so	to	speak)	and	geometric
questions	began	to	be	formulated	and	studied	algebraically.

However,	the	relationship	works	in	both	directions.	Through	these	very	same
coordinates,	any	problem	in	algebra	can	be	regarded	as	a	problem	in	geometry.
For	example,	the	equation	x2

-3x	+	2	=	0	can	be	thought	of	the	values	of	x	for	which	the	graph	of	x2	-3x	+	2	=
y	intersects	the	x	axis	(characterized	by	y	=	0).	These	two	points	have
coordinates	(2,	0)	and	(1,	0),	corresponding	to	the	two	solutions	x	=	2	and	x	=	1
to	x2	-3x	+	2	=	0.

Whenever	the	focus	is	on	the	kind	of	object	(or	constellation	of	quantitative
relationships	as	embodied	in	an	object)	being	measured,	one	thinks	of	it
geometrically.	One	takes	an	abstract	perspective	on	concrete	embodiments	of	the
mathematical	relationships,	one	treats	the	geometric	object	as	an	entity,	as	a
particular	unit	treated	hypothetically,	as	an	instance	of	a	universal	constellation
of	relationships.

On	the	other	hand,	whenever	the	focus	is	on	the	measurements	of	the	object,	one
uses	Cartesian	coordinates.	In	the	first	case	the	focus	is	on	the	object	as	existing
independently	of	its	measurements.	In	the	second	case,	the	focus	is	on	the



algebraic	and	functional	relationships	among	the	coordinates	without	specific
regard	for	an	external	object.	In	the	centuries	since	the	introduction	of	Cartesian
coordinates,	the	integration	and	interplay	of	these	two	perspectives	has	become	a
fundamental	pivot	point	in	mathematics	and	is	implicit	in	any	application	of	the
mathematics.

I	have	already	illustrated	that	geometric	figures	do	not	always	represent
geometric	shapes.	The	Cartesian	framework	carries	this	one	step	further.
Cartesian	coordinates	may	be	used	to	represent	the	Euclidean	plane,	but	they
need	not.	In	the	stock	market	example,	neither	the	x	dimension	nor	the	y
dimension	is	a	spatial	dimension.	Moreover,	the	kind	of	quantity	represented	by
the	y	axis,	in	this	and	in	countless	other	examples,	is	different	than	the	kind	of
quantity	represented	by	the	x	axis.

In	such	cases,	the	functional	relationship	depicted	by	the	graph	is	not	a	shape	in
the	strict	Euclidean	sense,	but	it	should	still	be	viewed	as	an	abstract	relationship
that	exists	independently	of	the	particular	coordinates	used	to	represent	it.	For
example,	if	one	changes	the	zero	point	(the	starting	reference	date)	of	the	x	axis
or	measure	revenue	in	million-dollar	increments	instead	of	thousanddollar
increments,	the	relationship	being	expressed	hasn’t	changed.	Only	the
expression	of	that	relationship	has	changed.

You	may	remember	polar	coordinates	from	high	school.	Polar	coordinates
represent	a	point	by	a	pair	of	coordinates	traditionally	denoted	by	‘r’	and	‘θ’,
representing,	respectively,	the	distance	from	the	origin	and	the	angle	its	line
from	the	origin	makes	with	the	x	axis.	Descartes	did	not	have	polar	coordinates.
But	their	use	provides	one	more	example	of	my	last	point.	The	circle	that	is
expressed	in	Cartesian	coordinate	as	x2	+	y2	=	25	is	expressed	in	polar
coordinates	as	r	=	5.	In	making	this	comparison	one	conceives	the	circle	as
existing	independently	of	the	means	used	to	express	its	shape.

As	a	further	ramification,	there	is	no	essential	limit	to	the	number	of	Cartesian
coordinates	one	might	have	reason	to	employ.	For	example,	consider	the	motion
of	a	ball	through	the	air.	One	assigns	a	spatial	position	of	the	ball,	which	takes
three	coordinates,	to	each	instant	in	time	–	which	requires	a	fourth	coordinate.
The	order	here	is	optional.	Instead,	of	taking	it	last,	one	could	logically	take	time
as	the	first	coordinate	since	the	three	spatial	coordinates	should	be	regarded	as
depending	on	time.

Even	more	coordinates	would	be	required	to	describe	the	motion	of	a	pencil



Even	more	coordinates	would	be	required	to	describe	the	motion	of	a	pencil
thrown	into	the	air	because	one	would	want	to	capture	not	only	the	ever-
changing	position	of	the	pencil,	but	also	its	orientation	as	it	hurtles	through
space.	These	coordinates	can	be	thought	of	as	expressing	a	position	in	the
“configuration	space”	for	the	pencil,	meaning,	by	“configuration	space”	the
universe	of	potential	positions	and	orientations	of	the	pencil.	Looked	at
geometrically,	the	motion	of	the	pencil	is	a	path	in	its	configuration	space.
Looking	at	it	geometrically	means	that	one	focuses	on	its	path	as	a	phenomenon
in	the	world,	existing	independently	of	the	choice	of	coordinates	used	to	measure
the	path,	just	as	Euclid	spoke	of	magnitudes	without	specifying	a	particular	unit.
This	perspective,	the	unity	of	the	object,	is	put	into	the	background	when	one
simply	expresses	its	path	as	five	or	six	independent	functions	of	time.	(Six	if	you
include	the	spin	of	the	pencil	around	its	long	axis.)

As	it	relates	to	the	world,	the	configuration	space	takes	an	abstract	perspective
on	the	concretes	that	are	the	meaning	and	referents	of	the	concept.	But,	in
relation	to	one’s	grasp	of	the	complex	of	relationships,	the	configuration	space
serves	as	a	concretization	of	an	abstract	relationship,	a	concrete	that	is	taken	as
symbolizing	and	exemplifying	an	abstraction,	in	this	case	the	possible	positions
and	orientations	of	a	three	dimensional	object.	In	this,	it	functions	in	a	manner
that	parallels	the	role	that	Ayn	Rand	finds	for	visual	abstractions	in	art.

Clearly,	I’ve	now	gone	beyond	the	limits	of	a	visual	representation	of	a
geometric	shape.	Yet	the	geometric	conception	still	applies	whenever	one	thinks
of	a	trajectory	abstractly	as	having	an	existence	independent	of	the	particular
coordinate	axes	used	to	measure	the	motion.	Whenever	physicists	speak	of
changing	coordinate	systems,	as	they	must,	they	are	presupposing	and
distinguishing	the	independent	existence	of	the	phenomena	they	capture	in	their
abstract	formulations	from	the	means	that	they	use	to	capture	it.

With	these	increasing	dimensions,	one	leaves	visual	abstractions	behind,	but	one
does	not	thereby	leave	behind	the	more	fundamental	conception	of	an	abstract
entity,	of	a	geometric	abstraction.	But	now	one	expresses	these	geometric
abstractions	in	purely	conceptual	terms,	just	as	a	novelist	uses	concepts	to	depict
the	characters	in	a	novel.	The	artistic	analogy	still	applies,	but	now	an	analogy	to
literature	must	replace	the	analogy	to	the	visual	arts.

The	cognitive	role	of	geometry	is	to	conceive	of	a	constellation	of	mathematical
relationships	as	a	unity,	as	embodied	in	an	abstract	geometric	object,	one	that
provides	an	abstract	perspective	on	and	refers	to	concretes	in	the	world.	One
begins	to	do	this	with	visual	abstractions	and	one	derives	enormous	benefit	from



begins	to	do	this	with	visual	abstractions	and	one	derives	enormous	benefit	from
the	ability	to	visualize	complex	relationships.	Even	when	the	number	of
variables	exceeds	3,	there	is	still	a	kind	of	visualization	that	can	sometimes	aid
one’s	grasp	of	these	relationships.	However,	the	deeper	need	for	geometry,
creating	a	single	unit	to	embody	an	organized	constellation	of	mathematical
relationships,	transcends	one’s	ability	to	draw	pictures	and	even	to	visualize.

Final	Remarks

The	applicability	of	these	ideas	is	everywhere	in	mathematics	because	the
geometric	perspective	is	always	in	the	background	even	when	it	is	not	explicit.
These	ideas	apply	to,	and	provide	a	perspective	for,	the	entire	history	of
mathematics.	Geometry	serves	a	cognitive	need	and,	at	the	same	time,	geometric
abstractions	provide	the	bridge	between	concepts	of	measurement	and	their
ultimate	referents	in	the	world.	In	this	outline	of	those	relationships	I	have
continued	a	thread	that	runs	through	the	entire	course	of	this	book.

1	Sir	Thomas	Heath,	A	History	of	Greek	Mathematics,	Volume	I	From	Thales	to	Euclid,	Dover	Publications
1981,	p	77	in	Chapter	III	“Pythagorean	Arithmetic”
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Psycho-Epistemology	of	Art”,	p	20
3	Rand,	p	47	from	“Art	and	Cognition”
4	Rand,	p	47-48
5	Rand,	p	47-48
6	Euclid,	Books	V	and	X	concern	magnitudes,	Books	VII	–	IX	concern	numbers
7	Archimedes,	The	Works	of	Archimedes,	1897,	Cambridge:	at	the	University	Press,	“On	Floating	Bodies,”
pp	253-300
8	Euclid,	Book	V
9	Rene	Descartes,	Des	matiers	de	la	Geometrie,	1637,	available	in	English	translation	as	The	Geometry	of
Rene	Descartes,	Dover	Publications,	Inc.,	1954
10	Especially,	Apollonius	whose	book	on	conic	sections	is	available	in	English	translation	as	Apollonius	of
Perga,	Conics,	Green	Lion	Press;	new	rev.	ed	edition	(October	1,	1998)
11Galilleo	Galilei,	Discorsi	E	Dimonstrazioni	Matematiche	intorno	a	due	nuoue	Scienze,	1638,	English
translation	as	Dialogues	Concerning	Two	New	Sciences,	Northwestern	University,	1946
12	Sir	Isaac	Newton,	Philosophia	Naturalis	Principia	Mathematica,	1686,	available	in	English	translation
by	University	of	California	Press,	1962
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Chapter	6

Set	Theory	and	Hierarchy	in

Mathematics

Introduction

Whatever	its	merits	as	a	foundation	for	mathematics,	the

language	of	set	theory	is	common	currency	in	mathematics.	The

language	of	set	theory	offers	and	provides	a	generic	set	of	concepts

and	notation	that	apply	to	any	system	of	measurements	or	to

geometric	structures	of	any	sort.	Mathematical	sets	are	a	way	of

isolating,	of	zeroing	in	on	something:	solutions	to	an	equation,	a

range	of	numbers,	or	a	figure	in	the	plane.

But	the	waters	get	deeper	whenever	new	domains	of

mathematical	study	are	identified.	A	new	mathematical	domain,	a

new	system	of	measurements	or	some	new	kind	of	geometric

structure	of	any	sort,	regardless	of	how	it	actually	arises	in

mathematics,	is	typically	characterized	as	“a	set	for	which	…”,	short

circuiting	any	discussion	of	how	the	new	mathematical	domain

arises	in	the	first	place.	Such	discussions	may	indeed	be	provided,



as	motivation	and	good	pedagogy.	But,	aside	from	the	mandatory

inclusion	of	examples,	definitions	in	terms	of	sets	are	generally

taken	to	stand	on	their	own,	independent	of	such	motivation.

Set	theory	has	its	roots	in	the	last	decades	of	the	nineteenth

century,	in	the	work	of	late	nineteenth	century	mathematicians	such	as	Cantor
and	Dedekind.1	By	the	mid-twentieth	century,	the	use	and	abuse	of	set	theory
was	taken	for	granted.

Its	abuse	was	epitomized	by	a	group	of	mathematicians	writing	under	the
pseudonym	of	Nicolas	Bourbaki.2	Taking	sets	as	their	starting	point	for	every
branch	of	mathematics,	they	remained

deliberately	silent	on	what	these	sets	might	be	sets	of.

But	this	silence	among	mathematicians	was	general.	In	a

classic	text	intended	to	provide	a	basic	working	knowledge	of	set

theory,	a	prerequisite	for	studying	advanced	mathematics,	Paul

Halmos	begins	his	second	paragraph	with	“One	thing	that	this

development	will	not	include	is	a	definition	of	sets.”3	Paul	Halmos	was	not	a
Bourbaki	and	was	noted	for	his	ability	to	clearly	motivate

and	explain	concepts	in	advanced	mathematics.

In	the	Bourbaki	approach,	the	introduction	of	any

specialized	study	would	typically	begin	with	a	definition	involving	a

set	of	a	specified	type.	As	a	typical	example,	J.	Dieudonne,	a

prominent	Bourbaki,	in	his	classic	Foundations	of	Modern

Analysis,	having	spent	most	of	a	page	giving	an	unmotivated,



formal	definition	of	a	distance	(a	generalization	of	the	colloquial	term),
provides,	without	motivation,	the	definition,	“a	metric	space	is	a	set	E	together
with	a	given	distance	on	E.”4	Dieudonne	follows	this	definition	with	two	pages
of	examples,	showing	that	these

examples	do,	indeed,	satisfy	his	definition.

The	issue,	here,	is	not	whether	the	generalized	concept	of

distance	is	either	valid	or	important.	Indeed,	to	me,	neither	its

validity	nor	importance	is	in	question.	What’s	distinctive	is	the

approach	to	exposition	and	the	implications	of	such	an	approach.

In	its	practice	of	presenting	examples	only	after	giving	a	formal

definition	of	this	type,	the	Bourbaki	approach	suggested	that

motivating	its	concepts,	was	not	particularly	important,	not	a

requirement	of	definition.

In	effect,	they	presented	definitions	without	a	genus,	with

the	undefined	set	taking	the	place	of	a	genus,	of	an	actual	universe

of	discourse.	Reasoning	from	this	base	consisted	of	appeal	to	the

socalled	axioms	of	set	theory	and,	beyond	that,	to	whatever	special

properties,	of	any	particular	kind	of	set,	that	were	asserted	in	the

definition.	Calling	something	a	set	did	indeed	provide	a	warrant	to

reason	in	a	certain	way	without	immediate	fear	of	contradiction,

but	it	said	nothing	about	what	any	of	it	might	mean.

In	this	fashion	the	Bourbaki’s,	emulating	Hilbert’s	famous



axiomatization	of	Euclidean	geometry,5	aimed	to	systematize	and	axiomatize
mathematics.	Bourbaki’s	influence	began	to	wane

around	1970,6	but	much	of	the	legacy	they	did	not	invent,	but	helped	perpetuate,
notably	the	foundational	role	of	set	theory	in

mathematics,	remains.

Within	a	reality-based	account	of	mathematics	of	the	sort

that	I	am	outlining	in	this	book,	to	characterize	a	mathematical

domain	as	a	kind	of	set	admitting	a	prescribed	structure	is	exactly

backwards.	A

set	of	mathematical	objects,	if	such

exists,

presupposes	a	mathematical	domain	from	which	the	mathematical	objects	are
taken.	If	the	language	of	set	theory	is	valid	within

mathematics	at	all,	it	must	presuppose,	in	every	case,	a	particular

universe	of	some	sort	of	mathematical	objects,	relating	to	the

world,	to	which	the	language	of	set	theory	can	be	applied.

Mathematics,	like	any	other	science,	requires	a	hierarchical

development	with	reality	as	its	starting	point	and	its	motivation.

Unfortunately,	as	I	elaborate	later	in	this	chapter,	set

theory,	as	presented	today,	as	a	formal	mathematics	study,	is	a

floating	abstraction	with	arbitrary,	if	carefully	chosen,	axioms	and

strained	constructions.7

Should	set	theory,	then,	be	dismissed	out	of	hand?	Or	is



Should	set	theory,	then,	be	dismissed	out	of	hand?	Or	is

there	a	need	for	such	a	concept	in	mathematics?	If	so,	what

function	does	it	fulfill	and	what	context	does	it	presuppose?	Is	it

possible,	and	is	it	reasonable,	to	rehabilitate	the	mathematical

concept	of	set,	as	a	specifically	mathematical	concept?

What	is	a	Set?

The	concept	of	man	applies	to	all	men	that	have	ever

existed,	exist	today,	or	will	exist	in	the	future.	The	concept	of	man	is

openended.8	But	the	referents	of	the	concept	man	do	not	constitute	a	set.	Nor	is
the	concept	of	man	at	all	unusual	in	that

regard.

One	can,	however,	talk	about	a	set	of	dishes	or	the	set	of

books	that	one	owns.	In	general,	the	word	“set”	meaningfully

applies	to	existents	of	some	kind	that	have	been	specifically

circumscribed	and	delimited.	To	group	existents	into	a	set	is	to

distinguish	them,	based	on	the	recognition	that,	for	some	purpose,

however	transitory	it	may	be,	the	existents	belong	together	in	some

way.	As	the	simplest	example,	when	one	counts	something,	one

ascribes	significance	to	the	objects	that	one	is	counting,	taken	as	a

whole.	Implicitly,	one	views	the	collection	as	a	set.

In	such	usage,	elements	of	sets	are	treated	as	concretes,



concrete	instances	of	the	kind	of	thing	that	they	are.	A	set	of

numbers	of	some	kind	consists,	first	of	all,	of	specific	numbers.

There	must	be	no	ambiguity	concerning	either	the	kind	of	existents

that	are	included	or	the	status	of	any	particular	existent	of	that	kind

as	belonging	or	not	belonging	to	the	set.	To	isolate	a	set	is,	first	of

all,	to	distinguish	and	isolate	its	members.

As	applied	to	concretes	in	the	world,	there	are	no	infinite

sets.	But	there	are,	it	is	claimed,	infinite	sets	in	mathematics.	Is

there	something	special	about	mathematics?

Let’s	review	some	mathematical	examples.

	
Consider	the	polynomial	equation

	
x3	-6x2	+	3x	+	10	=	0

	
This	third	order	(cubic)	polynomial	turns	out	to	be

factorable:	One	has

	
x3	-6x2	+	3x	+	10	=	(x	+	1)(x	–	2)(x	–	5)	=	0

So	its	solution	set	consists	of	three	numbers,	namely,	-1,	2,

and	5.	Looking	at	the	solutions	as	constituting	a	set	focuses	on

these	solutions	as	isolated	instances	of	a	totality.

There	are	many	contexts	in	which	the



nature	of	the

solution	set	is	more	important	than	the	actual	solutions	in	any

particular	case.	For	example,	a	cubic	equation	with	real	coefficients,

such	as	this,	can	never	have	more	than	3	solutions	and	always	has

at	least	one	real	number	in	its	solution	set.	And	this	simple

observation	is	not	an	isolated	curiosity,	but	a	first	introduction	to	a

complex	study	known	as	algebraic

geometry,	a	branch	of

mathematics	that	grew	out	of	the	study	of	polynomial	equations.

A	somewhat	more	complex	function	is	the	sine	function

that	arises	in	trigonometry	and	assigns	a	number,	ranging	from	-1

to	1	to	every	angle.	If	one	conceives	of	an	angle	as	measuring	a

rotation,	then,	as	one	continues	to	rotate	a	line	segment	attached	to	a	point,	one
returns	to	one’s	starting	point	and	traces	the	same

directions	over	and	over	again.	At	3600,	a	rotating	line	returns,	for	the	first	time,
to	its	original	position	and	the	value	of	the	sine

function	returns	to	the	value	it	has	for	an	angle	of	zero	degrees.

Mathematicians	do	not	normally	measure	angles	in

degrees.	Rather,	they	utilize	a	particular	magnitude	that	is	related

to	the	degree	to	which	a	line	has	been	rotated.	Specifically,	a	line

segment	of	unit	length	traces	out,	as	it	rotates,	a	circle	of	unit

radius.	The	length	s	of	the	arc	(the	arc	length)	traced	out	on	the	circle	measures



the	amount	of	the	rotation.	When	one	measures

angles	in	this	way,	one	says	that	the	angle	is	measured	in	radians.

Since	the	circumference	of	the	unit	circleis2π,arotation	of	3600is	equal	to	2π
radians.	In	these	units	π	is	equal	to	1800.

The	function	sin(s)	=	0	is	satisfied	precisely	when	s	=	n

π

for	integer	n,	precisely	when	the	rotating	line,	rotating	about	the

origin	(0,	0)	in	a	counter-clockwise	direction	with	its	endpoint

starting	at	(x,y)	=	(1,0),	crosses	the	x	axis.	So	the	set	of	solutions	is

infinite;	there	is	a	solution,	namely	nπ,	corresponding	to	each

integer	n.	When	one	says	that	the	solution	set	is	{nπ,	where	n	is	an

integer},	one	simply	expresses	the	fact	that	any	value	of	s	of	the

form	nπ	(n	an	integer)	will	satisfy	the	equation.	To	consider	these

solutions	as	belonging	to	a	set	is	simply	to	adopt	a	different

perspective	on	the	same	fact,	a	perspective	that	focuses	on	the

solutions	as	a	totality	and	as	distinguished	among	the	wider

domain	of	the	real	numbers,	from	real	numbers	that	do	not	satisfy

the	equation.

What	is	most	significant	about	this	solution	set?	First,

successive	solutions,	in	both	directions,	are	evenly	spaced	and,

second,	more	importantly,	there	is	no	limit	to	its	potential	extent.

Before	I	continue,	notice	that	every	member	of	this	set	is	an



Before	I	continue,	notice	that	every	member	of	this	set	is	an

irrational	number.	In	chapter	4,	I	argued	that	irrational	numbers

are	only	meaningful,	meaningful	as	irrational	numbers,	in	an	abstract	setting,	in
which	they	apply	to	an	entire	openended

category	of	measurements.	I	argued,	further,	that	irrational

numbers	are	concepts	of	method.	They	are	the	way	that	one

preemptively	tracks	any	quantitative	distinction	among	magnitudes

that	might,	someday,	in	some	context,	be	required	in	regards	to

some	concrete.	If	sets	of	real	numbers	are	meaningful	then	set,	too,	must	be	a
concept	of	method:	A	set	maintains	its	distinctions	on	an

abstract	level,	in	the	same	way	as	the	number	system	does	and	for

the	same	reason,	distinctions	that	go	beyond	the	requirements	and

capability	of	any	specific	concrete	case,	but	are	needed	to	apply

abstract	measurements	universally.	It	is	possible,	as	a	methodical

procedure,	for	a	set	of	real	numbers	to	make	such	distinctions	because	these
distinctions	are	already	embodied	in	the	real	number

system.

As	a	third	example,	consider	an	interval	between	15.9	and

16.1.	One	might	encounter	such	an	interval	in	the	course	of	a

measurement.	Suppose	the	resulting	measurement	is	16,	plus	or

minus	.1.	One	would	say	that	the	length,	say,	of	something	is

between	15.9	and	16.1	centimeters.

A	mathematician	would	not	hesitate	to	characterize	the



potential	values	within	that	interval	as	a	set	of	numbers.	Any

number	that	one	could	name	is	unambiguously	either	contained	in

the	interval,	is	between	15.9	and	16.1,	or	it	isn’t.

Sets	of	this	type,	consisting	of	small	intervals,	are,	as	in	this

example,	very	often	invoked	as	a	way	of	specifying	a	degree	of

approximation.

Now	consider	the	graph	of	the	equation	x2	+	y2	=	25.	One	is	interested	in	pairs	of
numbers	that	satisfy	the	equation,	pairs	such

as	x	=	-3	and	y	=	4,	alternately	expressed	as	(x,y)	=	(-3,4).

Considered	mathematically,	there	are	a	mathematically	infinite

number	of	solutions	to	this	equation.

A	mathematician	would	characterize	the	points	on	this

graph	as	a	set.	Without	ambiguity,	a	pair	of	real	numbers	is	either	a

solution	to	the	equation	or	it	is	not.	A	point	in	the	plane,	as

represented	by	a	pair	of	coordinates,	is	either	part	of	the	graph	or	it

is	not.

In	this	case	I	spoke	of	a	set	of	points	or	of	point	sets.	My

warrant	to	do	so	derives	from	the	use	of	real	numbers	to	measure

position	along	each	axis	and	in	the	correspondence	I	discussed	in

Chapter	4	between	the	real	numbers	and	points	on	a	line.

To	regard	a	line	as	consisting	of	mathematical	points,	in

this	sense,	says	nothing	and	assumes	nothing	about	physical	lines



this	sense,	says	nothing	and	assumes	nothing	about	physical	lines

or	about	other	magnitudes	that	line	segments	might	be	used	to

represent.	It	does	not	imply	or	presuppose	that	a	physical	line	is

made	up	of	points.

We	encountered	the	same	essential	issue	in	Chapter	1.	We

observed,	for	example,	that	to	treat	a	physical	line	as	continuous	is

to	say,	in	a	particular	context,	that	its	possible	discontinuities	are

immaterial.	Similarly,	this	aspect	of	analytic	geometry	says	nothing

about	metaphysics:	its	use	is	methodological.

One	is	interested	in	this	set	primarily	because	it	has	the

shape	of	a	circle.
Now	consider	the	line	3y	=	-4x.	The	solution	set	to	this

equation	is	also	infinite.	But	it	intersects	the	circle	in	just	two

places,	namely	(x,y)	=	(-3,4)	and	(x,y)	=	(3,-4).	One	says	that	the

intersection	of	the	two	solutions	sets	consists	of	these	two	points.
Describing	point	sets	in	this	way	is	a	natural	consequence

of	the	marriage	between	geometry	and	numbers	(including	algebra)

known	as	analytic	geometry.	And,	in	this	sense,	set	theory	has	roots	in	Descartes
and	Fermat.9	In	analytic	geometry,	geometric	shapes	are	specified	by	algebraic
equations,	equations	that	measure	certain

characteristics	of	the	shape.	For	example,	the	equation	of	a	circle

specifies	and	reflects	the	position	of	its	center	and	its	radius.	To

find	an	intersection	of	two	geometric	figures,	the	lifeblood	of

Euclid’s



Euclid’s

Elements,	as	discussed	in	Chapter	1,	is	to	find	the

simultaneous	solutions	of	their	corresponding	equations.
As	a	final	example	of	a	mathematical	set,	suppose	that	one

wants	to	delimit	a	particular	kind	of	number,	say	numbers	divisible

by	5.	Mathematicians	would	characterize	the	totality	of	qualifying

numbers	as	a	set.	Now	consider	a	second	set	of	numbers,	those	with

a	remainder	of	1	when	divided	by	5.	If	one	chooses	a	member	from

each	set	and	adds	them	together,	the	total	is	always	a	number	in	the

second	set	consisting	of	numbers	with	a	remainder	of	1.
Studying	remainders	with	respect	to	division,	in	this	way,	is

a	step	on	another	long	journey,	one	that	begins	with	the	childhood

game	of	distinguishing	odd	numbers	from	even	numbers.	One

discovers	that	categories	of	numbers	can	have	their	own	arithmetic:

a)	even	plus	even	or	odd	plus	odd	equals	even	and	b)	odd	plus	even

equals	odd.
In	every	one	of	these	examples,	there	is	value	in	looking	at

the	discriminated	range	of	mathematical	objects	as	a	set,	as	a

totality,	but	also	as	a	totality	of	individual	members.
In	all	of	these	cases,	it	is	completely	unambiguous	whether

any	particular	concrete	of	the	specified	kind	is	included	or	not

included	in	the	set.	In	the	first	example,	2	is	a	solution	to	the	cubic

equation;	3	is	not.	In	the	fourth	example	(-3,4)	is	on	the	circle;	(4,4)



is	not.	A	number	or	a	point	is	either	included	in	a	particular	set	of

numbers	or,	respectively,	set	of	points	or	it	is	not.
Keep	in	mind,	though,	that	unambiguous	does	not	mean

obvious.	To	know	that	an	equation	has	a	solution	set	is	not	to	have	solved	the
equation.	But	to	say	that	the	set	of	solutions	is

unambiguous	is	to	say	that	the	set	of	solutions,	that	whether	a	particular	number
would	or	would	not	satisfy	the	equation,	is	open

to	unambiguous	discovery.	Unlike	a	concept,	a	set	never	has

borderline	cases.10
These	examples	have	a	number	of	other	things	in	common.

First,	all	of	them	isolate	a	range	of	possibilities,	a	set	of	solutions	to

a	particular	equation,	a	range	of	possible	values	for	a	measurement,

or	a	range	of	possible	numbers	satisfying	a	particular	condition.
Secondly,	there	is	something	about	the	particular	members

of	each	set	that	makes	them	of	interest;	they	are	special	in	some

way	in	some	particular	context.	Yet	none	of	these	sets	corresponds

to	a	concept.
One	does	not,	normally,	for	example,	form	a	concept	of	the

solutions	to	a	particular	polynomial	equation.	Rather,	the	set	of

possibilities	is	characterized,	delimited,	by	some	sort	of	description,

namely	that	they	satisfy	the	equation.	To	solve	the	equation	is	to

find	a	more	direct	or,	possibly,	a	more	valuable	characterization.
In	the	case	of	sin(s)	=	0,	the	solution	set	is	completely

characterized,	completely	specified,	by	the	equation.	Finding	that

the	solutions	consist	precisely	of	numbers	of	the	form	nπ	(n	an



the	solutions	consist	precisely	of	numbers	of	the	form	nπ	(n	an

integer)	is	a	discovery	about	something	that	has	already	been

specified	in	some	other	way.	Both	the	equation	to	be	solved	and	the	solution	are
characterizations;	neither	is	a	concept.	To	specify	a	set

of	solutions	to	an	equation	is	to	isolate	things	of	a	particular	type

that	have	something	in	common.	But	neither	an	equation	nor	its

solution	set	normally	functions	as	a	permanent	unit	of	thought	in

the	way	that	a	concept	does.
Notice	that	to	isolate	a	set	requires	conceptual	means.	If	a

set	is	finite,	as	in	the	first	example,	one	can	simply	list	its	elements.

This	listing	is,	of	course,	done	conceptually	and,	in	the	first

example,	it	presupposes	the	concept	of	number.	Still,	in	a

mathematical	context,	listing	the	elements	of	a	set	is	the	most	direct

means	of	specification	that	is	ever	available.	And	it	is	only	available

for	finite	sets.	More	generally,	solving	an	equation	means	finding	a	more	direct
specification	of	a	set	that	has	already	been	indirectly

specified	by	the	equation.	A	typical	kind	of	example	is	the	equation

sin(s)	=	0.	One	solves	it	by	giving	a	formula	for	its	solution	set,

namely,	{nπ,	where	n	is	an	integer}.
In	saying	that	this	formulation	identifies	the	solution,	one,

first	of	all,	connects	the	equation	sin(s)	=	0	to	something	else	that

one	already	knows,	namely	the	irrational	number	π	and	the

integers.	But	it	is	also	implicit	that	both	characterizations,	both	the



problem	and	the	solution,	describe	the	same	set.	The	set	that	they	describe	has	an
ontological	status,	some	form	of	existence	that	is

independent	of	either	characterization.	To	speak	of	the	solution	as	a	set	is	to	take
precisely	this	perspective	on	the	solution.
As	one	last	observation,	one	does	form	a	concept	of

numbers	divisible	by	2;	one	says	that	such	numbers	are	even.	But	one	would	not
form	a	separate	concept	for	divisibility	by	other

numbers,	such	as	the	number	5.	A	description	is	all	that	one	needs.

One	does	something	else:	One	finds	a	general	way	of	expressing

such	relationships.	One	says	that	x	=	y	(mod	5)	to	express	the	fact

that	(x	–	y)	is	divisible	by	5.	And,	in	particular,	x	=	1	(mod	5)	means

that	(x	–	1)	is	divisible	by	5,	which	is	to	say	that	x	divided	by	5

leaves	a	remainder	of	1.
One	does	not,	in	any	of	these	examples,	form	sets	that	mix

different	kinds	of	things.	One	does	not	form	a	set	consisting	of	both

numbers	and	circles.	There	is,	in	every	case,	a	universe	of	discourse

or,	as	I	prefer	to	call	it,	a	mathematical	domain:	a	demarcation	of

instances	of	a	valid,	previously	identified,

mathematical

abstraction.
These	sets	exist	conceptually	in	the	sense	that,	in	each	case,

one	has	isolated	its	members.	But	being	included	in	the	set	does	not

change	the	ontological	status	of	its	members	in	any	way.	The

members	remain	specific	instances	of	the	kind	of	thing	that	they



are.	Numbers,	for	example,	exist	as	part	of	a	system	of

measurements	potentially	applicable	to	a	concrete.	A	set	of

numbers

arises	as	the	referents	of	a	characterization,	a

characterization	that	isolates	numbers	of	particular	interest	in

some	particular	context.	One	characterizes	the	set,	but	the	set	itself	is	regarded
simply	as	the	numbers	that	have	been	isolated,	qua

something	that	has	been	isolated.	A	different	characterization	that	happened	to
isolate	precisely	the	same	individuals	might	reflect	a	completely	different
conceptual	perspective,	but	it	would,

nonetheless,	be	a	different	characterization	of	the	same	set.	A	set	and	its
members	are	not	distinguished	by	how	the	members	have	been	isolated,	but	only
by	the	fact	that	these	members	have	been

isolated.
In	this	respect,	membership	in	a	set	is	very	different	from

being	a	referent	of	a	concept.	There	is	always	a	mathematical

concept,	such	as	real	numbers,	for	the	kind	of	thing	that	one	includes	in	a
particular	set.	But	sets,	as	such,	are	not	concepts,	even

though	one	uses	conceptual	means	to	isolate	them.	To	be	a	referent

of	a	concept	presupposes	a	particular	perspective,	that	one

recognizes	an	axis	of	similarity	among	the	referents.	But	to	be	a	member	of	a	set
only	requires	that	it	be	demarcated	or	isolated

somehow,	as	belonging	to	the	set.	The	precise	how	has	no	bearing,	is	like	an
omitted	measurement.11
This	last	sentence	requires	some	explaining.	For,	I	said	that

a	set	is	not	a	concept.	It	is,	rather,	a	conceptual	isolation	of



a	set	is	not	a	concept.	It	is,	rather,	a	conceptual	isolation	of

instances	of	a	concept.	And	Ayn	Rand’s	observations	concerning

omitted	measurements	are	intended	to	apply	specifically	to

concepts.	Yet,	in	a	broader	sense,	the	same	principle	applies	to	a

set:	The	possibilities	isolated	must	be	isolated	by	some	conceptual

characteristic.	But	the	specific	possibilities	that	are	isolated	do	not

depend	on	the	particular	means	by	which	they	are	isolated.
For	example,	the	set	of	points	that	satisfy	x2	+	y2	=	25	is	the	set	of	points	that	fall
on	a	circle	of	radius	5,	centered	at	the	origin

(0,	0).	Notice:	two	specifications;	one	circle,	one	set	of	points.
There	is	indeed	a	concept	involved	whose	measurements

are	being	omitted:	the	concept	of	isolation.

Isolation	of	the

members	of	a	set	is	independent	of	the	specific	details	regarding

how	that	isolation	was	accomplished.	Of	each	element,	one	says

only	that	it	has	been	isolated,	has	been	included	in	the	set.	How	it	was	isolated
doesn’t	matter.
If	the	notion	of	a	set	in	mathematics,	if	the	notion,	say,	of	a

set	of	numbers,	is	to	have	value	in	mathematics,	one	must	embrace

the	possibility,	for	example,	of	an	infinite	set	of	numbers.	Neither	numbers	nor
sets	of	numbers	exist	in	the	world	as	such.	But

numbers

do	exist

as



identifications	of	relationships,	as

measurements.	Numbers	are	a	system	of	concepts,	indeed,	of

measurements.	The	relationship	that	a	number	measures	is

categorical.	It	is	independent	of	any	specific	concrete	to	which	it

applies.	Treating	any	specific	application	as	an	omitted

measurement	within	a	mathematical	pursuit,	one	can	treat

numbers	and	sets	of	numbers	as	objects	of	investigation,	as	existing	prior	to	or
independent	of	one’s	investigation.	Not	existing	as	a	completed	infinity,	but	as
an	isolated	specific	demarcation	of

potential	measurements	of	magnitudes.	Any	number	that	one

isolates	is	a	particular	measurement	that	might	be	applied	to	a

concrete	or	involved	in	a	calculation.
Sets,	at	root,	are	a	methodological	device	to	isolate	and

keep	track	of	distinguishable	mathematical	possibilities	of	a	certain

kind.	To	consider	an	element	or	selected	elements	of	a	set	is	to

isolate	and	consider	a	range	of	possibilities.	To	look	at	an	isolated

range	of	mathematical	possibilities	as	a	set	is	to	take	a	geometric

perspective	on	that	range	of	possibilities.	It	is	to	look	at	the

members	of	the	set	as,	in	some	sense,	objects	of	thought.
A	mathematical	set	is	infinite	when	the	distinguishable

mathematical	possibilities	are	unlimited.	For	example,	the	real

numbers	are	unlimited	in	that	the	concept	of	real	number

recognizes	no	prior	limitation	regarding	either	potential	precision



or	multiplicity.	At	that	level	of	abstraction	the	concept	of	real

number	distinguishes	an	unlimited	range	of	possibilities.

Mathematical	sets	do	have	limits,	but	those	limits	are	imposed,	first

of	all,	by	the	genus	(e.g.,	real	numbers),	by	the	kind	of	thing

included	in	the	set	and,	second,	by	whatever	conceptual	means	is

applied	to	isolate	their	members.
A	concept	or	a	class	is	not,	as	such,	a	set.	Man	is	openended	in	a	sense	that
number	is	not.	Numbers	form	a	conceptual	system	and	they	are	tightly
circumscribed	in	the	ways	that

individual	numbers	can	differ	from	each	other	and	relate	to	each

other.	One	grasps	the	specific	mathematical	domain	by	grasping,	as	part	of	a
single	dimension	of	variability	the	spectrum	of	possible	numerical	relationships
to	a	unit.
One	does	not,	in	similar	fashion,	grasp	men	as,	in	any

sense,	a	domain.	One	is,	first	of	all,	aware	of	a	vast	array	of	respects

in	which	one	man	can	differ	from	another.	Secondly,	it	would	be

unreasonable	to	presume	that	there	are	not	yet	other	axes	of

variation	that	have	not	yet	been	discovered.	Finally,	men,	as	such,

are	concrete	individuals.
And	this	is	another	point	of	contrast:	A	number	is	a

particular	quantitative	relationship	that	transcends	any	particular

instance.	A	mathematical	set	never	consists	of	concrete	entities	or	concrete
instances	of	a	first-level	abstraction.
In	regard	to	dimensions	of	variability,	take	color	as	an

example	somewhere	in	between	man	and	number.	Color	is	also	multi-faceted.
But	one	can	focus	on	a	single	dimension	of	color,



such	as	hue	or	intensity.	Or	one	can	even	focus	on	a	specific

constellation	of	dimensions,	such	as	hue,	intensity,	and	saturation.
If	color	varies	along	still	other	dimensions,	presently

unidentified,	one	can	regard	such	other	dimensions	as	omitted

measurements.	And	if	there	should	later	turn	out	to	be	previously

unknown	facets	of,	say,	hue,	then	one’s	focus	on	the	particular

facets	that	one	has	identified	implicitly	treats	any	such	additional	facets	that
might	be	discovered	also	as	omitted	measurements,	as	irrelevant	to	the
distinctions	one	is	making.	In	sum,	this	is	to	say

that	one	regards	any	two	colors	that	have	the	same	hue,	intensity,

and	saturation,	as	the	same	color,	treating	any	other	respects	in

which	they	may	differ	as	irrelevant	in	the	particular	context.
Nonetheless,	with	all	that	said,	isolating	a	dimension,	such

as	hue,	is	not	yet	to	completely	grasp	the	mathematical

relationships	between	hues;	it	is	not	to	grasp	the	precise	respect	in

which	one	hue	differs	from	another	hue,	nor	is	it	to	grasp	the	full

potential	variations	of	hue.
But	one	is	getting	closer.	In	grasping	that	colors	differ	by

hue,	intensity,	and	saturation,	one	circumscribes	an	area	of	study	in	a	way	that
parallels	the	specialization	of	a	mathematical	study.

One	singles	out	a	specific	constellation	of	characteristics	that	differ

from	each	other	along	specific,	known,	measurable,	dimensions.	In

focusing	on	hue,	one	isolates	and	orders	the	visible	spectrum.
So	how	is	mathematics	different	from	other

specializations?	When	one	considers



specializations?	When	one	considers

measurements,	such	as

numbers,	then	what	one	isolates	is	delimited	in	a	way	that	“man”	is

not.	This	isolation	is	openended,	but,	speaking	very	loosely,	not

wide	openended.
The

application	of	number	is	wide	openended.

Applications	of	mathematics	to	the	world	have	no	known	limits

regarding	either	the	concretes	to	which	they	might	apply	or	the

manner	of	that	application.	Applications	of	numbers	are	not,	in	Cantor’s	phrase,
“welldistinguished	objects.”12
But,	by	contrast,	the	range	of	possible	numerical

measurements	is	isolated	as	a	system	as	described	in	Chapter	4.

Number	is	graspable	as	a	specific	dimension	along	which	a	quantity	that	it
measures	can	vary	or	can	relate	to	a	unit.	One	has	a	specific	grasp	of	the
delimited	respects	in	which	two	numbers	can	differ

and	of	the	range	of	possible	measurements.	Indeed,	it	is	the	job	of

mathematics	to	provide	such	a	grasp,	to	provide	ways	to	cover	the

full	range	of	possibilities,	to	provide	a	comprehensive	system	of	measurement.
What	about	magnitude?	Magnitude	is	openended	in	a	way

that	number	is	not.	Although	all	magnitudes	have	certain	things	in	common,
there	is	an	apparently	limitless	variety	of	kinds	of

magnitudes,	a	sampling	of	which	I	reviewed	in	Chapter	2.	And	for

each	kind	of	magnitude	there	is	an	openended	range	of	entities

possessing	attributes	of	that	type.	For	example,	the	range	of	objects



possessing	attributes	of	that	type.	For	example,	the	range	of	objects

possessing	length	is	openended	in	exactly	the	same	way	that	the

concept	man	is	openended.
But	suppose	one	considers	magnitudes	solely	in	regard	to

the	relationships	between	them,	between	two	magnitudes	of	the	same	kind.
Suppose	that	one	looks	at	them	as	measurable	along	a

single	dimension.	Suppose	a	perspective	from	which	any

consideration	of	a	concrete	case	embodies	an	abstract	perspective	applying	to
the	entire	category	of	measurements,	of	magnitudes	as

such,	the	kind	of	perspective	that	I	applied,	in	Chapter	1,	to	the

drawings	in	Euclid’s	Elements.	Suppose,	in	short,	that	one	looks	at	magnitude
geometrically,	as	a	continuum	of	related	possibilities,	as	I	did	in	Chapter	2.	Then
there	is	only	one	relevant	difference	between	any	two	magnitudes	of	the	same
kind.	And	that	difference

is	given	by	the	numerical	ratio	between	them.
To	grasp	continuous	magnitudes	of	a	particular	kind,	one

needs	a	concrete	example.	And	to	understand	the	way	that	two

magnitudes	of	particular	kind	can	differ,	qua	magnitude,	requires

scientific	discovery.	But	once	that	discovery	has	been	made,	one

grasps	the	entire	range	of	possibilities	for	that	particular

characteristic	along	the	particular	dimension	that	one	has

identified.	One	has	grasped	the	respect	in	which	any	magnitude	of

that	type	relates	to	a	unit.	That	range	of	possibilities	is	captured	in

the	real	number	line.
As	presented	here,	a	set	requires	the	ability	to	establish



systems	of	measurements	and,	in	geometric	contexts,	to	isolate	a

specific	constellation	of	measurable	dimensions.	A	set	is	formed	in

reference	to	a	mathematical	abstraction	and	requires	an

unambiguous	demarcation	among	the	units	of	that	abstraction;	it

requires	a	demarcation	of	specific	possibilities	distinguished	by	that

abstraction.	Finally,	a	set	involves	a	specific	focus,	on	the

possibilities	or	contingencies	thus	isolated,	as	objects	of

investigation,	considered	without	regard	to	how	they	were	isolated.
The	intent	of	this	chapter	is	to	develop	a	reality-based

approach	to	mathematical	set	theory	without	reference	to	any

particular	axiom	system.	Later	in	this	chapter,	I	will	discuss	the

early	history	of	set	theory,	culminating	in	the	Zermelo-Fraenkel

(ZF)	axioms.
For	now,	it	must	be	recognized,	that	something	must	limit

the	domain	of	set	theory.	There	is	no	such	thing	as	a	“Set:	set	of	all

sets.”	That	alleged	concept	presupposed	some	kind	of	pre-existing

conceptual	universe	and	was	abandoned	when	it	led	to

contradictions.
The	modern	answer	to	the	problem	that	these

contradictions	exemplified	consists	in	laying	out	axiom	systems,

such	as	the	ZF	axioms.	But	in	this	chapter	I	take	a	very	different

approach.	I	take	a	much	more	openended,	inductive	and

hierarchical	approach,	one	that	builds	from	the	ground	up.	Reality



hierarchical	approach,	one	that	builds	from	the	ground	up.	Reality

is	the	foundation,	the	ultimate	point	of	reference,	and	all	of	our

mathematical	concepts,	no	matter	how	abstract,	are	formed

hierarchically,	building	on	earlier	concepts	tracing	ultimately	back

to	our	direct	observations	about	the	world.	To	understand

something	one	must,	first,	relate	it	to	the	world.	Tracing

relationships	among	ideas,	organizing	one’s	knowledge,	critical

though	it	be,	is	not	a	substitute	for	understanding,	for	connecting	it

to	the	world.
If,	in	such	an	approach,	contradictions	are	discovered

along	the	way,	the	fault	lies	in	some	error	of	identification.	Reality

and	our	cognitive	needs	set	the	ultimate	standard	and	the	ultimate

point	of	reference.	The	world	does	not	contain	contradictions.	If

one	is	discovered,	the	fault	is	not	in	the	world,	but	in	us,	in	our

misidentifications.	Turning	one’s	back	on	the	world	is	not	a

solution	to	the	problem;	it	is	an	evasion	of	it.
In	general,	I	reject	an	approach	that,	in	the	manner	of	settheoretic	axiom
systems,	attempts	to	lay	a	deductive	foundation	and	circumscribe	the	entire
domain	of	mathematics	in	advance,	in

the	hopes	that	nothing	more	will	ever	be	needed	and	that	no

contradictions	will	ever	emerge.	The	suitability	of	settheoretic

methods	within	a	particular	mathematical	abstraction	is	something

that,	in	any	approach,	must	be	discovered	and	cannot	be	presumed

in	advance.



in	advance.
My	approach	to	understanding	set	theory	begins	with	the

concept	of	a	mathematical	domain,	the	subject	of	the	next	section.

Mathematical	Domains

Measurement	involves	relationships	among	things	that	are

similar	in	some	way.	A	measurement	determines	a	respect	in	which

two	similar	things	are	different,	in	which	two	things	differ	along	an

axis	of	similarity.	If	the	object	of	measurement	is	a	magnitude,	the	expression,
the	measurement,	of	this	relationship	is	a	number.	A	measurement,	in	general,	is
an	expression	of	a	relationship	to	a	unit,	an	expression	of	how	the	attribute	or
existent	being	measured

differs	from	the	unit	in	a	particular	respect.

If	one	takes	an	abstract	perspective	on	the

object	of

measurement,	as	an	object	of	measurement	in	a

particular

respect(s),	then	one’s	focus	is	geometric.	A	domain	of	geometric	possibilities	is
a	range	of	possibilities	with	regard	to	a	specific

constellation	of	measurements,	possibilities	that	are	distinguished,

as	relevantly	different,	only	with	respect	to	those	measurements.

If	one	focuses	on	the

relationship	of	the	characteristic	one

is	measuring	to	its	unit,	if	one	focuses	on	the	measurement,	one’s	focus	is



arithmetic	or	algebraic.	Within	either

perspective,

geometric	or	arithmetic,	the	object	of	one’s	focus	is	a	mathematical	domain.	The
real	number

line	is	a	geometric	domain,	a

demarcation	of	possible	magnitudes	of	any	type	whatever,

considered	in	relation	to	a	unit	of	the	same	type;	the	real	number

system	is	an	arithmetic	domain,	a	domain	of	measurements	applicable	to
magnitudes.

I	use	the	term,	and	concept,

mathematical	domain	to

replace	the	standard	settheoretic	term,	universe.	In	my	usage,	a	mathematical
domain	consists	of	a	demarcation	of	instances	of	a	valid,	previously	identified
mathematical	abstraction,	of

mathematical	possibilities	of	a	particular	kind,	considered	as	an

object	of	investigation.	I	prefer	the	term	domain	to	universe	because	I	hold	that
the	concept	of	a	mathematical	set	only	makes	sense	within	the	context	of	a
mathematical	domain	in	the	sense	I	have	just	characterized.	Generally	speaking,
a	mathematical

domain	can	also	be	considered	a	set,	but	it	is	a	domain	first	and	a	set	second.	A
mathematical	domain	functions	as	a	universe	of

discourse.	But	mathematical	domain,	as	a	concept,	is	a	distinct	concept	from	the
notion	of	universe	of	discourse,	and	represents	a	different	conceptual
perspective.

The	qualification	of	a	mathematical	domain	as	a

set	presupposes	and	requires	a	level	of	mathematical	abstraction	that



regards	specific	external	referents,	such	as	the	type	of	magnitude	measured	by	a
number,	as	omitted	measurements.	A	number	is	a

relationship	to	a	unit;	everything	else	is	unspecified	and	the	mathematical
relationships	among	numbers	do	not	depend	upon

the	particular	concretes	to	which	they	might	be	applied,	the

concretes	subsumed	by	the	abstraction.	Numbers	must	be

applicable	to	concretes	and	relationships	between	numbers	reflect

and	subsume	relationships	among	concretes,	but	what	those

concretes	might	be	is	an	omitted	measurement.

In	the	case	of	a	domain	of	geometric	possibilities,	one

regards	these	possibilities	as	related	by	a	specific	constellation	of

measurements	and	conceptually	distinguished	only	with	respect	to

those

particular	measurements.	For	example,	in	the	case	of

magnitudes,	one	demands	that	the	scope	of	possibilities,	in	any

particular	case,	all	represent	the	same	kind	of	magnitude	and	treats

them	as	distinguished	only	by	their	differing	relationships	to	a

chosen	unit.	The	type	of	magnitude	involved	and	the	choice	of

specific	unit	are	omitted	measurements.

As	I	mentioned	earlier,	the	mathematical	concept	of	a	set	is

a	concept	of	method.	One	isolates	sets	in	an	abstract	mathematical

context	in	which	concrete	referents	and,	in	particular,	any	limitations	to



precision	are	regarded	as	omitted	measurements.13

Consider,	for	example,	a	converging	infinite	set	of	points,

	
1.9,	1.99,	1.999,	…

as	it	might	relate	to	the	centimeter	markings	on	a	meter	stick.	As	a	mathematical
sequence,	every	number	is,	unambiguously,	either	in

the	sequence	or	not	in	the	sequence.	1.9999	is	in	the	sequence;	1.95

is	not.	However,	on	any	particular	meter	stick	only	a	very	small

number	of	these	numbers	can	actually	be	distinguished.	The	points

on	the	meter	stick	have	a	limit	point,	namely	2.	But	most	of	the

points	in	the	sequence	are	indistinguishable	from	that	limit	point.

And	the	placement	of	all	these	points,	both	the	finite	number	that

can	be	distinguished	and	those	at	the	limit	point	that	cannot	be

distinguished,	are	subject	to	the	particular	standard	of	precision

that	one	achieves	in	the	particular	case.	In	effect,	the	sequence	on

that	particular	meter	stick	is	1.9,	1.99,	2,	2,	2	…	.

So	the	concept	of	an	infinite	set	does	not	apply,	per	se,	to	a

prescribed	sequence	of	markings	on	a	meter	stick.	As	I	remarked

earlier,	there	are	no	borderline	cases	regarding	membership	in	a

set.	Membership	must	be	unambiguous.	But	this	condition,	in	the

case	of	infinite	sets,	can	only	be	realized,	as	a	methodological

device,	within	the	scope	of	a	specifically	mathematical	abstraction.



As	applied	to	any	specific	concrete,	there	are	always	a	finite	set	of

points	and	their	placement	is	subject	to	a	specific	precision	limit.

The	concept	of	an	infinite	set	is	a	creature	of	mathematics	and

refers	to	a	range	of	mathematical	possibilities	or	contingencies.

Numbers	are	useful,	and	perhaps	even	necessary,	in

building	or	specifying	infinite	sets	precisely	because	they	provide	a

limitless,	even	indenumerable	system	of	measurements,

unambiguously	distinguished	and	specifiable.	To	qualify	a	set,	one

needs	a	way	to	unambiguously	distinguish	each	member	and

unambiguously	specify,	for	each,	which	elements	of	the	broader

universe	are	in	the	set.	Thus,	one	can	specify	the	set	of	even

numbers	because	any	natural	number	one	might	name	is	either

divisible	by	two	or	it	isn’t.

This,	of	course,	is	not	the	conception	of	a	set	as	originally

advanced	by	Cantor.	As	we	shall	see	later,	however,	Cantor’s	early,

naïve	perspective	on	sets	was,	famously,	soon	abandoned.	So,	to	a

significant	extent,	to	state	my	negative	viewpoint	on	Cantor’s

conception	is	to	beat	a	dead	horse.	But	I	state	it	anyway:	Regarding

the	scope	of	the	concept	set,	it	is	simply	incoherent,	for	example,	to	characterize
the	aggregate	of	all	distinguishable	objects	in	the

world,	combined,	say,	with	all	potential	abstractions,	as	a	set.	There	is	simply	no
end	to	it,	no	specific	limits,	no	unambiguous



distinctions,	and	no	cognitive	purpose	to	be	served.	Neither	the

world	nor	our	conceptions	of	it	come	to	us	carved	up	into	discrete

units.	Anything	in	the	world	can	potentially	be	counted	or

distinguished:	objects,	attributes,	measurements	of	magnitudes,

distinguishable	parts	of	things,	with	other	parts,	ad	infinitum,

cutting	across	those	parts,	relationships	between	things,

relationships	between	relationships,	second	thoughts,	vague

emotions,	etc.	And	there	is	no	reason	on	earth,	or	in	mathematics,

why	anyone	would	ever	need	such	an	aggregation	of	disparate

units.	Meaningful	use	of	the	concept	set	requires	specific	isolation,	clear,
unambiguous,	distinction	among	its	members	and	a	wider

conceptual	category	within	which	these	members	are	distinguished.

I	hold	that	the	concept	of	an	infinite	set	is	applicable	only

in	a	mathematical	context	in	which	any	specific	reference	to	realworld	concretes
is	treated	as	an	omitted	measurement.	In	its	systematic	scientific	use,	sets	are	a
mathematical	concept,	a

methodological	device,	applicable	specifically	to	mathematical

abstractions,	as	such.	For	a	domain	to	qualify	as	a	set,	its	elements

must	be	unambiguously	differentiated	and,	yet,	interrelated,	as	part

of	a	system,	in	ways	that	specifically	delimit	its	scope.

The	concept	of	a

mathematical	domain,	consisting	of	a

system	of	measurements	or	geometric	objects	of	some	kind,	has



system	of	measurements	or	geometric	objects	of	some	kind,	has

fundamental	importance	in	mathematics.	I	introduced	this	concept,

somewhat	informally,	in	Chapter	4	and	I	characterized	the	domains

of	natural	numbers,	integers,	rational	numbers	and	real	numbers.

The	concept	of	a

mathematical

domain,	as	applied	to

measurements,	is	really	just	a	different	perspective	on	a	system	of	measurements,
one	that	focuses	on,	as	particulars,	the

measurements	that	are	embraced	and	distinguished	in	the	system	rather	than	the
system	itself.	But	it	focuses	on	those	measurements	as	constituting	particulars
within	that	system	of	measurements.

When	one	analyzes	relationships	between	measurements,	such	as

the	laws	of	addition	in	the	case	of	numbers,	one	is	treating	these

measurements	as	sharing	a	domain.	The	laws	of	addition	apply

equally	to	all	numbers	within	the	number	domain.

My	usage	of	the	term,

domain,	is	not	standard	though	it	is

closely	related	to	a	standard	use	of	this	term.	So,	to	avoid

confusion,	a	brief	digression	is	unavoidable.

The	closest

standard	equivalent	to	my

concept	of



mathematical	domain	is	the	settheoretic	informal	term	universe	of	discourse.	In
my	usage,	a	mathematical	domain	is	indeed	a

universe	of	discourse.	However,	it	is	so,	not	by	fiat,	but	by	virtue	of

arising	as	a	system	of	measurements,	arising	in	relation	to	a	system	of
measurements,	or	arising	as	a	geometric	object,	an	object	of

measurement	considered	in	relation	and	only	in	relation	to	a

particular	constellation	of	measurable	characteristics.

The

standard	use	of	the	word

domain	applies	to	a

mathematical	function	(i.e.,	a	relationship	between	an	independent

variable	and	a	dependent	variable).	One	speaks	of	the	domain	of	a	function,
thinking	of	it	as	the	set	on	which	the	function	is	defined.	I

will	use	the	term	domain	in	this	way,	as	well.	When	the	context	is	unclear,	I	will
use	the	full	term	mathematical	domain	as	the	rough	equivalent	of	mathematical
universe	of	discourse,	in	the	one	case,

and	speak	of	the	domain	of	a	function	in	the	second	case.

Analytic	Geometry	as	a	Mathematical

Domain

Mathematical	domains	are	identified	and	specified

conceptually	and	they	are	related	hierarchically.	I	have	spent	most

of	my	time	in	this	book	examining	the	roots	of	mathematical

concepts	in	reality,	in	the	measurement	of	the	world.	But,	in



concepts	in	reality,	in	the	measurement	of	the	world.	But,	in

mathematics,	one	thing	always	leads	to	another.	A	new

mathematical	or	scientific	problem	requires	and	leads	to	new

insights,	new	integrations,	new	connections,	new	concepts,	and,

sometimes,	new	mathematical	domains,	entirely	new	fields	of

investigation.

Analytic	geometry,	the	integration	of	number	and

geometry,	of	algebra	and	geometry,	was	the	first	decisive	step	in

modern	times	beyond	the	geometry	of	the	ancient	Greeks.	Analytic

geometry	was	discovered	independently,	and	at	about	the	same	time,	by
Descartes	and	Fermat	in	the	17th	century.14

The	classical	Greeks	had	used	line	segments	to	represent

both	magnitudes	and	multitudes	and	they	had	reasoned

geometrically	about	both,	but	the	idea	of	the	number	line,	of

identifying	numbers	with	points	on	a	line,	had	never	occurred	to

them.	Indeed,	the	classical	Greek’s	conception	of	ratio	as	a

relationship	between	two	quantities	of	the	same	kind	and,	therefore

(from	a	modern	perspective)	dimensionless,	severely	inhibited	such

discovery.	One	cannot	compare	a	ratio	of	two	lengths,	each

expressed,	say,	in	feet,	with	a	magnitude	such	as	length.	A	ratio	is	not	measured
in	feet	and	is,	in	fact,	independent	of	any	unit.

And	this	distinction,	and	awareness	of	this	distinction,	was

reflected	in	Greek	practice.	Euclid	used	lines	to	represent



reflected	in	Greek	practice.	Euclid	used	lines	to	represent

magnitudes	and	multitudes,	but	never	to	represent	ratios.	Rather,	a

ratio

was	always	represented	by	a

pair	of	magnitudes	or

multitudes.	Euclid	understood	the	distinction	between	ratio	and

magnitude.	He	was	unable	to	integrate	them	into	a	single	system	of

measurements.

Descartes’	later	discovery	of	analytic	geometry	was,	in	part

and	quite	explicitly,	a	revolt	against	this	aspect	of	the	classical

approach	to	quantity.	The	Greeks	could	apply	geometric	reasoning

to	non-geometric	contexts,	but	they	could	not	reason	in	the

opposite	direction.	And,	of	course,	the	Greeks	had	not	discovered

algebra.	As	a	consequence,	they	could	produce	sophisticated

abstract	geometric	arguments,	but	were,	for	example,	completely

dependent	upon	a	geometric	perspective	to	make	abstract	arguments	pertaining
to	numbers.15

As	another	example,	the	Greeks	studied	conic	sections,	but

their	study	was	enormously	complicated	by	their	reliance	on

classical	geometric	methods.	To	perform	an	abstract	measurement,

in	ancient	Greece,	always	meant	to	construct,	or	at	least	produce,	a



suitable	line	segment	to	represent	a	linear	magnitude,	a	twodimensional	figure	to
represent	an	area,	a	cube	to	represent	a	volume,	or	a	pair	of	magnitudes	of	some
kind	to	represent	a	ratio.	The	classical	treatise	on	conic	sections	by	Apollonius16
abounds	with	just	such	constructions,	with	arguments	and	conclusions	that

are	difficult	to	follow,	to	retain,	and	to	appreciate.

Analytic	geometry	married	algebra	and	geometry,	opening

geometry	to	algebraic	methods	and	creating	a	passageway	between

two	hitherto	independent	and	unconnected	disciplines.	And	the

immediate	consequence	was	to	vastly	simplify	the	study	of	conic

sections	and	of	other	shapes	that	were	studied	in	antiquity.

As	a	mathematical	domain,	analytic	geometry	identifies

each	axis	with	the	real	number	line	and	each	point	in	the	plane	with

an	ordered	pair	of	real	numbers,	with	the	first	coordinate

representing	the	x	axis	and	the	second	coordinate	representing	the	y	axis.
Analytic	geometry,	the	Cartesian	coordinate	system,

depends	hierarchically	on	the	real	number	line.

Cartesian	coordinates	provide	the	theater	in	which	one

relates	quantitative	relationships	between	the	coordinates	to	the

shapes	that	these	relationships	capture,	as	embodied	in	their

graphs.	Expressed	in	Cartesian	coordinates,	a	graph	is	a	set	of

points	satisfying	a	particular	relationship.

For	example,	x2	+	y2	=	25	is	the	equation	of	a	circle	consisting	of	points	5	units
away	from	the	origin	(0,0).	The	point	x

=	3	and	y	=	4,	represented	in	Cartesian	coordinates	as	(3,4),	lies	on



=	3	and	y	=	4,	represented	in	Cartesian	coordinates	as	(3,4),	lies	on

the	circle.	It	lies	on	the	circle	because	it	satisfies	the	equation.	That

is,	32	+	42	=	9	+	16	=	25.

Prior	to	the	introduction	of	analytic	geometry,	one	did	not

think	of	geometric	shapes	as	consisting	of	points;	one	followed

Aristotle	in	thinking	of	them	as	wholes	that	were	divisible	into

smaller	wholes.	One	could	intersect	two	lines	at	a	point	or	even

choose	a	point	of	division	on	a	line,	but	a	point	of	division	was	just	that,	a
division,	not	a	part	of	the	line.	To	be	part	of	a	line	was	to	be	divisible.17

Analytic	geometry	fundamentally	changed	that	perspective.

Within	a	Cartesian	plane,	coordinates	became	the	universal	means

of	measurement	of	any	geometric	figure.	A	geometric	shape	was

characterized	as	the	set	of	coordinate	pairs,	of	points,	satisfying	an

algebraic	equation	relating	the	coordinates,	as	in	my	circle	example.

One	no	longer	resorted	to	constructions,	the	way	Euclid	had,	to

compare	one	thing	with	another:	Every	point	on	the	Cartesian

plane	came	equipped	with	coordinates	that	measured	its	position

with	respect	to	the	two	axes.	A	pair	of	numbers	determined	a	point;

every	point	had	two	coordinates	that	measured	its	position.	Every

relationship	in	the	Cartesian	plane	was	now,	directly	or	indirectly,

to	be	described	in	relation	to	a	coordinate	system.	To	specify	a

shape,	one	specified	the	coordinates	of	the	points	included	in	the



shape,	one	specified	the	coordinates	of	the	points	included	in	the

shape.	To	relate	two	points	was	to	relate	their	coordinates.	The

coordinates,	the	means	of	measurement,	became	the	immediate

object	of	further	measurement.	Point	sets,	at	least	implicitly,	had

entered	mathematics.

In	a	very	primitive	sense,	especially	as	applied	to

measurements	or	to	points,	to	specify	a	set	is	to	make	a

measurement.	A	set	is	a	demarcation.	A	set	of	measurements,	such

as	numbers,	isolates	a	range	of	measurements.	A	set	of	points	in

analytic	geometry	isolates	positions	in	an	abstract	plane,	positions

that	are	identified	or	identifiable	by	coordinate	pairs.

A	set	is

not	a	measurement	in	the	full	sense,	even	in	the

abstract	sense	I	discussed	in	Chapter	1	and	elsewhere.	For	an

abstract	measurement	identifies	a	quantitative	relationship.	By	contrast,	to
characterize	a	set	is	not	to	identify	a	quantitative	relationship;	it	is	only	to
distinguish	certain	instances	of	an	existing	category	of	measurement.

Nonetheless,	on	the	most	primitive	level,	one	function	of

measurement	is	to	make	distinctions	among	similar	concretes.	On	the	one	side,	a
concept	identifies	a	similarity	among	differences.

On	the	other,	a	measurement	identifies	a	difference	within	a	similarity.	Within	an
abstract	mathematical	setting,	as	applied	to	a

mathematical	abstraction,	a	set	does	exactly	that	in	the	most

primitive	terms.	It	identifies	a	difference	within	a	similarity.	A



primitive	terms.	It	identifies	a	difference	within	a	similarity.	A

measurement	distinguishes	by	relating,	by	establishing	a

quantitative	relationship.	A	set	does	not	relate,	but	it	does

distinguish.

The	function	of	isolation	is	needed,	in	just	this	way,	in	a

mathematical	context.	A	set	performs	the	primitive	function	of

isolation,	of	distinguishing	something	that	one	is	interested	in	from

a	broader	category	of	similar	existents	within	a	mathematical

domain.	To	provide	a	point	of	reference	and	to	maintain	a

connection	to	the	world,	a	set	requires	a	genus,	a	specific	broader

category	that	it	differentiates,	just	as	a	definition	does.	In	the

deepest	sense,	this	is	why	a	meaningful	concept	of	set	presupposes

a	wider	abstraction;	i.e.,	it	presupposes	a	genus.	The	required	genus

is	supplied	by	that	wider	abstraction.

Geometrically,	a	circle	is	a	shape.	But	analytic	geometry

measures	a	circle	as	a	set	of	points.	One	specifies	a	circle	either	as	a

set	of	coordinates	or	as	an	equation	in	numbers	whose	solution	is	a

set	of	coordinates.	And	one	can	move	in	both	directions.	One	can

start	with	a	circle,	described,	say,	in	reference	to	the	coordinates	of

its	center	and	a	given	radius,	and,	from	that,	find	the	equation	that

describes	the	circle.	Or	one	can	start	with	the	equation	and

characterize	its	solution	set	in	some	way,	by	some	other	means.	In



characterize	its	solution	set	in	some	way,	by	some	other	means.	In

either	case,	one	specifies	a	set	of	coordinates,	but	by	different	means.

One	looks	at	the	Cartesian	plane	geometrically,	but	it	is	a

measured	geometry.
Normally,	one	thinks	of	a	Cartesian	plane	as	being	given	by

its	coordinate	system.	But	one	also	speaks	of

changes	in

coordinates.	To	change	coordinates	is	to	regard	the	Cartesian	plane

as	fixed,	as	referring	to	something	external,	but	as	being	measured

by	a	different	coordinate	system,	a	different	pair	of	axes.	One

thinks,	for	example,	of	rotating	the	coordinate	system	and	this	action	is	different,
conceptually,	from	rotating	things	in	the	plane	against	a	fixed	coordinate	system.
Since	the	rotated	coordinate	system	is	simply	a	different	set

of	axes,	one	can	represent	the	new	set	of	axes	by	two	perpendicular	lines	through
the	origin,	the	(0,	0)	point	in	the	original	coordinate

system.	Any	point	on	the	Cartesian	plane	can	now	be	identified	in

two	different	ways,	each	way	corresponding	to	one	of	the	two

different	coordinate	systems.	From	this	perspective,	one	looks	at

the	points	in	the	Cartesian	plane	as	being	specified	in	two	different	ways	and
having	a	kind	of	existence	independent	of	either

coordinate	system,	by	virtue	of	which	one	can	relate	the	set	of

measurements,	the	coordinates,	for	the	first	coordinate	system	to	the	coordinates
for	the	second	coordinate	system.	In	developing

this	relationship	one	necessarily	thinks	geometrically	of	something



external	that	is	being	measured.	One	thinks	of	something	that

exists,	independent	of	the	particular	means	of	measurement.
In	regards	to	the	plane,	one	implicitly	treats	the	specific

means,	the	particular	coordinate	system,	of	measuring	it	as	an	omitted
measurement,	a	measurement	that	one	is	now	in	the

process	of	supplying.	Yet	because	the	plane	is	an	abstraction,	not

actually	tied,	in	a	mathematical	context,	to	any	particular	concrete,	one	can	only
specify	a	set	of	axes	with	respect	to	some	other	description	of	the	plane,	such	as
the	description	provided	by	the

original	set	of	coordinates.
And	the	issue,	and	the	limitation,	here	is	epistemological.	It

is	right	to	treat	the	plane	as	concrete	because,	whenever	one	does	apply	the
mathematics	to	objects	in	the	world,	the	coordinates	in

the	plane	measure	those	objects	in	the	world:	In	any	application,	the	Cartesian
coordinates	are	specified	in	relation	to	these	objects.

In	describing	a	change	in	coordinates,	one	specifies	a	way	to	change

one	concrete	specification	of	coordinates	relating	to	an	external	object	to	another
concrete	specification	of	coordinates	relating	to	that	same	object.	That
relationship	between	the	coordinate	systems	is	entirely	mathematical	simply
because	that	relationship	is

independent	of	any	specific	object	to	which	it	might	apply.	The	relationship
between	coordinates	is	an	abstraction	that	applies

equally,	and	in	the	same	way,	to	all	of	its	referents.
When	one	looks	at	the	Cartesian	plane	as	externally	given,

this,	the	geometric	perspective,	is	the	perspective	that	one	is

actually	taking.	The	use	of	a	first	coordinate	system	as	a	point	of

reference	to	specify	a	second	coordinate	system	does	not	change	the



reference	to	specify	a	second	coordinate	system	does	not	change	the

essence	of	what	one	is	doing	with	respect	to	external	reality.
Analytic	geometry	also	provided	a	new	perspective	on

numbers,	regarded	as	a	system	of	measurements.	To	identify

numbers	with	points	on	a	line	is	to	externalize	numbers,	to	bring

them	into	focus	as	objects	of	investigation,	as	part	of	an	extended

entity	with	a	determinate	structure	having	an	independent

existence	as	a	system	of	abstractions.	A	number	is	regarded	as	part

of	a	totality	and	in	relation	to	that	totality.
Numbers	are,	of	course,	related	arithmetically.	For

example,	2	+	3	=	5	expresses	an	arithmetic	relationship.	But	they

are	also	related	geometrically:	the	number	2	is	closer	to	5	than	it	is

to	7.	The	number	line	emphasizes	this	more	geometric	perspective.

Numbers	are	not	abstract	magnitudes,	but	they

measure	magnitudes	and	the	relationships	between	numbers	reflect	and,

indeed,	pertain	to	relationships	between	magnitudes.
But	more	fundamental	than	the	visualization	of	the

number	system	is	the	isolation	and	treatment	of	the	number	system

as	an	object	of	study.	Number,	a	means	of	measurement,	thereby	(but
derivatively)

becomes,	at	one	remove,

an

object	of

measurement.



measurement.
And	why	study	number,	as	such?	For	a	now	familiar

reason:	One	establishes	relationships	between	numbers	to	facilitate	indirect
measurement.	The	ability	to	add	and	multiply	reduces

one’s	need	to	count,	enhancing	and	facilitating	one’s	grasp	of	the	numerical
relationships	in	the	world.	Relationships	between

numbers	are,	at	root,	relationships	between	the	things	one	uses

those	numbers	to	measure.	Numbers	matter	because	the	things	that

numbers	measure	matter.
So,	in	treating	numbers	as	an	object	of	study,	as	a	domain

of	discourse,	one	is	not	inventing,	creating,	constructing,

discovering,	or	intuiting	a	mathematical	universe.	One	is	simply

adopting	a	conceptual	perspective	on	this	universe,	a	universe	that	exists
independently	of	one’s	knowledge	of	it.	One	is	dealing	with

relationships	that	actually	exist	in	the	universe	and	developing

methods	to	deal	with	such	relationships	in	general.	Numbers	are	an

object	of	discovery	because	the	reality	that	they	capture	is	an	object

of	discovery.	Every	relationship	between	numbers	captures

relationships	among	measurements	that	exist	or	that	might	exist,

that	relate,	or,	in	the	nature	of	things,	might	relate	actual	existents	in	the	world
that	we	live	in.

Mathematical	Domains	as	Hierarchical

The	study	of	polynomial	equations,	such	as	x3	-	6x2	+	3x	+

10	=	0	predates	the	development	of	algebra.	Albeit	in	numerical



10	=	0	predates	the	development	of	algebra.	Albeit	in	numerical

form,	methods	for	solving	quadratic	equations	(such	as	x2-	3x	-	4	=

0)	were	discovered	in	antiquity.18	But	the	invention	of	algebra	led,	in	modern
times,	to	explicit	solutions,	in	terms	of	radicals	(square

roots,	cube	roots,	etc.)	for	cubic	and	quartic	(degree	4)	polynomials.

Beyond	the	quest	for	explicit	solutions,	mathematicians	also	sought

techniques	to	find	approximate	solutions	of	polynomial

equations.19	But	to	develop	effective	approximation	techniques	to	solve
polynomial	equations,	one	needs	to	know	something	about

the	general	shape	of	the	graphs	of	the	polynomials.

So	polynomials	became	a	specialization,	a	study	once	called

the	theory	of	equations,	and	incorporated	today	into	the	broader	study	known	as
algebraic	geometry.	Polynomials	became	a

mathematical	domain	of	investigation.

Polynomials	represent	measurements	in	a	variety	of

respects.	Most	importantly,	as	a	function,	as	a	relationship	between

x	and	y,	a	polynomial	equation	such	as	y	=	x3	-6x2	+	3x	+	10

specifies	a	potential	relationship	between	two	magnitudes.

Secondly,	in	relation	to	its	graph,	a	polynomial	equation	represents

a	condensed	numerical	expression	of	a	geometric	shape,	capturing

and	specifying	it	in	one	equation.	And,	finally,	to	set	the	polynomial

expression	to	zero	(e.g.,	x3	-6x2	+	3x	+	10	=	0),	is	to	indirectly	specify	a	solution
set,	the	roots	of	the	equation.	One	solves	the	equation	to	identify	these	roots



explicitly,	but	the	equation	specifies	a	set	of	numbers	simply	by	virtue	of	the	fact
that	solving	the

equation	is	an	act	of	discovery,	a	discovery	of	something	that	has	already	been
specified.

So	a	polynomial

relates	to	measurement	in	a	variety	of

ways.	But,	in	the	first	respect,	as	a	function,	as	a	quantitative

specification	of	a	relationship	between	two	variables,	it	also	counts	as	a
measurement.

Cubic	polynomials,	such	as	y	=	f(x)	=	x3	-6x2	+	3x	+	10,	as	a	species,	are	a
system	of	measurements.	They	have	their	own

arithmetic.	For	example,	one	adds	two	polynomials,	by	adding	their

y	values,	point	by	point,	for	each	value	of	x.	If	y	=	g(x)	=	x3	+	x2	+	x	+	2

is	a	second	cubic	polynomial,	one	obtains	their	sum	y	=	(f	+

g)(x)	as	(f	+	g)(x)	=	f(x)	+	g(x).

One	can	make	this	more	concrete	in	two	ways.	First,	if	x	=

1,	then	the	value	of	f(1)	is	8	(by	substitution	for	x)	and	the	value	of

g(1)	is	5.	So	the	value	of	(f	+	g)(1)	is	8	+	5	=	13.	Secondly,	since	for

any	particular	value	of	x,	both	polynomials	are	numbers,	one	can

add	them	term	by	term.	One	finds

(f	+	g)(x)	=	f(x)	+	g(x)
=	(x3	-6x2	+	3x	+	10)	+	(x3	+	x2	+	x	+	2)	=	2x3	-	5x2	+	4x	+	12.

If	one	substitutes	a	value	x	=	1	in	the	right-most	expression,



one	checks	that	the	value	of	(f	+	g)(1),	of	2x3	-	5x2	+	4x	+	12,	where	x	=	1,	is	13.

Polynomials	are	related	to	numbers	in	at	least	two	respects.

Most	importantly	and	fundamentally,	if	one	substitutes	a	number

for	x	into	a	polynomial,	one	gets	a	number.	Secondly,	one	requires

four	numbers,	specifically	four	coefficients,	to	specify	a	particular	cubic
polynomial.	The	polynomial	f,	for	example,	has	coefficients	1

(implicitly),

-6,	3,	and	10.	The	second	polynomial,

g,	has

coefficients	1,	1,	1,	and	2.	As	a	system	of	measurements,	cubic

polynomials	differ	from	each	other	in	specific,	circumscribed,

quantifiable	ways.	In	isolating	cubic	polynomials	as	a	realm	of

mathematical	study,	one	grasps	and	isolates	the	specific

dimensions	along	which	two	cubic	polynomials	can	differ	from

each	other.	Cubic	polynomials	constitute	a	mathematical	domain.

Note	that	to

isolate	a	particular	mathematical	domain,	as

with	concepts	generally,	is	not	to	individually	specify	or	“Construct”

each	referent	covered	by	the	concept.	As	with	numbers,	one	does

not	have	to	specify	or	construct	each	particular	member	of	the

domain	in	order	to	implicitly	include	it.	Ayn	Rand’s	analogy	to

express	the	openended	character	of	concepts	is	relevant	here:



express	the	openended	character	of	concepts	is	relevant	here:

“An	arithmetical	sequence	extends	into	infinity,

without	implying	that	infinity	actually	exists;	such

extension	means	only	that	whatever	number	of

units	does	exist,	it	is	to	be	included	in	the	same

sequence.	The	same	principle	applies	to	concepts:

the	concept	“man”	does	not	(and	need	not)	specify

what	number	of	men	will	ultimately	have	existed	–

it	specifies	only	the	characteristics	of	man,	and

means	that	any	number	of	entities	possessing

these	characteristics	is	to	be	identified	as

“men.””20

Any	demarcation	of	certain	cubic	polynomials	from	the

domain	of	cubic	polynomials	is	a	set.	For	example,	cubic

polynomials	characterized	as	having	the	first	coefficient	equal	to

one,	constitute	a	set	of	polynomials.	And	this,	for	two	reasons:

First,	one	can	speak,	in	general,	of	a	specific	set	of	cubic

polynomials,	because	one	has	completely	isolated	the	mathematical

dimensions	that	distinguish	one	cubic	polynomial	from	another

and	identified	the	range	of	possibilities.	Cubic	polynomials	are	a

set.	Secondly,	because,	in	this	particular	case,	any	cubic	polynomial

one	might	consider,	either,	unambiguously,	has	its	first	coefficient



one	might	consider,	either,	unambiguously,	has	its	first	coefficient

equal	to	one	or	it	does	not.

To	give	a	second	example,	to	which	these	same

considerations	apply,	there	is	a	set	of	cubic	polynomials	that

vanish,	that	are	zero,	when	x	=	1.	Again,	this	is	an	unambiguous

further	specification	within	the	set	of	cubic	polynomials

More	generally,	any	unambiguous	specification	that	either

applies	or	does	not	apply	to	each	cubic	polynomial	specifies	a	set	of	cubic
polynomials.	This	includes	the	entire	domain	of	cubic

polynomials,	considered	as	a	totality:	Again,	the	mathematical

domain	of	cubic	polynomials	can	be	considered	as	a	set.

And,	finally,	within	the	context	of,	and	with	respect	to,	a

mathematical	domain,	the	socalled	empty	set	that	has	no	members

can	be	counted	as	a	set	for	the	same	reasons	that	zero	is	counted	as

a	number.

I	have	found	neither	warrant	nor	purpose	for	taking	unions

and	intersections	between	sets	contained	within	different	domains.

I	maintain	that	there	is	no	such	warrant,	except	insofar	as	one

mathematical	domain	can	be	regarded	as	a	sub-domain	of	a	larger

domain	or	insofar	as	there	is	a	mathematical	domain	that	contains

both.	To	distinguish	is	to	distinguish	in	a	particular	respect,	as	I

pointed	out	earlier.	To	compare	sets	as	to	membership	requires	a



common	genus.	But	please	notice	that,	in	weighing	in	against

unions	and	intersections	across	domains	I	do	not	reject	Cartesian	products	from
distinct	domains	or	functional	relationships	between	different	domains.21

If	a	set	is	always	a	specification	within	a	mathematical

domain,	then	it	is	false	to	say,	with	established	set	theory,	that	there

is	a	unique	empty	set.	The	empty	set	is	a	relative	concept

pertaining,	always,	to	a	particular	mathematical	domain.	There	is	a	colloquial
view	that	“there	is	nothing	is	in	my	pocket,”	presupposes	a	particular	kind	of
thing	that	is,	indeed,	absent.	To	say	that	there	is	nothing	in	my	pocket	is	not	to
say	that	my	pocket	contains	a	perfect	vacuum.

In	mathematics,	zero	is	a	particular	number	within	a

specific	continuum	as	part	of	the	number	system.	The	same	principle	applies	to
the	empty	set.	To	say	I	have	no	apples	is

different	from	saying	I	have	no	oranges.

Now,	it	is	true	that	a	set	is	determined	specifically	by	its

membership.	But	sets	arise	in	a	specifically	mathematical	context

and	are	only	meaningful	within	a	such	a	context.

Cubic	polynomials	are	a	mathematical	domain,	but	their

definition,	as	such,	presupposes	the	domain	of	number.	And	to

recognize	cubic	polynomials	as	a	domain,	one	must	first	have

recognized	the	number	system	as	a	mathematical	domain.	The

abstraction	of	cubic	polynomial	presupposes	the	abstraction	of

number.	To	identify	the	dimensions	along	which	cubic	polynomials

can	differ	and	to	grasp	the	full	range	of	such	potential	differences,



can	differ	and	to	grasp	the	full	range	of	such	potential	differences,

one	must	have	already	done	the	same	for	the	number	system.

Typically,	mathematical	domains	arise	in	the	context	of,

and	presuppose,	previously	identified	domains,	such	as	the	number

system.	But	not	always:	For	example,	there	is	a	particularly

important	class	of	mathematical	domains,	abstract	groups,	that

does	not	arise	in	this	way.	Partly	for	this	reason,	I	discuss	abstract

groups	in	Chapter	8.

In	general,	to	establish	a	system	of	measurements	or	a

geometric	structure	as	a	mathematical	domain	requires	either

relating	it	to	domains	that	have	already	been	identified,	or	relating

it	directly	to	reality,	discovering	what	it	measures,	how	it	measures,

and	delimiting	a	system	of	measurements	along	a	specified

constellation	of	dimensions,	identifying	specific	axes	along	which

two	similar	things	can	differ.

Functions

The	discovery	of	calculus	ultimately	brought	many	other

mathematical	disciplines	in	its	wake.	Newton	invented	integral	and

differential	calculus	as	a	means	to	both	the	formulation	and	the

solution	of	problems	in	physics.	He	needed	both	integral	and

differential	calculus.	For	example,	Newton’s	discovery	of	universal



differential	calculus.	For	example,	Newton’s	discovery	of	universal

gravitation	required	him	to	show	that	the	gravitational	action	of	the

earth	on	exterior	bodies	would	be	the	same	if	all	of	its	mass	were

concentrated	at	the	center	of	the	earth.22	For	this,	he	used	integral	calculus.
Newton	needed	differential	calculus	to	measure	change,	both	with	respect	to
time	and	with	respect	to	position.	The

equations	of	motion	require	solving	equations	involving	derivatives

that	measure	rates	of	change,	to	discover	the	trajectory	of	the

moving	objects.

The	task	of	solving	differential	equations,	equations	of

various	degrees	of	complexity,	has	been	a	central	mathematical

problem,	a	problem	in	indirect	measurement,	ever	since.	Although

much	is	known	about	solving	differential	equations,	an	enormous

amount	is	yet	to	be	discovered.	In	special	circumstances	there	are	techniques	for
finding	explicit	solutions	in	terms	of	known

functions.	But,	in	general,	effectively	solving	differential	equations

requires	approximation	techniques.	And	here,	there	is	a

complication:	A	solution	to	a	differential	equation	is	not	a	number;

it	is	a	function.	What	does	it	even	mean	to	approximate	a	function?

As	I	discussed	in	Chapters	2	and	4,	the	most	fundamental

principles	of	approximation	already	arise	in	the	study	of	real

numbers.	And,	prior	to	that,	we	saw	in	Chapter	1	that

understanding	the	proper	role	of	approximation,	of	a	standard	of



precision,	is	one	key	to	understanding	Euclidean	geometry.	Any

context	to	which	mathematics	applies,	involves	a	specific	degree	of

precision,	a	standard	of	perfection	to	distinguish	the	important

from	the	irrelevant.	The	role	of	mathematics	is	to	provide	a	general

way	to	meet	that,	or	any,	standard,	to	provide	a	method	that	applies
independently	of	whatever	that	standard	might	be	and	whatever	its

nature	might	be.

All	techniques	of	approximation,	even	the	various

specifications	of	what	approximation	means,	are	reducible	to

numerical	approximation.	But	there	are	a	multitude	of	respects	in	which	two
functions	can	be	close	to	each	other	and	which	respect	is

important	depends	on	the	context.	I	will	elaborate	this	point

further,	in	my	discussion	of	point	set	topology,	later	in	this	chapter.

However,	my	immediate	interest	relates	to	mathematical

domain:	In	order	to	approximate	functions	with	other	functions

one	needs,	first	of	all,	to	relate	functions	to	each	other.	If	a	function

is	a	measurement,	in	the	way	that	a	polynomial	is	a	measurement,	then	one	needs
to	isolate	functions,	in	general,	as	a	system	of

measurements.	One	needs	to	know,	generally,	how	to	relate

functions	to	each	other	before	one	can	define	what	it	means	for

functions	to	be	close	to	each	other	in	some	respect.	One	needs	to

regard	a	class	of	functions	of	some	particular	type	as	a

mathematical	domain.



mathematical	domain.

Consider,	for	example,	continuously	differentiable	realvalued	functions	on	the
interval	from	0	to	1.	Informally,	to	say	that	a	function	is	continuously
differentiable	means	that	the	function

has	a	derivative	at	every	point	and	its	derivative	is	continuous,

meaning	that	the	derivative	does	not	suddenly	jump	from	one	value

to	another	value,	that	the	direction	of	the	tangent	to	the	graph	of

the	function	does	not	abruptly	change	direction	at	some	point.

The	sum	of	two	functions	is	defined	the	same	way	that	one

adds	polynomials:	if	f	and	g	are	functions,	then	the	value	of	the

function	(f	+	g)	at	a	point	x	is	defined	by	the	equation

(f	+	g)(x)	=	f(x)	+	g(x)

If	f	and	g	are	continuously	differentiable,	then	the	function

(f	+	g)	is	continuously	differentiable.	One	knows,	from	elementary	calculus,	that
its	derivative	is	the	sum	of	the	derivatives	of	the	two	functions.

In	a	similar	fashion,	one	can	define	multiplication	of	a

function	by	a	number.	If	A	is	a	number,	then	multiplying	a	function

f	by	A	means	to	multiply	the	value	of	f	at	every	point	by	A.

Symbolically,	the	function	Af	is	defined	in	terms	of	the	function	f,	for	each	point
x,	by
(Af)(x)	=	A(f(x))

For	example,	if	f(3)	=	5	and	A	=	7	then	(Af)(3)	=	7	×	f(3)	=	7

×	5	=	35.
If	f	is	continuously	differentiable,	then	Af	is	also

continuously	differentiable.



continuously	differentiable.
Continuously	differentiable	functions	on	an	interval	are

measurements:	They	measure,	they	specify	quantitatively,	a

particular	relationship	between	two	measurements,	a	relationship

between	the	variable	x	and	the	variable	represented	by	the	value	of

the	function.	Just	as	numbers	specify	a	potential	relationship

between	two	multitudes	or	magnitudes,	a	function	specifies	a	way

that,	in	some	context,	one	measurement	might	depend	upon

another.	If,	as	in	many	physical	settings,	that	relationship	be	causal,

then	the	function	quantifies	a	potential	causal	relationship.
Particular	functions	are	related	to	each	other	by	addition

and	by	multiplication	by	numbers.	They	are	a

system	of

measurements;	they	are	a	mathematical	domain.	But	are	they	also	a

mathematical	set?	Can	one	speak	meaningfully	of	a	set	of

continuously	differentiable	functions?	Can	one	specify	and	delimit

the	range	of	possible	functions	and	the	respects	from	which	two	functions	can
differ	from	one	another?
Continuously	differentiable	functions	are	a	subcategory	of

functions,	in	general,	but	this	qualification,	of	being	continuously

differentiable,	is	irrelevant	to	the	main	issue.	If	I	can	show	that

functions,	in	general,	can	be	taken	as	a	set,	my	argument	will	also

apply	to	continuously	differentiable	functions.	This,	for	two



reasons:	First,	because	the	definitions	for	addition	of	two	functions

and	for	multiplication	of	a	function	by	a	number,	apply	to	functions

generally	and,	second,	because,	I	have	already	qualified

continuously	differentiable	functions	as,	in	effect,	a	sub-system	of

functions	taken	generally.
Consider,	first,	that	the	graph	of	a	realvalued	function	of

one	variable,	from	the	perspective	of	analytic	geometry,	is	simply	a

set	of	ordered	pairs	of	numbers.	A	function	is	specified	completely	by	its	graph.
A	point	set	qualifies	as	the	graph	of	a	function	of	x	provided	that	each	x	value
occurs	only	once	in	the	set	of	ordered	pairs.	If	a	function	is	defined	over	a	set	X
(such	as	an	interval)	then	the	set	of	x-values	in	its	graph	consists	precisely	of	any
x	contained	in	X	(x	є	X).	In	other	words,	the	graph	lies	completely	over	the

interval	and	a	vertical	line	through	any	point	on	the	interval	will

intersect	the	graph	in	exactly	one	point.	Two	functions	f	and	g	are

different	if	and	only	if	their	graphs	are	different;	if	and	only	if	there	is	a	point	x
somewhere	on	the	interval	such	that	f(x)	≠	g(x).
The	range	of	possible	functions	is	completely	specified	by

the	criterion	I	have	stated	on	its	graph.	Any	meaningful

characterization	of	particular	functions,	within	this	range,

unambiguously	isolates	certain	functions	bearing	determinant,

circumscribed,	relationships	to	other	functions	in	the	mathematical

domain.	The	mathematical	domain	of	functions	is	a	set.
This	characterization	of	functions	presupposes	the

mathematical	domain	of	analytic	geometry.	It	presupposes	that	one

can	specifically	identify,	for	mathematical	purposes,	(i.e.,	purposes



of	measurement)	the	points	in	the	plane	with	ordered	pairs	of

numbers.	But	to	view	ordered	pairs	as	a	mathematical	domain

presupposes,	in	turn,	that	one	has	identified	real	numbers	as	a

domain.	The	hierarchy	starts	with	number,	proceeds	to	ordered

pairs	of	numbers,	then	to	analytic	geometry,	and,	finally	to

functions.
Now	restrict	attention	to	continuously	differentiable

functions.	The	difference	between	two	such	functions	is	completely

specified	by	the	set	of	points	on	which	they	differ	and	by	the

amounts	of	those	differences.	A	characterization	to	distinguish

certain	continuously	differentiable	realvalued	functions	from	the

others	specifies	a	set	of	continuously	differentiable	functions.	For	a

mathematical	domain	to	count	as	a	set,	one	must	specify	a	range	of

possibilities	and	specify	the	respects	in	which	two	measurements	or

points	within	that	domain	can	differ.	To	unambiguously

characterize	certain	measurements	or	points	within	a	mathematical

domain,	as	opposed	to	others,	is	to	specify	the	set	of	measurements

or	points	so	characterized,	as	opposed	to	the	complement	set	of

measurements	or	points	that	are	not.
Once	again,	the	hierarchy	starts	with	numbers	and

presupposes	that	numbers	are	a	system	of	measurements,	that

numbers	constitute	a	mathematical	domain	and,	finally,	that	the



mathematical	domain	of	numbers	can	be	regarded	as	a	set.
Mathematical	domains	are	everywhere	in	mathematical

thought.	In	the	sense	I	have	given	here,	the	mathematical

structures	of	19th	and	20th	century	mathematics,	structures	such	as	vector	spaces,
groups,	matrix	algebra,	topological	spaces,	function

spaces,	and	differentiable	manifolds,	should	be	thought	of	as

mathematical	domains.	In	reality,	none	of	these	“structures”	was	simply	invented
out	of	thin	air.	Each	represents	the	conceptualization	of	a	certain	category	of
quantitative	relationships

requiring	special	study,	a	study	that	was	pursued,	initially,	because

it	provided	an	approach	to	an	existing	mathematical	problem	or	scientific
investigation.	Such	structures	arise	either	as	a	class	of

existents	regarded	geometrically	or,	less	directly,	as	a	system	of

measurements.	In	either	case,	there	is	a	universe	of	discourse	of	the

kind	that	I	have	characterized	as	a	mathematical	domain.

Geometric	Domains

One	thinks	of	Cartesian	coordinates

spatially,	but,	as

applied	to	the	world,	Cartesian	coordinates	pertain,	more	generally,

to	arrays	of	possible	values	of	a	pair	(or,	even	more	generally,	an	ntuple)	of
quantities.	I	say	quantities,	in	part,	because	to	restrict	the	applicability	of
numerical	coordinates	to	magnitudes	would	be	a

little	too	narrow.	As	the	simplest	example,	coordinates	are	routinely



used	to	represent	position.	But,	although	relative	position	along	a	single
dimension	is	a	magnitude,	position,	as	such	is	not.	One	chooses	a	point	of	origin,
a	point	of	reference,	and	measures	from

the	point	of	reference.	For	numerical	coordinates	to	be	applicable

in	the	full	sense,	it	suffices	to	say	that	the	difference	of	two	values	of	the	x
coordinate	or	of	the	y	coordinate	represents	a	magnitude,	a

magnitude	with	either	a	positive	sense	or	a	negative	sense.

In	application,	coordinates	can	represent	possibilities	or

configurations.	For	example,	a	magnitude,	such	as	weight,	a

quantity	such	as	voltage	potential,	or	a	difference	of	two

magnitudes	such	as	the	difference	between	two	volumes,	can	all	be

measured	by	a	point	on	a	real	line.	In	these	examples,	the	real	line

functions	as	a	one-dimensional	coordinate	system.	Every	point	on

the	real	line	represents	a	possible	status	of	the	quantity	under

consideration.

In	general,	the	x	and	y	coordinates	of	a	coordinate	system

may	be	used	to	represent	different	kinds	of	quantities.	For	example,

one	could	represent	the	weight	and	volume	of	an	object	by,

respectively,	the	x	and	y	coordinates	of	a	point	in	the	Cartesian

plane.	The	configuration	space	of	all	possible	combinations	would

be	represented	by	a	particular	subset	of	the	plane,	namely	the	first

quadrant,	consisting	of	positive	values	for	weight	and	positive

values	for	volume.



values	for	volume.

One	could	also	use	the	x	coordinate	to	measure	the	radius

of	a	circle	and	the	y	coordinate	to	measure	its	area.	Since	these

attributes	are	related	to	each	other,	the	configuration	space	of

possible	circles	is	a	curve	consisting	of	points	(x,	y)	=	(x,	πx2)	where	x	>	0.	This
curve	is	expressed	by	the	equation	y	=	πx2	for	positive	x.

In	three	dimensions,	the	possible	positions	of	a	particle	are

represented	by	a	three-dimensional	coordinate	system.	The

configuration	space	of	the	particle	is	the	entire	three-dimensional	space.

The	configuration	space	of	a	three-dimensional

object	is

somewhat	more	complicated.	First,	its	center	of	mass	could	take

any	position	in	three-dimensional	space.	Secondly,	one	must

account	for	the	direction	in	which	a	chosen	major	axis	is	pointing.

Since	any	direction	can	be	characterized	by	its	intersection	with	a

sphere,	the	configuration	space	of	the	chosen	axis	can	be	measured

by	a	sphere	(or	by	coordinates,	such	as	latitude	and	longitude,	used

to	measure	position	on	the	sphere.)	Finally,	one	can	rotate	the

object	up	to	3600	around	its	major	axis	and	the	particular	degrees	of	rotation	can
be	measured	(in	radians)	by	points	on	a	unit	circle.

So	to	describe	a	possible	configuration	of	a	solid	object	requires

three	coordinates	to	identify	a	point	in	space	(R3),	two	coordinates	specifying	a



point	on	a	sphere	(S2)	to	measure	the	direction	of	the	major	axis,	and	one	point
on	a	circle	(S1)	to	determine	the	angular	orientation	around	the	major	axis.	One
says	that	the	configuration

space	is	R3	×	S2	×	S1	to	represent	the	respective	domains	of	these	three
measurements.

As	a	somewhat	similar	example,	consider	the	hour	hand	of

a	clock.	Its	configuration	space	is	a	circle.	Now	suppose	that	a

second	hand	were	attached	to	the	end	of	the	hour	hand	and	could

rotate	freely	on	the	clock	surface	around	that	point.	For	any

particular	position	of	the	hour	hand	the	second	hand	has	a

configurations	space,	also	of	S1.	The	entire	apparatus	has	a	configuration	space
of	S1	×	S1.	The	first	coordinate,	from	the	first	circular	axis,	represents	the
position	of	the	hour	hand	and	the

second	coordinate	represents	the	position	of	the	second	hand

attached	to	the	end	of	the	hour	hand.

In	general,	any	constellation	of	measurable	attributes	of	a

physical	object	can	be	thought	of	occupying	a	position	in	a

configuration	space.	To	regard	a	constellation	of	measurements	pertaining	to	an
object	or	a	physical	situation	geometrically	is	precisely	to	consider	its
configuration	space.	Indeed,	when	a

physicist	or	an	engineer	chooses	coordinates	to	measure	these

various	attributes,	that’s	essentially	what	he	is	doing.	And	when	one

applies	physical	laws	to	study	its	motion,	as	in	the	Lagrangian	formulation	of
mechanics,23	the	trajectory	can	be	thought	of	as	a	curve	in	the	configuration
space,	one	parameterized	by	time.



A	geometric	domain	is	a	theater,	a

space,	where	things

happen.	A	geometric	domain	can	represent	a	configuration	space,

as	I	just	described,	but	it	can	also	provide	an	occasion	for	other

related	measurements.	For	example,	the	motion	of	a	projectile	in

three-dimensional	space	can	be	measured	by	a	function	from	a	time	dimension
into	R3.	If	a	motion	is	confined,	say,	to	a	sphere	(S2),	such	as	the	surface	of	the
earth,	then	S2	is	thought	of	as	the	geometric	domain	and	the	motion	is	a	function
from	R	(real	number	representing	time)	to	S2.	A	geometric	domain	can	also
represent	a	location	for	various	shapes,	as,	for	example,	the	plane	in

Euclidean	geometry	or	the	set	of	coordinate	pairs	in	analytic

geometry.	And	a	shape,	such	as	a	circle,	can	represent	the	path	of	an	object
within	its	configuration	space.	In	the	case	of	analytic

geometry,	such	shapes	are	often	characterized	by	equations,	such	as

x2	–	y2	=	9	or	by	graphs	of	functions,	such	as	y	=	x2	–	2x	–	5.

One	may	also	consider	functions	defined	on	a	geometric

domain	taking	values	in	another	mathematical	domain.	One	might,

for	example,	consider	a	function	T	=	g(x,	y)	to	represent	the

temperature	at	each	point	(x,	y)	in	the	Cartesian	plane.	Here,	R2	is	the	geometric
domain	and	the	function	takes	values	in	the	domain

of	real	numbers.

Functions	on	a	geometric	domain	need	not	be	numerical.

For	example,	fluid	motion	in	three	dimensions	might	be



represented	by	a	function	on	R3	of	the	form	V	=	v(x,	y,	z),	where	V	represents
the	velocity	(speed	and	direction)	of	the	fluid	at	a	point

(x,	y,	z)	in	R3.	Since	a	velocity	vector	is	measured	by	three	coordinates,	this
function	has	values	in	R3.24

Finally,	one	measures	various	properties	of	geometric

domains:	properties	such	as	the	surface	area	of	a	sphere	or	the

curvature	of	a	sphere.

All	of	these	kinds	of	relationships	might	apply	to	other

more	complex	geometric	structures,	curved	surfaces,	for	example,

or	even	to	more	complex	domains	such	as	the	configuration	space

of	possible	positions	of	a	solid	object,	which	I	found	earlier	to	be

R3	×	S2	×	S1.

In	every	case,	a	geometric	domain	provides	an	abstract

perspective	on	something	measurable	that	is	being	investigated

with	respect	to	the	relevant	measurements.	As	such,	a	geometric

domain	always	possesses	some	kind	of	structure,	some	kind	of

measurable	relationships	between	points	in	the	space.	One	studies

it	in	all	the	ways	I’ve	mentioned,	relating	it	to	other	domains.	One

considers	relationships	among	the	points	in	the	domain,	but	also

considers	functions	from	other	domains,	such	as	the	trajectory

example,	or	functions	from	the	geometric	domain	to	other

mathematical	domains,	as	in	the	temperature	and	fluid	velocity



examples.

A	geometric	domain	is	an	abstract	mathematical

representation	of	a	category	of	constellations	of	measurements,

pertaining	to	some	object	or	organization	of	objects,	measurements	that	pertain
to	and	specify	the	relevant,	recognized	differences	relating	to	such	objects.

A	system	of	measurements	can	also	be	treated

geometrically,	as	a	geometric	domain.	When	one	does	so,	as	in	the	real	number
line,	one,	thereby,	studies	relationships	among	the

measurements	in	the	system,	relationships	that	they	have	by	virtue

of	the	things,	e.g.,	the	nature	of	the	magnitudes	that	they	measure.

One	can	always	take	a	geometric	perspective	on	any	mathematical

domain.	But	the	converse	is	false;	a	geometric	space,	in	general,	is

not	a	system	of	measurements.	But,	in	one	way	or	another,	it	is

measurable.

Sets	play	two	main	roles	in	geometry.	First,	they	can	simply

be	a	way	of	marking	off	a	particular	area	for	some	reason.	Typically

a	set	serves	as	the	domain	of	a	function	within	a	larger

mathematical	domain.	And,	secondly,	a	set	can	arise	as	the	set	of

points	within	some	mathematical	domain	where	something

interesting	happens.	One	may,	for	example,	be	interested	in	the	set

of	point	for	which	a	particular	function	is	zero,	or	where	it	fails	to

be	defined,	or	is	discontinuous	or,	conversely,	is	continuous.	For



geometric	domains	in	general,	as	in	all	cases,	a	set	is	a	means	of

isolation.

Derived	Mathematical	Domains

Standard	set	theory	provides	a	number	of	ways	to	create

new	sets	by	combining	previously	identified	sets	in	various	ways.25	Most,
perhaps	all,	of	these	“operations”	are	valid	if	applied	in	an

appropriate	context.	In	particular,	these	techniques	can	be	used,

and,	in	practice,	generally	are	used,	to	derive	new	mathematical

domains	from	previously	identified	mathematical	domains.	In	at

least	the	cases	I	discuss	here,	these	operations,	as	applied	to	sets

within	the	respective	domains,	yield	new	sets	within	the	derived

domain.	So	any	mathematical	domain	derived	in	this	way	from

domains	that	are	also	sets	can,	itself,	be	considered	a	set.

The	burden	of	this	section	is	to	identify,	explain,	and	justify

the	most	important	of	these	derivations	and,	by	so	doing,	to

indicate	an	approach	to	such	explanations	and	justifications	that

can	be	applied	more	generally.	My	purpose	here	is	to	explicate	the

key	operations;	I	do	not	weigh	in	on	such	controversies	as	the

Axiom	of	Choice.

Throughout,	I	will	assume,	without	notice,	that	every

domain	that	I	use	to	derive	other	domains	can	be	regarded	as	a	set.



In	particular,	I	will	take	such	domains	to	consist	of	elements,	albeit

elements	that	are	related	to	each	other	in	various	ways.	Secondly,

any	set	theoretic	operations	that	I	will	discuss	with	regard	to

mathematical	domains	apply	to	subsets	of	their	respective	domains,

as	well.	And	these	derived	sets	will	be	subsets	of	their	derived

domains.	In	all	of	these	cases,	these	derived	sets	will	represent	a

distinct	range	of	possibilities,	within	a	mathematical	domain,	in

which	all	elements	are	unambiguously	distinguishable.

Obviously,	a	derived	mathematical	domain	is	hierarchically

dependent	on	the	domains	from	which	it	is	derived,	to	the	extent

that	there	is	no	more	direct	way	to	characterize	it.

Assume	that	A	and	B	are	mathematical	domains.	Then	the

product	domain	A	×	B	consists	of	ordered	pairs	(a,	b)	where	a	є	A

and	b	є	B.	(Read:	“a	is	an	element	of	A	and	b	is	an	element	of	B.”)26	Any
characterization	of	specific	ordered	pairs	in	A	×	B	must	involve

a	characterization	of	which	elements	a	go	with	which	elements	b.

Any	ordered	pair	(a,	b)	so	characterized	consists	of	two

“coordinates,”	each	of	which	can,	independently,	be	unambiguously
distinguished	within	their	respective	sets	A	and	B.	Therefore,	each

ordered	pair	(a,	b)	is	unambiguously	distinguished	as	a	particular

ordered	pair,	as	an	element	of	A	×	B.	If	one	can	unambiguously

identify	an	element	in	the	set	A	and	a	second	element	from	a	set	B,



one,	thereby,	identifies	an	ordered	pair	consisting	of	the	two

elements.

What	does	this	mean	and	why	would	one	care?

The	simplest	example	of	this	derivation	is	the	Cartesian

plane	consisting	of	ordered	pairs	of	real	numbers.	In	general,	the

domain	A	represents	a	kind	of	measurement,	say,	in	application,

the	weight	of	an	object	and	B	represents	another	measurement,	say

its	volume.	To	consider	A	×	B	as	a	domain	is	simply	to	consider

both	measurements	at	once	as	separate	attributes	of	an	object.	In

the	abstract,	one	considers	A	and	B	to	represent,	say,	two	systems

of	measurements,	or	constellations	of	measurements,	that	might

measure	separate	attributes	of	an	object	or	of	a	particular	physical

context.
In	general,	to	take	the	product	of	two	mathematical

domains	is,	in	essence,	to	consider	a	larger	set	of	measurements,	to

measure	along	more	dimensions.	One	measures	both	A	and	B.

When	one	adds	dimensions	by	taking	a	Cartesian	product	one	is	not

constructing	something;	one	is	adding	a	perspective	from	which	to	measure
something.
To	take	a	second	example,	the	domain	A	might	represent

time,	as	measured	by	calendar	days,	and	B	might	represent	the

closing	average	of	the	DOW.	The	set	A	represents	all	possible	days

within	a	particular	range	and	the	DOW	represents	all	possible



within	a	particular	range	and	the	DOW	represents	all	possible

closing	averages.	The	product	A	×	B	is	the	configuration	space	of

possible	combinations.	The	graph	of	actual	closing	averages,	by

day,	is	a	particular	subset	of	the	range	of	possibilities,	a	subset	of

the	configuration	space	specified	by	A	×	B.
In	each	of	these	examples,	I	speak	of	an	application	of	a

mathematical	abstraction	to	a	particular	concrete.	Considered	as	a

mathematical	domain,	one	does	not	distinguish	between	various	applications	of
that	abstraction	to	particular	concretes.	One	simply

remembers	that	the	ultimate	meaning	of	the	abstraction	consists	in	these	concrete
applications,	consists	in	the	quantitative

relationships	they	are	used	to	identify	and	embraces	all	the

concretes	subsumed	under	the	abstraction.
The	concept	of	products	of	domains	can	be	extended	to

multiple	products,	such	as	A	×	B	×	C	consisting	of	ordered	triples

(a,	b,	c)	belonging,	respectively	to	A,	B,	and	C.	Everything	I	said	about	A	×	B
applies	to	A	×	B	×	C,	as	well.	Alternatively,	one	could

look	at	A	×	B	×	C	as	being	defined	recursively,	by

A	×	B	×	C	=	(A	×	B)	×	C

Here,	(A	×	B)	×	C	is	the	product	of	the	domain	(A	×	B)	with

the	domain	C.
One	very	important	case	is	the	case	for	which	A	=	B	=	C

(etc)	=	R,	where	R	is	the	mathematical	domain	of	real	numbers.

The	n-fold	product	R	×	R	×	…	×	R	(n	times)	is	written	Rn.	An	equation	in	n



unknowns	or	variables	is	an	equation	on	Rn.
As	another	example,	I	earlier	designated	the	configuration

space	of	possible	spatial	positions	of	a	three-dimensional	solid

object	as	R3	×	S2	×	S1.	In	this	expression	R3	is	the	3-fold	product	of	the	real
number	line	R.	The	total	expression	is	the	product	of	three

sets,	R3,	S2,	and	S1.	But	one	word	of	warning:	S2	is	the	twodimensional	sphere
(as	in	globe)	and	S1	is	the	standard	notation	for	a	circle.	It	is	not	the	case	that	S2

=	S1	×	S1.	(S1	×	S1,	as	it	turns	out,	is	a	torus,	i.e.,	the	shape	of	a	donut.)
A	second	very	important	example	of	a	derived	domain	is	a

domain	of	mathematical	functions.	If	A	and	B	are	mathematical	domains,
functions	from	A	to	B,	of	a	specified	type,	taken	as	a

whole,	can	also	be	regarded	as	a	domain.	As	a	mathematical

abstraction,	a	function	from	A	to	B	is	characterized	by	some	sort	of

rule	or	specification,	call	it	f	for	this	discussion,	such	that	to	any	element	a	є	A,
corresponds	a	unique	element	f(a)	=	b	є	B.	One	also

writes	f:A→B	and	f:	a→	b.	As	I	discussed	earlier,	regarding	real

valued	functions	on	an	interval,	a	function	f:A→B	has	a	graph

consisting	of	points	in	A	×	B	of	the	form	(a,	f(a)),	a	є	A.	Since	f(a)

must	be	specified	uniquely,	the	graph	of	the	function	f	contains	a

unique	point	in	A	×	B	corresponding	to	each	a	є	A.27
The	trajectory	of	a	point	mass	in	three-dimensional	space,

for	example,	is	given	by	a	function	from	R	to	R3,	where	R	represents	time	and
R3	represents	three-dimensional	space.	The	distribution	of	temperature	in	a	solid
object	is	given	by	a	function	from	a	subset

A	of	R3	to	R.	The	subset	A	represents	the	space	occupied	by	the	solid	object	and



R	represents	temperature.	Again,	these	examples

are	two	of	the	concretes	subsumed	by	the	related	mathematical

abstraction.
In	that	a	function	relates	mathematical	domains,	it

constitutes	a	kind	of	measurement,	as	I	outlined	in	my	example	of

continuous	functions.
Since	every	function	has	a	graph,	a	function	is

characterized	by	a	particular	set	of	points	in

A	×	B,	namely	{(a,	f(a)),	a	є	A}.	Since	every	subset	of	A	×	B	is

distinguished	from	every	other	subset,	every	set	of	subsets	of	A	×	B

is	distinguished	from	every	other	set	of	subsets	of	A	×	B.
Two	subsets	of	A	×	B	are	different	if	and	only	if	there	is	an

element	(a,	b)	present	in	one	of	the	subsets	that	is	not	present	in

the	other.
A	set	of	functions	relating	a	pair	of	domains	A	and	B,	thus,

corresponds	to	a	set	of	subsets	of	A	×	B	of	a	particular	kind.	A	function	can	be
thought	of	as	given	by	a	graph.	A	set	of	functions	is

given	by	a	set	of	graphs.	And,	finally,	two	sets	Y	and	Z	of	subsets	are	different	if
there	is	a	subset	in	Y	that	is	not	contained	in	Z	or	vice

versa.	Graphs	are	simply	a	special	case,	a	special	kind	of	subset	of	A

×	B.
Functions	from	a	domain	A	to	a	domain	B	are	a

mathematical	domain.	As	a	domain,	they	are	identified	by	a	domain

of	graphs,	by	a	particular	subset	of	the	set	of	all	subsets	of	A	×	B.
If	B	is	a	system	of	measurements,	then	one	can	induce	a



similar	system	of	measurements	on	any	domain	of	functions	taking

values	in	B.	This	is	because	any	operation	of	elements	of	B	is

inherited	by	functions	taking	values	in	B.	For	example,	if	there	is	a

way	to	add	two	elements	in	B	(to	get	another	element	of	B),	then

one	can	define	the	sum	(f	+	g)	of	two	functions	from	A	to	B	by

specifying	its	value	at	each	point	in	A	just	as	I	did	for	realvalued

functions.	To	wit,	for	any	a	є	A,	the	value	of	(f	+	g)	is	given	by	(f	+

g)(a)	=	f(a)	+	g(a).
My	argument	that	graphs	of	functions	constitute	both	a	set

and	a	domain	applies	without	change	to	subsets	of	a	domain.	The

range	of	potential	subsets	of	a	set	is	strictly	circumscribed	and	they

differ	unambiguously	from	each	other.	So	any	meaningful

characterization	of	certain	subsets,	as	opposed	to	other	subsets	of

the	same	domain,	is	a	set.	In	general,	the	set	of	all	subsets	of	a

mathematical	domain,	the	socalled	power	set,	is	both	a

mathematical	domain	and	a	set.28	A	subset	of	the	power	set	is	a	set.
For	example,	the	set	of	all	lines	through	the	origin	in	Rn	is	a	mathematical
domain	known	as	projective	space.	Specifying	a	line

is	like	identifying	a	direction	–	except	that	one	does	not	distinguish

between	the	two	directions	available	on	each	line.
A	second	example	is	the	set	of	all	triangles	in	the

coordinate	plane.	Considered	as	subsets	of,	say	R2,	the	position	of	a	triangle	is
specified	by	the	positions	of	its	three	vertices,	without

regard	to	ordering	of	the	vertices.	Any	three	non-collinear	points



regard	to	ordering	of	the	vertices.	Any	three	non-collinear	points

(points	that	don’t	all	lie	within	a	single	line)	determine	a	triangle

located	somewhere	in	R2.	Three	coordinate	pairs,	six	coordinates	in	all,	subject
to	the	non-collinearity	restriction,	determine	a	triangle

in	the	Cartesian	plane.
Subsets	of	mathematical	domains	constitute	another

category	of	derived	mathematical	domains.	A	subset	of	a

mathematical	domain	is,	obviously,	a	set.	However,	a	subset	of	a

mathematical	domain	may	not	be	a	system	of	measurements	even	if

the	parent	domain	is	a	system	of	measurements.	For	example,	the

set	of	odd	numbers	is	not	a	system	of	measurements	because	an

odd	number	plus	an	odd	number	is	not	an	odd	number.	But	the	set

of	even	numbers	counts	as	a	system	of	measurements	because	an

even	number	plus	an	even	number	is	an	even	number.
A	good	example	of	a	geometric	sub-domain	is	a	sphere	in

three-dimensional	space.	The	coordinates	of	the	ambient	space

serve	as	one	way	to	provide	coordinates	on	the	sphere.	On	the	other

hand,	as	a	specialized	study,	one	can	study	spheres	without	regard

for	the	ambient	space	in	which	it	sits.	One	can,	of	course,	as	I

suggested,	use	the	coordinates	of	the	ambient	space	as	a

convenience,	but	this	is	simply	a	possible	means	of	measuring	the

sphere	that	does	not	impact	the	inherent	nature	of	the	domain.
Another	very	common	example	is	to	restrict	a



mathematical	domain	to	a	region	such	as	a	disc	in	R2	(interior	of	a	circle).	One
normally	restricts	to	such	domains,	perhaps	just

temporarily,	as	a	methodological	device,	to	study	functions	that	are

intentionally	defined	only	on	the	region.	For	example,	one	might	do

this	to	find	a	local	solution	to	a	differential	equation,	based	on	some

kind	of	approximation	technique,	with	the	ultimate	goal	of

extending	the	solution	to	a	larger	domain.	When	one	does	so,	one

considers	the	sub-domain	as	part	of	the	larger	domain.	In	this	case,

the	mathematical	domain	is	also,	in	the	standard	terminology,	the

domain	of	the	function.
A	final	way	to	derive	a	domain	from	an	existing	domain	is

to	simply	omit	some	of	the	measurements	that	are	distinguished	in

the	starting	domain.	This	means	that	one	no	longer	makes	all	of	the

distinctions	that	one	had	been	making	previously.	For	example,	in

regards	to	my	earlier	example	of	triangles	in	the	Cartesian

coordinate	plane,	one	can	ignore	the	orientation	and	placement	of

each	triangle.	Two	triangles	are	equivalent,	from	this	perspective,	if

they	are	congruent,	if	they	can	be	matched	up	with	corresponding

sides	being	equal.	A	triangle	in	this	domain	is	characterized	by	just

three	numbers,	the	lengths	of	its	three	edges,	subject	to	the	triangle

inequality	and	without	regard	to	the	order	of	the	sides.
Standard	treatments	deal	with	this	phenomenon	of

measurement	omission	by	a	certain	settheoretic	construction.



measurement	omission	by	a	certain	settheoretic	construction.

These	treatments	isolate	a	certain	class	of	non-intersecting	subsets

of	the	original	domain.	Then	they	assign	each	element	of	the	original	set	to	the
subset	consisting	of	all	the	other	elements	from	which	it	is	no	longer
distinguished.	In	the	standard	terminology,

this	subset	is	called	its	equivalence	classes.	The	new	domain	is	characterized	as
the	set	of	such	subsets,	i.e.,	the	set	of	equivalence	classes.
For	further	examples	of	this	approach,	see	my	discussions

of	quotient	vector	spaces	in	Chapter	7	and	of	quotient	groups	in

Chapter	8.

Other	Operations	on	Sets

There	are	other	operations	of	sets	that,	contrary	to	official

set	theory,	only	reasonably	apply,	within	the	context	of	a	particular

mathematical	domain,	to	sets	within	that	domain.	Most	notably,

these	operations	are	unions,	intersections,	and	complements.	As	we

will	see,	however,	within	the	ZF	axioms	my	caveat	does	not	arise

because	the	ZF	axioms	prescribe,	in	effect,	the	domain	of	all

mathematical	sets,	the	entire	domain	recognizable	as	sets	within

the	scope	of	those	axioms.

The	union	of	two	sets	A	and	B	consists	of	elements	that	are

either	in	A	or	in	B.	The	intersection	consists	of	elements	that	are	in

both	A	and	B.	And,	finally,	the	complement	of	B	with	respect	to	A

consists	of	points	of	A	that	are	not	elements	of	B.



consists	of	points	of	A	that	are	not	elements	of	B.

Within	a	mathematical	domain,	such	operations	on	sets	are

valid,	logical,	and	straightforward.

On	the	OpenEndedness	of	the	Set	Concept

As	I	will	pursue	in	the	final	section	of	this	chapter,	modern

mathematicians,	for	a	variety	of	reasons,	conceived	of	set	theory	as

a	closed	system	in	the	early	part	of	the	20th	century.	But	the	considerations	that
led	to	this	historic	development	do	not	do

justice	to	either	why	or	how	set	theory	came	into	being,	why	it

applies	in	mathematics,	or	how	new	kinds	of	mathematical

domains	arise	in	mathematics.	Settheoretic	methods	had	arisen

naturally	in	the	work	of	Dedekind	and	even	earlier29	before	the	subsequent
attempts	of	Cantor	and	others	to	institutionalize	it	as	a

purported	foundation	of	mathematics.	Set	theory	did	not	arise	in	a

vacuum.	It	originated	in	a	mathematical	context,	but	ultimately

took	the	form	that	it	did	because	of	a	wider	philosophical	context.	I

will	discuss	that	development	at	the	end	of	this	chapter,	but,	to	my

mind,	the	modern	form	that	set	theory	has	taken	is	an	unhappy

accident	of	history,	driven	by	broadly	accepted	philosophical	dispositions	rather
than	mathematical	needs.

In	my	view,	the	concept	of	a	set,	like	concepts	in	general,	is

openended.	Sets	arise	in	specific	mathematical	contexts.	From	a



reality-based	perspective,	to	establish	something	as	a	set	requires

the	kind	of	considerations	I	have	adduced	in	this	chapter.

In	practice,	one	will	usually	find	ways	to	derive	new	sets

from	already	established	sets.	Indeed,	mathematicians	have

adopted	the	standard	settheoretic	axioms,	based	on	a)	their	formal

derivations	of	the	real	number	system	from	those	axioms	and	b)

their	belief	that	all	sets	of	mathematical	interest	can	be	derived,

from	a	purely	formal	perspective,	from	the	real	numbers	via	settheoretic
operations	provided	within	the	axiom	scheme.

But	mathematics	is	not	just	a	formal	game.	Sets	arise	in

relation	to	problems	in	measurement,	problems	arising	either	in

their	applications	or	in	mathematical	problems	involving	indirect

measurement.	They	arise	because	they	serve	a	particular	function.

And	it	should	not	be	a	given	that,	to	qualify	a	mathematical	domain

as	a	set	one	must	“derive”	it	from	the	standard	settheoretic	axioms

or	any	other	set	of	settheoretic	axioms.

In	chapter	8,	I	discuss	the	development	of	finite	groups.

From	the	standpoint	of	formal	mathematics,	a	finite	group	is	a	set

because	it	can	be	identified	with	a	set	of	integers,	which	are	already

recognized	as	a	set.	And,	from	a	purely	formal	perspective,	group

multiplication	is	just	a	function	that	one	associates	with	the	set.

But,	from	a	conceptual,	reality-based	perspective,	a	finite	group	is



But,	from	a	conceptual,	reality-based	perspective,	a	finite	group	is

not	a	set	of	integers.	Nor	can	one	“identify”	a	set	of	group	elements

with	a	set	of	integers	without	stepping	outside	of	one’s	axiom

scheme.	For	there	is	nothing	anywhere	within	the	standard	axioms

of	set	theory	to	relate	anything	within	its	domain	to	any	external

existent	or	phenomenon	whatever.	One-to-one	correspondences,

within	the	compass	of	standard	set	theory	apply	only	to	objects	that

have	already	been	identified	as	sets.

Set	Theory	and	Point	Set	Topology

I	return	to	the	question	that	I	asked	earlier.	What	does	it

mean	for	one	function	to	approximate	another	function?	My

answer	will	involve	an	interesting	and	non-routine	application	of

set	theory.

Set	theory	was	unknown	in	the	classical	period	and	only

implicit	in	analytic	geometry.	The	great	achievements	of	Newton,

Leibnitz,	Euler,	Gauss,	Cauchy,	Riemann,	and	countless	others,	all

predate	the	axiomatic	set	theoretic	scheme	of	the	twentieth	century

and	even	the	naïve	set	theory	advanced	by	such	mathematicians	as

Dedekind	and	Cantor.	The	logical	analyses	that	mathematicians

relied	on	for	millennia,	including	sophisticated	concepts,	such	as

Cauchy’s	definitions	of



limit	and

continuity,	all	applied	the

Aristotelian	logic	dating	back	to	ancient	Greece.	The	wonderful

mathematical	achievements	through	the	end	of	the	nineteenth

century	were	all	achieved	without	any	need	for	set	theory	or	its

modern	logical	superstructure,	as	a	formal	discipline.

Yet	set	theory	is	more	than	just	a	convenience.	Like	every

mathematical	abstraction,	set	theory	provides	a	building	block	for

further	discoveries,	for	new	conceptual	formulations	and

identifications.	And	one	of	its	major	triumphs	is	point	set	topology.

Point	set	topology	is	not	about	sets;	it’s	about	a	certain	kind	of	measurement.
But	point	set	topology	requires	a	sophisticated

application	of	set	theory.	And	that	application	is	left	intact	within

my	revisionist	view	of	a	proper	formulation	of	set	theory.

I	present	this	conceptual	introduction	to	point	set	topology

for	several	reasons.	First,	topologies	are	important.	Point	set

topology	provides	the	ideal	framework	to	deal	with	the	kind	of

question	that	I	asked	earlier.	Namely,	what	does	it	mean	for	one

function	to	approximate	another	function?

Secondly,	granting	the	importance	of	point	set	topology,

my	discussion	will	exhibit	point	set	topology	as	an	important,	nontrivial
application	of	set	theory.	It	is	one	thing	to	validate	a	concept;	it	is	another	to
show	decisively	why	that	concept	matters,	why	it	is



show	decisively	why	that	concept	matters,	why	it	is

important.

Finally,	point	set	topology	is	one	of	those	areas	in	twentieth

century	mathematics	in	which	an	initial	skepticism	by	a	noninitiate	is	not	out	of
place.	It	is	reasonable	to	ask:	How	could	such	a	theory	as	topology	capture
anything	important	about	the	world?

Why	isn’t	point	set	topology	a	pointless	floating	abstraction?

Assuming	that	the	concept	is	meaningful	at	all,	why	should

anybody	care?	These	questions,	in	my	view,	have	good	answers,

but,	unfortunately,	it	would	be	unusual	to	hear	either	these

questions	or	their	answers	from	a	contemporary	mathematician.

The	goal	of	this	section	is	to	show	why	point	set	topology	is

important,	where	it	comes	from,	and,	from	a	this-worldly

perspective,	what	it	actually	means.	And,	in	showing	that,	to	show

why	set	theory	deserves	rehabilitation	from	a	realist,	this	worldly

perspective,	why	a	systematic	framework	of	set	theory	is	valuable

and	meaningful.

As	mathematicians	look	at	it,	topology	is	the	general	study

of	continuity.	This	is	certainly	true,	especially	of	more	sophisticated

sub-specialties	such	as	algebraic	topology.	And	the	concept	of	a

continuous	function	finds	the	most	general	and	fundamental

expression	in	topology.	But,	in	its	initial	motivation,	at	least	from	a



reality-based	perspective,	I	believe	the	essential	purpose	of	point	set	topology	is
to	provide	a	general	foundation	for	the	study	of

approximation	in	mathematics:	How,	in	the	most	general	context,	should
mathematics	measure	proximity?	And	that	will	be	the	theme

of	my	introduction	to	point	set	topology.

In	general,	to	say	that	something	approximates	another

thing	is	to	say	that	they	are	close	in	some	way.	To	say	that	one

number	approximates	another	number	is	to	say	that	their

difference	is	small.	To	say	that	one	point	in	R3	is	close	to	another	point	in	R3	is
to	say	that	the	distance	between	them	is	small.	If	x	is	the	point	with	coordinates
(x1,	x2,	x3)	and	y	is	the	point	with	coordinates	(y1,	y2,	y3),	then,	according	to	the
standard	distance	formula	(based	on	the	Pythagorean	theorem,	as	applied	to	three

dimensions),	the	distance	D(x	,	y)	between	x	and	y	is

D(x	,	y)	=	√((x1	-	y1)2	+	(x2	–	y2)2	+	(x3	–	y3)2	)

How	does	this	approach	to	approximation	work	out	for

numbers	and	points?	And	how	can	it	be	applied	to	functions?
Assume	a	sequence	of	numbers	a1,	a2,	a3,	…	,	an,	…	.	One	says	that	the	sequence
converges	to	a	number	a	if,	for	any	standard

of	precision	ε	>	0,	there	exists	a	number	N	such	that	n	>	N	implies

that	|an	–	a|<	ε.
In	other	words,	any	required	level	of	precision	can	be

achieved	by	looking	at	a	finite	number	of	terms	in	the	sequence.

This	is,	indeed,	part	of	the	point	of	the	approach	to	irrational

numbers	presented	in	Chapter	4.
Convergence	works	pretty	much	the	same	for	points	in



space	(R3).	To	apply	the	distance	function	D(x,y)	just	defined,	a	sequence	x1,	x2,
x3,	…	converges	to	a	point	X	if	and	only	if	for	any	standard	of	precision	ε	>	0,
there	exists	a	number	N	suchthat	n	>N

implies	that	D(xn,	X)	<	ε.	Again	any	required	level	of	precision	can	be	achieved
by	looking	at	a	finite	number	of	terms	in	the	sequence.
This	criterion	can	be	reformulated	in	a	useful	way.	And	that

reformulation	is	useful	because	it	provides	a	bridge	to	a	more

general	treatment	of	proximity,	namely,	the	treatment	formalized

in	point	set	topology.
First,	some	definitions:	By	an	open	ball	of	radiusε	around	a

point	X,	one	means	the	set	of	Bε	consisting	of	points	with	a	distance	lessthanε
from	X.Tosay	thatthe	ballis	open	means	that	one	does	not	include	the	surface	of
the	ball	in	the	set	Bε.
These	terms	having	been	established,	one	can	reformulate

the	convergence	criterion	as:	For	any	open	ball	around	X,	there

exists	a	number	N	such	that	every	term	in	the	sequence	after	the

Nth	term	is	inside	the	ball.
In	applying	this	criterion	to	obtain	a	suitable

approximation	within	a	particular	context,	one	chooses	a	ball	so

small	that	there	are	no	material	distinctions	between	any	of	its

points.	That	is,	each	open	ball	embodies	a	potential	standard	of	precision.
But	a	particular	open	ball	is	a	standard	that	applies	only	to

the	points	that	it	contains.	It	says	and	implies	nothing	about

precision	for	points	outside	the	ball.	This	use	of	balls	is	a	way	of

localizing	the	global	precision	criterion	specified	by	ε	>	0.	A	ball	of	radius	ε



arounda	pointXimposes	thesameprecisionstandardasa

similar	ball	of	the	same	size	around	a	point	Y.	But	that	standard	is

applied	independently	at	each	point.
To	make	the	discussion	more	general,	one	can	even	say

something	that	may	seem	weaker	at	first	glance:	for	any	set	U

containing	an	open	ball	around	X	there	exists	a	number	N	such	that	every	term
after	the	Nth	term	is	inside	the	set	U.	I	say	“may

seem	weaker”	because	making	sure	a	point	is	inside	the	ball	is	enough	to
guarantee	that	the	point	is	inside	the	larger	set	U	that

contains	the	ball.	And,	conversely,	one	could,	in	particular,	choose

U	=	B	so	the	statement	about	U	includes	my	earlier	statement	about

B.
Notice	something	special	about	an	open	ball:	for	any	point

y	inside	an	open	ball	B	there	is	a	smaller	open	ball	By	centered	around	the	point
y	and	contained	in	B.	One	writes	this

This	property	holds	for

any	union	of	open	balls	and	any

finite	intersection	of	them.	The	case	of	unions	being	more	obvious,

I	elaborate	the	case	of	a	finite	intersection.	Consider	a	point	Y

contained	in	two	different	open	balls,	B1	and	B2.	There	is	a	smaller	ball	around
Y	contained	in	the	first	ball,	B1,	and	there	is	also	a	ball	around	Y	contained	in
the	second	ball,	B2.	The	smaller	of	these	two	smaller	balls	is	contained	in	both	of
the	larger	balls,	B1	and	B2.



A	set

U	with	this	property,	that	every	point	in	the	set	U	is

contained	in	a	ball,	centered	at	that	point,	that	is	also	contained	in	U,	is	called	an
open	set.	And	the	generalization	I	just	enunciated	for	open	balls	holds,	more
generally,	for	open	sets.	Any

finite	intersection	of	open	sets	is	an	open	set	and	any	union	of	open	sets	is	an
open	set.

Any	point	in	an	open	set	contains	an	open	ball	around	it

that	is	completely	contained	within	the	open	set.	Taking	this	as	the

defining	condition,	any	subset	of	R3	is	either	an	open	set	or	it	is	not.

Both	R3	and,	by	convention,	Ø	(the	empty	set)	are	taken	to	be	open	sets.	(The
defining	condition	for	an	open	set	may	be	considered	to

hold	vacuously	for	Ø.)	So	the	set	of	all	subsets	of	R3,	perhaps	unexciting	in
itself,	has	a	very	important	subset,	namely	the	set	of

open	sets	that	are	subsets	of	R3.

As	my	remark	above	indicates,	the	standard	of	convergence

enunciated	above	relative	to	open	balls	would	hold	just	as	well,

would	be	completely	equivalent,	if	I	were	to	say:	“For	any	open	set

U	around	X,	there	exists	a	number	N	such	that	every	term	after	the

Nth	term	is	inside	the	specified	open	set	U.”

An	open	set,	as	it	relates	to	the	points	it	contains,	is	a

standard	of	precision.	Taken	as	a	standard,	invoking	an	open	set	U

is	to	say	that	there	is	no	material	difference	among	its	points.	Open



sets	are	like	a	system	of	open	balls.	They	have	the	same

mathematical	purpose,	but	are	more	generally	applicable	to	other

contexts.

To	translate	a	criterion	of

convergence	in	the	way	that	I

have	illustrated,	so	as	to	utilize	a	system	of	open	sets,	is	to	relate	that	criterion	to
a	broader	conceptual	framework.	This	broader

conceptual	framework,	as	it	turns	out,	applies	to	every	convergence

criterion	that	arises	in	mathematics.

A	specification	of	the	open	sets	of	a	geometric	domain	is	a

determination	of	the	meaning	of	proximity,	a	characterization	of

what	it	means	for	one	point	to	be	close	to	another	point.	It	is	a

standard	of	relevance,	of	the	respects	in	which	differences	matter.

Open	sets	are	a	system	of	filters.	To	choose	an	open	set	U	is	to

choose	a	standard	of	proximity	in	regard	to	the	points	that	it

contains.	The	open	sets,	in	their	totality,	provide	a	system	of	such

standards.	A	specification	of	the	open	sets	of	a	geometric	domain	is	called	a
topology.30

Again,	I	bring	up	point	set	topology	for	three	reasons.	First,

it	is	an	interesting,	important,	and	nontrivial	use	of	set	theory,

properly	understood.	Secondly,	it	is	important.	And	thirdly,	it	is	not	at	all
obvious	to	most	people	why	it	should	be	important.	Why	isn’t	the	notion	of
topology	unnecessarily	abstract?



And,	in	this	connection,	I	return	to	my	first	question:	What

does	it	mean	for	one	function	to	approximate	another	function?
The	short	answer	is:	approximation	of	functions	can,	does,

and	should	mean	a	lot	of	different	things	depending	on	the	context.

There	are	many	different	respects	for	functions	to	be	relevantly	close	to	each
other	and	all	of	these	respects	serve	particular	needs.
And	this	leads	to	part	of	the	answer	to	my	question	on

topology.	Some	of	the	ways	of	measuring	the	proximity	of	two

functions	do	not	involve	assignment	of	a	number	to	measure

proximity	of	the	two	functions.	Numbers	may	still	be	involved,	but

one	cannot	always	use	a	single	number	to	capture	and	delimit	all	of	the
important,	relevant	ways	in	which	two	functions	can	differ.	Yet

there	are	useful,	more	general	ways	to	measure	proximity.	And

every	one	of	those	ways	implies	a	particular	kind	of	topology,	a

particular	determination	of	the	open-set-measurements	of

precision	requirements,	a	determination	that	reflects	the	kinds	of	differences	that
are	relevant	to	a	certain	kind	of	pursuit	and

provides	a	system	of	filters	sufficient	to	specify	any	required	level	of

precision.
Obviously,	some	examples	would	be	helpful.	I	start	with	the

simplest:	pointwise	convergence	of	a	sequence	of	realvalued

functions.	In	this	kind	of	convergence,	one	says	that	a	sequence	of

realvalued	functions	f1,	f2,	f3,	…	,fn,	…	converges	to	a	function	f	on	some
domain	if	and	only	if,	for	every	x	in	the	domain	and	for	every



ε	>	0,	there	exists	an	N	such	that	n	>	N	implies	that	|fn(x)	–f(x)|<ε.
Notice	that,	for	pointwise	convergence,	the	value	of	N

required	to	guarantee	a	specified	level	of	precision	depends	on	one’s	choice	of
x.31	Suppose,	for	example,	that	fn	is	the	function	fn(x)	=	xn	on	the	closed	interval
from	0	to	1.32	(The	adjective,	closed,	signifies	that	one	includes	the	two
endpoints	of	the	interval	within	the

domain	of	the	function.)	Every	function	fn	in	the	sequence	is	a	continuous
function	and,	indeed,	an	infinitely	differentiable

function.	But,	although	the	sequence	has	a	limit,	this	limit	function

is	not	continuous.	For	every	x	<	1,	the	limit	is	0;	for	x	=	1,	the	limit

is	1.	The	limit	takes	on	no	other	values	besides	0	and	1.	This	lack	of

continuity	of	the	limit	function	reflects	the	fact	that,	the	closer	one

gets	to	x	=	1,	the	slower	the	sequence	{xn}	converges	to	zero.
Clearly,	if,	as	is	often	the	case,	one	wants	a	sequence	of

continuous	functions	to	converge	to	a	continuous	function,	a

stronger	notion	of	convergence	is	needed.
This	pointwise-convergence	approach	has	another,

related,	price.	If	all	one	cares	about	is	the	value	of	the	limit	at	a	specified	finite,
isolated	set	of	points	{xi	for	i	between	1	and	m},	then	pointwise	convergence
will	provide	a	value	of	N	that	will

simultaneouslysatisfyone’sstandardof	precisionε	>0	for	eachof	those	points.
Simply	find	a	suitable	number	Ni	for	each	point	xiand	then	take	the	largest	of
these.	Let	N	=	maximum	of	{Ni}.	Then,	for	all	n	>	N	and	each	xi,	|fn(xi)	–	f(xi)|<
ε.
One	can	achieve	the	required	precision	at	a	pre-specified

handful	of	points.	But,	for	pointwise	convergence,	that’s	all	that

one	can	hope	to	achieve	in	a	finite	number	of	steps.



one	can	hope	to	achieve	in	a	finite	number	of	steps.
Before	looking	for	alternatives,	it	is	helpful	to	look	at

pointwise	convergence	topologically:	What	are	the	open	sets

corresponding	to	this	notion	of	convergence?	In	this	case,	there	is

no	concept	of	a	distance	between	two	functions;	there	are	only

distances	between	the	values	of	these	functions	at	particular	points.

Numbers	are	involved,	but	each	number	applies	to	only	one	point

in	the	domain	of	the	functions.	But,	despite	the	lack	of	a	concept	of

distance,	I	can	use	the	same	general	approach	to	defining	the

topology	that	I	used	in	the	simpler	cases	that	do	have	a	concept	of

distance.	I	simply	start	with	my	convergence	criterion,	just

enunciated	for	a	finite	set	of	points.
Accordingly,	choose	a	finite	set	of	points	x1,	…	,xm.	For	each	point	xi,	choose	a
number	yi.	And	choose	ε	>	0.	Think	of	yi	as	a	potential	value	of	a	limit	function	f
at	the	point	xi.	Consider	the	set	of	functions	g	such	that	|g(xi)	–	yi|<	ε	for	all
values	of	i.	Then	I	declare	the	set	of	such	functions	g	to	be	an	open	set,	a	set	of

functions	that	satisfy	the	standard	of	precision	set	by	the	value	of	ε

with	respect	to	the	chosen	potential	values	at	the	selected	points.
This	open	set	is	somewhat	less	than	what	one	might

consider	a	standard	of	precision;	it	is	a	local	standard	of	precision.

It	is	a	standard	of	precision

relative	to	the	values	yi	at

corresponding	points	xi.	The	precision	standard,	the	local	measure	of	proximity
is	specified	by	ε	>	0.	The	x’s	and	the	y’s	pertain,	first,



to	where	that	standard	is	applied	(the	x	values)	and,	second,	what	the	function	is
close	to	in	those	places	(the	y	values).	Taken	as	a

whole,	this	set	of	conditions	is	what	mathematicians	call	a	filter.

One	should	think	of	invoking	the	filter	like	this:	To	satisfy	it,	means

that,	as	far	as	the	values	of	the	function	at	the	x-values,	x1,	…	,xm,	are
concerned,	the	values	of	the	function	do	not	differ	materially

from	the	corresponding	y-values	yi.	If	f	were	a	different	function	with	nearby
values	at	the	prescribed	x	values,	then,	by	this

precision	standard,	g	would	be	indistinguishable	from	f,

indistinguishable	because	they	are	both	contained	within	the	same

filter	that	sets	the	standard.	The	set	of	functions	satisfying	the

condition	are	all	indistinguishable	from	each	other	as	far	as	this

particular	filter	is	concerned.
But	one	filter	is	not	enough	to	evaluate	convergence	of	a

sequence.	Pointwise	convergence	means	converging	at	every	point.

One	needs	a	system	of	such	filters,	covering	every	point	in	the	domain	and
covering	all	potentially	relevant	degrees	of	precision.
These	filters	play	the	same	role	as	the	open	balls	around

points	in	R3.	In	the	case	of	R3,	one	thinks	of	a	series	of	balls,	of	varying	radii,
around	every	point	in	R3.	These	open	balls,	as	I	have	already	remarked,	are	a
system	of	filters.
Thus,	to	continue	with	pointwise	convergence,	there	is	a

similar	open	set,	a	filter,	for	every	choice	of	a	finite	set	of	x-points,

of	corresponding	y-points,	and	of	a	positive	value	of	ε.	Taken

together	these	sets	comprise	a	system	of	filters.



A	system	of	filters	provides	the	form	in	which	one

expresses	a	standard	of	precision.	The	filters	specify	the	kinds	of

differences	between	functions	that	one	considers	to	be	relevant.

Taken	together,	these	filters	represent	every	available	precision

standard	and	every	possible	application	of	these	precision

standards	within	the	overall	umbrella	of	pointwise	convergence.
To	define	a	topology	means	to	specify	all	of	the	open	sets.

But	that’s	actually	straightforward	once	the	system	of	filters	has

been	established.	The	real	work	of	defining	a	topology	consists	in

identifying	a	system	of	filters:	Any	union	of	filters	is	an	open	set

and	any	finite	intersection	of	open	sets,	including	filters,	is	an	open

set.	More	definitively,	to	paraphrase	an	earlier	statement	involving

open	balls:	An	open	set	is	characterized	by	the	fact	that	any	point

(i.e.,	particular	function)	in	the	open	set	is	contained	in	a	filter	that

is,	itself,	completely	contained	within	the	open	set.
Keep	in	mind	that,	in	this	paragraph	and,	in	general,

relative	to	elements	of	open	sets	and	filters,	“point”	refers	to	a

function,	since	it	is	a	function	that	we	are,	in	this	context	trying	to	approximate.
This	kind	of	discussion	can	get	confusing	because	one

approximates	a	function	f	by	reference	to	the	values	y	=	f(x)	that	the

function	f	assumes	at	various	points	x	in	the	domain	of	f.	So	the

word	point	refers,	depending	on	the	context,	either	to	a	function	f



or	to	a	point	x	in	the	domain	of	a	function	f.
This	is	a	standard	way	and	the	usual	way	to	define	a	topology.	However,	this
particular	topology,	as	I’ve	indicated,	is	not	a	great	way	to	measure	convergence
of	functions.	But	an

apparently	small	change	in	the	citerion	of	convergence	results	in	a

much	stronger	and,	where	feasible,	a	much	more	useful	kind	of

convergence,	namely,	socalled	uniform	convergence.33	It	goes	like	this:	One
says	that	a	sequence	of	realvalued	functions	f1,	f2,	f3,	…

,fn,	…	converges	to	a	function	f,	defined	on	some	domain,	if	and	only	if	for
every	ε	>	0,	there	exists	an	N	such	that	n	>	N	implies	that

|fn(x)	–f(x)|<ε	for	every	x	in	the	domain.	Notice	that,	for	uniform	convergence,	N
does	not	depend	on	one’s	choice	of	x.
Obviously,	uniform	convergence	implies	pointwise

convergence.	If	a	sequence	of	functions	converges	uniformly,	then

it	necessarily	converges	at	each	point.
For	a	sequence	satisfying	this	criterion,	if	one’s	standard	of

precision	is	ε	>	0,	one	can	achieve	this	precision	at	one	stroke,	simultaneously
for	all	values	of	x,	by	finding	a	large	enough	value	of

N.
Related	to	this	topology,	one	also	has	a	kind	of	measure	of

distance	between	functions.	Namely,	one	expresses	this	measure	by

the	expression

D(f	–	g)	=	sup{|g(x)	–	f(x)|}

where	the	settheoretic	function	sup	is	applied	across	all	x

in	the	domain	of	f	and	g.	In	this	expression,	sup	is	a	technical	term	for	specifying
the	largest	number	in	a	set	of	numbers.	But,



technically	speaking,	it	really	specifies	the	smallest	number	that	is

either	greater	than	or	equal	to	every	number	in	the	set.	So,	for

example,

sup{x	<	2}	=	2

This	says	that	2	is	the	smallest	number	greater	than	or

equal	to	all	of	the	numbers	that	are	strictly	less	than	2.	The	need	for

this	formulation	consists	in	the	fact	that	2	is	not	part	of	that	set	of

numbers.

It	will	frequently	turn	out	that	the	value	of	this	“distance”	is

infinite	for	certain	pairs	of	functions.	Consider,	for	example,	the

two	functions	f(x)	=	2,	and	g(x)	=	x.	For	large	values	of	x,	the

difference	between	these	functions	grows	without	limit.

Strictly	speaking,	then,	mathematicians	would	not

recognize	this	as	a	“distance	function”.	However,	my	interest

centers	on	small	distances	between	functions.	The	fact	that

differences	between	certain	functions	may	be	unbounded	has	no

bearing	on	that	pursuit.	But	it	is	certainly	a	complication,	and	a

reason,	even	in	this	case,	to	take	a	topological	perspective.

Unlike	the	case	of	pointwise	convergence,	a	uniformly

convergent

sequence	of	continuous	functions,	as	it	happens,



converges	to	a	continuous	function.

The	topology	of	uniform	convergence	is	very	similar	to	the

topology	for	R3	that	I	defined	above.	The	filters	are,	as	follows:	Choose	any
function	f0and	any	ε	>	0.	Consider	the	set	of	all	functions	g	such	that

|g(x)	–	f0(x)|<	ε	for	all	x	in	the	domain.

The	set	of	all	such	functions	g	is	taken	to	be	an	open	set,

indeed,	a	filter.	To	specify	a	function	f0and	an	ε	>	0	is	to	specify	a	particular
filter.	Any	set	that	is	derivable	from	finite	intersections

and	from	unions,	starting	from	the	set	of	such	filters,	is	an	open	set.

Convergence	of	a	sequence	for	funtions	fn	to	f	says	that,	for	any	open	set	(or
filter)	containing	f,	there	is	an	integer	N	the	open	set

(or	filter)	contains	all	functions	fnfor	which	n	>	N.	For	this	particular	system	of
filters,	this	is	to	say	that	fn	converges	uniformly	to	the	function	f

There	is	also	an	interesting	and	very	important

compromise	between	pointwise	convergence	and	uniform

convergence,	namely,	uniform	convergence	on	finite	closed	line	segments.34	The
compromise	is	important	because	full	uniform	convergence	is	not	always
feasibly	achievable,	yet	something	better

than	pointwise	convergence	is	needed.

This	version	of	convergence	is	analogous	to	pointwise

convergence	in	that	a	suitable	value	of	N	required	to	achieve	a

standard	of	precision	does	depend	on	x.	However,	it’s	also	similar	to	uniform
convergence.	To	wit,	one	says	that	a	sequence	of

functions	converges	uniformly	on	finite	closed	intervals	if	and	only



functions	converges	uniformly	on	finite	closed	intervals	if	and	only

if,	for	any	finite	closed	interval,	the	sequence	of	functions,	restricted	to	that
interval,	will	converge	uniformly.

This	is	another	topology	without	a	distance	function

between	functions.	But	it	is	much	more	useful	than	pointwise

convergence.	To	the	extent	that	one’s	real	interest	lies	in	a	finite

region,	in	the	convergence	over	a	finite	interval,	then,	over	this

interval,	one	can	achieve	one’s	standard	of	precision,	at	one	stroke,

with	a	suitable	value	of	N.	One	can	achieve	it	in	the	same	way,	and

for	the	same	reason,	that	one	can	achieve	it	with	uniform

convergence.

These	three	examples	are	just	a	sampling	of	the	range	of

important	ways	in	which	a	sequence	of	functions	can	converge	to	a

limit.	There	are	many	elaborations	in	the	same	spirit	and	they	all

relate	to	different	important	respects	in	which	one	function	can

approximate	another.	For	example,	when	solving	differential

equations,	one,	generally,	needs	the	derivatives	of	the	functions	in

the	sequence	to	converge	to	the	derivatives	of	the	limit.	This

requires	putting	bounds	on	the	derivatives,	as	well,	resulting	in	a

more	involved	system	of	filters	and	a	correspondingly	more

complex	topology.

Finally	there	is	an	entirely	different	category	of



convergence	conceptions	for	functions.	For	this	kind	of

convergence,	one	doesn’t	really	care	about	convergence	at	every

point,	just	at	most	points.	One	is	much	more	interested	in	the	area	between	two
functions	than	in	their	differences	at	individual	points.

As	a	classic	example,	a	very	general	class	of	periodic

functions	can	be	represented	as	limits	of	infinite	series	(of	Fourier	series)
consisting	of	sine	and	cosine	functions.	This	fact	is	the

mathematical	basis	for	the	overtone	series	in	music.

In	finding	such	infinite	series,	one’s	interest	centers	on

getting	as	close	as	possible	to	a	particular	periodic	function,	even

when	that	function	doesn’t	happen	to	be	continuous.	The

appropriate	standard	of	proximity	varies	accordingly.	One’s	interest

here	centers	more	on	a	“harmonic	analysis”	of	a	function	as

appropriately	approximated	by	a	finite	series	of	“overtones”	–	of

sine	and	cosine	functions.

As	a	simple	example,	the	function

f	that	is	equal	to	1

between	0	and	1,	equal	to	-1	between	1	and	2,	and	periodic	beyond

the	interval	between	0	and	2,	can	be	represented	as	a	limit	of	a

Fourier	series.	But,	regardless	of	the	value	assigned	to	the	function	f	when	x	is	0,
1,	or	2,	the	limit	function	will	be	always	be	zero	at	all	of	these	points,	and	so	will
the	finite	approximations	to	it.

In	the	study	of	differential	equations,	one	cares	a	great	deal



about	convergence	at	individual	points.	In	contrast,	exceptional

behavior	of	the	limit	at	particular	isolated	points	is	largely

irrelevant	to	anyone	interested	in	discovering	the	Fourier	series

that	approximates	a	periodic	function.	What	matters	much	more	is

the	difference	of	the	area	between	the	periodic	function	and	its

approximations.	Or,	more	precisely,	what	matters	is	the	average

over	the	period,	such	as	the	interval	between	0	and	2,	of	the	square

of	the	difference	between	the	function	being	analyzed	and	its

successive	approximations	by	a	Fourier	series.	In	general,	to	define

a	type	of	convergence,	to	define	a	topology,	is	to	state	a	criterion	of	relevance
and	the	system	of	filters	sufficient	to	apply	it.

In	short,	point	set	topology	is	generally	applicable	to	any

measurement	of	proximity	that	may	be	required	to	study	limiting

processes.	And	in	defining	a	common	vocabulary	to	capture	the

essence	of	all	convergent	processes,	point	set	topology	has	been

able	to	find	very	broad	principles	applicable	to	all	limiting

processes,	no	matter	what	measure	of	proximity	might	be	needed	in

any	particular	limiting	process.

But	convergence	isn’t	just	about	finding	limits;

convergence	is	about	finding	good	approximations.	Indeed,	from	a

reality-based	perspective,	finding	limits	is	about	finding	good	approximations.	It
is	about	finding	approximations	that	do	not



differ	materially	from	whatever	one	is	approximating.

One	wants	a	good	approximation	in	every	respect	that

matters	in	a	particular	case.	Whatever	interval	one	selects	as

important,	one	needs,	for	a	second	degree	differential	equation,	the

value	of	the	function	to	be	close,	but	one	also	needs	the	first	two

derivatives	to	be	close.	If	close	means	within	0.1%,	then	all	of	these

values	must	be	within	0.1%	of	the	limit	value.	Within	the	required

level	of	precision,	and	in	the	required	respects	specified	by	the

topology,	a	qualifying	approximation

is	the	solution	to	the

equation.	The	approximation	is	indistinguishable	from	the	limit	in

any	way	that	matters.

It	is	exactly	this	sort	of	relevance	criterion	that	a	choice	of

topology	provides.	And	it	does	so	in	a	general	fashion	that	applies

geometric	concepts,	i.e.,	of	proximity,	of	convergence,	and	of

continuity	and	connectivity,	to	any	kind	of	measurement	in

mathematics	for	which	approximations	are	needed	and	possible,

for	which	proximity	is	meaningful,	and	for	which	it	is	meaningful

for	something	to	vary	in	a	continuous	fashion.	Topology	provides	a

consistent	comprehensive	way	to	capture	any	criterion	of

approximation,	any	criterion	of	relevance,	and	to	apply	that



criterion	to	specify	a	degree	of	required	precision.	Topology

provides	for	a	wide	generalization	of	key	geometric	concepts	such

as	continuity,	connectivity,	and	limits.	The	applicability	of

topological	concepts	and	methods	is	at	least	as	extensive	as	the

variety	of	continuous	quantity.	Wherever	continuous	change	is

possible	there	is	continuous	quantity	and,	accordingly,	there	is	an

application	of	topology.	Point	set	topology	is	rightly	regarded	as	one

of	the	cornerstones	of	the	study	of	mathematical	functions	that

developed	out	of	the	differential	and	integral	calculus.

The	Modern	Theory	of	Sets

If	set	theory	has	a	defining	characteristic,	it	is	that	a	set	has

a	precisely	circumscribed	membership	and	is	completely

determined	by	that	membership.	However	that	membership	may

happen	to	be	described	has	no	bearing.	To	deny	this

characterization	is	to	speak	about	something	other	than	sets.

In	my	own	revisionist	view,	and	within	the	context	of	a

mathematical	domain,	I	have	insisted,	as	well,	on	this

characterization	and	I	have	taken	the	function	of	isolation	with	the

focus	on	the	totality	of	elements	isolated,	within	an	appropriate

context,	as	the	essence	of	what	sets	are	for	and	what	they

accomplish.	In	standard	set	theory,	this	viewpoint	is	captured	in	the



accomplish.	In	standard	set	theory,	this	viewpoint	is	captured	in	the

socalled	axiom	of	extension:

“Two	sets	are	equal	if	and	only	if	they	have	the	same	elements.”35

Also,	again	within	an	appropriate	mathematical	context,	I

have	explicated	and	offered	rationales	for	standard	settheoretic

operations	from	which	new	sets	may	be	constructed	from	old	sets.

And	these	constructions	are	the	essence	of	what	the	modern	theory

actually	provides.	As	Halmos	puts	it:

“All	the	basic	principles	of	set	theory,	except	only

the	axiom	of	extension,	are	designed	to	make	new

sets	out	of	old	ones.”36

But,	on	the	level	of	fundamentals,	this	is	where	the

similarity	of	my	perspective	with	the	modern	perspective	ends.

Origins	of	Set	Theory

The	conception	and	use	of	sets	is	already	implicit	in	the	work	of	Reimann	and
others	and	explicit	in	the	work	of	Dedekind.37	But	more	than	anyone	else,
Cantor	was	the	father	of	set	theory.38As	Cantor	defined	it:

“By	a	‘set’	we	understand	any	collection	M	into	a

whole	of	certain	welldistinguished	objects	…	of

our	intuition	or	of	our	thought”	(1895)39

Epple	characterizes	this	as	Cantor’s	“final	definition	of



sets.”40
Implicit	in	Cantor’s	treatment	and	in	subsequent

treatments	is	the	view	that	there	is	a	universe	of	sets	that	is	somehow	given	once
and	for	all.	That	viewpoint	survives,	in	some

form,	to	this	day	and	is	presupposed	by	various	axiomatizations	of	set	theory.41
The	problematical	notion	of	an	alleged	set	of	all	sets,	presupposes	such	a
universe.42
Beyond	his	requirement	that	elements	be	“welldistinguished”	Cantor	recognized
no	restrictions	on	forming	sets	and,	in	practice,	he	contented	himself	with
offering	informal

descriptions	of	specific	sets.43	But	the	viability	of	this	approach	was	soon	beset
by	a	number	of	paradoxes,	some	of	them	developing

directly	out	of	Cantor’s	own	work.	The	most	famous	and	least

technical	of	these	is	Russell’s	paradox,	a	version	of	the	liar’s

paradox	and	generated	by	the	question	whether	or	not	the	set	of	all

“sets	that	are	not	members	of	themselves”	contains	itself	as	a

member.	Upon	reflection,	one	discovers	that	each	possible	answer

implies	the	other,	contrary,	answer.
In	his	classic	Axiomatic	Set	Theory,	Suppes	reviews	a

number	of	similar	paradoxes	arising	out	of	the	early	naïve	accounts

of	set	theory.	Some	of	these	paradoxes,	he	points	out,	“arise	from

purely	mathematical	constructions,”	whereas	certain	others,

generally	relating	to	the	well-known	liar’s	paradox,	have	a	broader

semantic	origin.44
Most	striking,	in	these	paradoxes,	are	the	broad	appeals	to

all	sets	of	a	particular	type,	e.g.,	the	“set	of	all	ordinals.”



all	sets	of	a	particular	type,	e.g.,	the	“set	of	all	ordinals.”
A	set	is	the	product	of	a	conceptual	faculty.	But	arguments

invoking,	outside	of	any	prescribed	domain,	a	“set	of	all…”

presuppose	a	kind	of	Platonic	realism	in	which	all	sets	have	a	kind

of	intrinsic	existence,	prior	to	anyone’s	conceptions.
Notice	that,	from	a	proper	referential	perspective	in	which

assertions,	even	of	possibilities,	require	evidence,	these	paradoxes,

dependent	as	they	are	on	an	intrinsic	view	of	ideas,	do	not	arise.45	They	do	not
arise	because	there	is	no	Platonic	universe	of	intrinsic

ideas.	And	reality	does	not	contain	contradictions.	When	one

appears	to	arrive	at	a	contradiction,	one	resolves	it	by	looking	at

reality	and	checking	one’s	premises.
Cantor’s	program	was	to	ground	all	of	mathematics	on	set

theory,46	a	program	that	was	continued	by	his	successors.	But,	if	one	wanted	to
avoid	renouncing	infinite	sets	altogether,	some	kind

of	restriction	on	one’s	ability	to	call	something	a	set	was	required.
In	the	standard	diagnosis,	there	were	two	basic	problems

with	the	early	formulations	of	set	theory.	The	first	was	the	socalled

axiom	of	abstraction47	that,	in	essence,	said	that	any	well-defined	abstract

criterion	specified	a	set	consisting	of	the	concretes

satisfying	that	criterion.	A	version	of	this	axiom	survives	today,	but

the	surviving	version	only	provides	a	way	to	define	subsets	of	an

already-acknowledged	set.	In	this	form,	it	is	known	as	the	axiom	of
specification.48	In	rough	terms,	what	distinguishes	the	surviving	version	is	that
the	parent,	the	already	acknowledged	set,	acts	as	a



genus.
The	second	problem	is	thought	to	have	been	a	language

that	was	too	rich.	As	Suppes	puts	it,	“we	avoid	these	paradoxes	by	severely
restricting	the	richness	of	our	language.”49
On	such	a	diagnosis,	one	looked	for	ways	to	restrict	the

ways	that	sets	could	be	defined	and	to	restrict	the	things	that	could

be	said	about	them.
Ultimately,	the	standard,	generally	accepted,	answer	was

provided	by	offering	(or	prescribing)	a	list	of	axioms	of	set	theory.

The	most	successful	of	these	lists	was	published	by	Zermelo	in	1908

and,	in	a	slightly	modified	form	(Zermelo-Fraenkel),	is	the	standard

set	of	axioms	(the	ZF	axioms)	in	use	today	by	working

mathematicians.50
These	axioms	were	designed	to	accomplish	three	things.

First,	they	needed,	as	much	as	possible,	to	accommodate	the

standard	kinds	of	arguments	that	were	then	commonly	accepted

among	mathematicians.	Secondly,	they	needed	to	delimit	the

universe	of	sets	in	such	a	way	as	to	avoid	the	paradoxes	that	had

plagued	earlier,	informal,	attempts	at	set	theory.	And	thirdly,	they

all	needed	to	have	enough	intuitive	appeal	and	wide	enough

applicability	to	inspire	assent	from	the	mathematical	community.
The	resulting	set	of	axioms	asserts	the	unique	existence	of

the	set	having	no	elements,	the	socalled	empty	set,	symbolized	by

the	symbol	Ø.	And	the	socalled	Axiom	of	Infinity	asserts	the	existence	of	a	rather



peculiar	set	“which	has	Ø	as	an	element	and

which	is	such	that	if	a	is	an	element	of	it	then	the	[union	of	a	and	{a},	namely
{a,{a}},]	is	also	an	element	of	it.”51	Here,	the	inclusion	of	{}	around	something
reads	something	like	“the	set	consisting	of”

So	the	Axiom	of	Infinity	is	saying	that	if	a	is	an	element	of	this	infinite	set,	then
the	set	consisting	of	two	elements,	namely	(the

element	a	and	the	set	{a}	whose	only	element	is	a)	is	also	an	element	of	the
asserted	infinite	set.
Now	these	are	two	very	remarkable	sets.	The	first,	namely

Ø,	is	essentially	a	mathematical	convenience.	And	the	second	is	an

infinity	stew	that	mixes	elements	of	sets	with	sets,	with	sets	of	sets,

and	so	on	infinitum.
Aside	from	the	Axiom	of	extension	and	these	two	posited

sets,	every	other	settheoretic	axiom	prescribes	some	specific	way	of

generating	new	sets	from	existing	sets.
In	this,	one	basic	underpinning	of	Cantor’s	work	has	not

changed:	“In	presenting	the	ZF	axioms	it	is	presumed	that	the

domain	of	entities	of	which	they	are	true	is	a	universe	of	sets”52
But	here	is	the	paradox.	The	intent	of	the	set	of	axioms	is	to

limit	that	universe	to	sets	that	can	be	derived	from	that	set	of

axioms.	But	that	entire	edifice	includes	but	one	element	from	which

to	build,	namely	the	set	that	has	no	members,	the	empty	set.	As

Tiles	acknowledges,	“it	is	a	wholly	abstract	universe	generated,	as	it

were,	out	of	nothing.”53
A	theory	that	once	started	as	something	completely	openended	secures	its



foundations,	and	avoids	contradictions,	by

constructing	its	own	universe	from	the	set	that	has	no	members.

And,	in	a	literal	sense,	the	ZF	set	of	axioms	limits	the	world	of	sets

to	sets	that	derive	in	some	way	from	this	base.
In	my	attempt	to	rehabilitate	sets,	I	have	emphasized

hierarchy,	a	hierarchy	that	starts	with	reality.	The	ZF	axioms

provide	an	alternative	hierarchy,	as	a	way	(it	has	been	hoped)	to

avoid	contradiction,	a	hierarchy	that	builds	from	the	empty	set	and

from	an	assertion	of	a	certain	related	set	provided	by	the	Axiom	of

Infinity.	To	directly	assert	the	existence	of	any	other	set	not	derived	from	this
base	is	to	ignore	the	entire	purpose	of	the	axioms.	It	is	to

risk	the	earlier	paradoxes	or,	perhaps	to	encounter	new	ones.	In

practice,	then,	within	the	effective	scope	of	these	axioms,	there	are	no	sets	except
those	that	can	be	constructed,	in	the	prescribed

ways,	from	the	empty	set.
In	the	ZF	framework,	one	does	not	have	the	foundation	of	a

referential	theory	to	provide	a	defense	against	contradiction	or	to

provide	a	reference	point	to	resolve	any	contradictions	one	might

find	in	one’s	thinking.	So	the	ZF	framework	must	carefully

prescribe	a	universe	of	its	own.	And	one	must	be	careful	to	never

venture	beyond	its	walls.
How	can	one	possibly	use	such	a	theory	to	provide	a

foundation	for	mathematics?
And	the	short	answer	is	that	one	utilizes	the	axioms	to



construct	a	formal	equivalent	to	known	mathematics.	And,	as	it	turns	out,	from	a
formal	standpoint,	if	one	can	somehow	construct

an	image	of	the	natural	numbers,	one	can	formally	generate,	from	that	base,	and
with	the	aid	of	the	ZF	axioms,	everything	else.
So	how	does	one	construct	the	natural	numbers?	Like

this:54

0	=	Ø
1	=	0+	defined	as	{0}	=	{Ø}
2	=	1+	=	{0,1}	=	{Ø,	{Ø}}
3	=	2+	=	{0,	1,	2}	=	{Ø,{Ø},{Ø,	{Ø}}}

…

And	so	on,	for	all	successors	of	0.55
By	the	Axiom	of	Infinity,	one	can	parlay	this	beginning	into

an	infinite	set,	one	that	can	at	least	be	thought	of	as	the	set	consisting	of	all	the
natural	numbers.56	Then	one	constructs	the	socalled	Power	Set	of	that	infinite
set,	consisting	of	all	subsets	of	the	infinite	set.57	And	this,	in	turn,	is	enough	to
utilize	the	standard	constructions	of	the	real	numbers,	e.g.,	those	of	Dedekind
and

Cantor	that	I	discussed	in	Chapter	4.	And,	finally,	the	foundation	of

the	real	numbers,	one	holds,	is	enough	to	construct	everything	else

in	mathematics.	When	philosophers	of	mathematics	say	that	the

status	of	the	real	numbers	is	the	only	interesting	problem	in	the

philosophy	of	mathematics,	this	may	be	what	they	have	in	mind.
This	entire	enterprise	has	no	existential	referent

whatsoever,	but,	from	a	formal	perspective,	it,	at	least,	purports	to

recreate	the	entire	formal	structure	of	mathematics.	I	say

“purports”	because	such	a	formal	equivalence	has	no	meaning



“purports”	because	such	a	formal	equivalence	has	no	meaning

within	the	province	of	the	ZF	axioms,	which	cannot	refer,	as	such,

to	anything,	not	even	the	natural	numbers.
In	any	event,	since	the	concern	is	to	avoid	contradiction,

and	because,	within	a	purely	formal	system,	any	contradiction	that

arises	would	have	to	be	a	formal	contradiction,	mathematicians	take	away	the
following:	Go	ahead	and	think	of	numbers	any	way

you	want	to,	including	the	way	that	you	always	have.	Go	ahead	with

the	constructions	you’ve	always	done	anyway.	As	long	as	something

can	be	constructed	out	of	the	real	numbers,	in	the	prescribed	ways,

you	can,	formally,	continue	to	live	within	the,	hopefully	safe,	world

of	Zermelo-Fraenkel	set	theory.
From	the	ranks	of	mathematicians,	the	only	remaining

argument	revolves	around	issues	involving	the	validity	of	some	of

these	constructions,	with	the	“intuitionalists”	and	“constructivists”

wanting,	for	various	philosophical	reasons,	to	place	greater

restrictions	on	permissible	set	theoretic	operations	and	on	mathematical
arguments	than	everybody	else.58	If	the	ontological	status	of	mathematics
remained	unsettled,	mathematicians	came	to

terms	with	set	theory	as	an	enterprise	showing	that	they	could

continue	to	go	on	doing	what	they	had	always	been	doing	without

fearing	the	next	settheoretic	paradox.	As	Epple	puts	it:

“…	it	must	be	stressed	that	the	philosophical	issues

which	were	thrown	up	by	the	end	of	the	science	of



which	were	thrown	up	by	the	end	of	the	science	of

quantity	cannot	be	regarded	as	having	been

solved.	If	there	is	any	consensus	about	the

foundations	of	analysis,	then	this	consensus

consists	in	the	pragmatic	agreement	that	analysis

should	be	practiced	on	the	basis	of	the

ontologically	neutral	axioms	of	set	theory.”59

Set	theory,	one	should	realize,	is	hardly	ontologically

neutral.	The	only	sense	in	which	set	theory	might	be	called

ontologically	neutral	is	that	it	ignores,	or	treats	as	irrelevant,	any

connection	of	mathematics	to	the	world.

But,	in	practice,	this	attitude	means	taking	numbers	for

granted	and	limiting	one’s	settheoretic	constructions	to	those	that

are	on	the	list	or	that	are	derivable	from	the	list	prescribed	by	the

ZF	axioms.

General	Comments

From	a	reality-based	perspective	this	is	simply	crazy.	It

completely	cuts	off	mathematics	from	any	official	relationship	to

the	world.	It	ignores	the	context	of	how	sets	actually	arise	in

mathematics,	why	they	are	needed,	what	they	mean,	and	how	is	it

that	they	actually	provide	the	distinctions	that	they	are	designed	to



that	they	actually	provide	the	distinctions	that	they	are	designed	to

provide.

To	adopt	the	ZF	axioms	as	a	foundation	of	mathematics	is

to	abandon,	on	principle,	any	substantive	content	of	mathematics.
At	first	glance,	as	it	originated,	set	theory	took	the	entire

universe,	or	perhaps	the	entire	mental	universe,	as	being

partitioned	neatly	into	an	array	of	interlocking	sets.	There	is,	in	that

view,	one	universe	of	sets.	For	set	theory	maintains	that	any	two

sets	in	the	world	can	meaningfully	be	combined,	by	taking	their

union,	into	a	larger	set,	that	one	can,	for	example,	combine

numbers,	staplers,	and	emotional	states	into	one	infinite	set.
Yet,	to	avoid	contradiction,	the	ZF	axioms	offer	a	far	more

constricted	universe,	one	built	entirely	on	the	empty	set	and	on

mental	gyrations	of	things	like:	the	set	consisting	of	the	set

consisting	of	the	set	consisting	of	…	.	Within	that	universe	one

combines,	freely,	objects	including	different	numbers	of	iterations

of	this	“set	of”	device.	One	purchases	such	freedom	by	basing	the

entire	universe	of	sets	on,	quite	literally,	nothing.
Official	set	theory	replaces	a	hierarchy	derived	from

observation	of	the	world	with	a	different	hierarchy,	one	based	on

iterations	of	…	nothing.	It	is	a	theory	uniquely	designed	to	support,

in	a	phrase	contributed	by	Mary	Tiles	(after	a	statement	of	Hilbert’s)	Cantor’s
paradise.60



Why	Mathematics	has	survived

In	my	view	mathematicians,	despite	the	absurdities	of	set

theory,	have	continued,	to	this	day,	to	do	mathematics.	But	how	is

this	possible?	Assuming	that	I’m	right,	why	has	mathematics

survived?

First,	progress	in	mathematics	has	always	been	driven	by

the	problems	that	mathematicians	attempt	to	solve.	Beyond	the

self-inflicted	problems	that	arise	in	the	philosophy	and	foundations

of	mathematics,	these	problems	all	arose,	in	some	form,	directly	or

indirectly,	as	problems	of	measurement.	The	major	branches	of

mathematics	of	the	20thand	21st	centuries	all	have	their	roots	in	the	19th,	which
have	their	roots	in	the	18th.

Secondly,	the	entire	machinery	of	set	theory	is	taken,	in	a

sense,	with	a	grain	of	salt.	Mathematicians	treat	numbers	as	if	they

had	nothing	to	do	with	the	weird	constructions	from	the	ZF	axioms.

Yet	they	take	comfort	in	the	formal	equivalence	of	these

constructions	with	the	numbers	that	everyone	uses.	For	this	formal

equivalence	seems	to	show	that	one	can	go	on	using	numbers,

ordinary	logic,	and	the	prescribed	operations	on	sets,	without	fear

of	contradiction.	In	effect,	they	treat	set	theory	as	a	useful	model,

not	as	the	context	of	their	enterprise.



Thirdly,	the	actual	role	of	set	theory	in	mathematics	has	a

number	of	curious	aspects.	It	is	something	that	everyone	needs,

because	it	provides	a	common	vocabulary.	So	every	mathematician

has	to	learn	the	basic	concepts	and	operations	of	set	theory.	But	it’s

rather	like	learning	a	foreign	language.	One	has	to	do	it	to	function

independently,	but	it’s	a	tool	and	not	an	end.	As	a	research

endeavor,	it’s	not	very	interesting,	at	least

not	to	most

mathematicians.	So	one	learns	the	language	and,	in	practice,

applies	set	theory	to	mathematical	domains	or	to	subsets	of

mathematical	domains,	essentially	as	I	have	advocated	and

defended	in	this	chapter.	One	continues,	in	general,	to	form	valid

mathematical	concepts	even	if	the	definitions	one	offers	are	clothed	in	the
unfortunate	trappings	of	set	theory.

Within	their	proper	context,	one	can,	as	I	have	argued,

justify	the	settheoretic	operations	that	matter,	and	that	the	ZF

axioms	permit.	On	the	other	hand,	notwithstanding	the	weird

constructions	of	the	set	theorists,	there	is	no	actual	need,	for

example,	to	combine	existents	of	different	kinds,	as	unions,	into	a

single	set.

In	actual	practice,	once	the	real	numbers	are	taken	as	a

given,	mathematicians	observe	hierarchy.	And,	to	some	extent,	at



given,	mathematicians	observe	hierarchy.	And,	to	some	extent,	at

least	from	a	formal	perspective,	that	observance	is	even	reinforced

by	a	set-theory	that	offers	a	different	hierarchy	of	its	own.

To	a	working	mathematician,	set	theory	offers	the

following:

●

A	concept	that,	in	actual	use,	serves	a	very	important

function	in	mathematics,	namely,	the	function	of	isolation

that	I	detailed	in	the	earlier	part	of	this	chapter,

●

A	uniform	language	and	a	short	list	of	logical	operations

that,	in	an	appropriate	context,	are	valid	and	useful	ways	of

expressing	the	logic	in	their	mathematical	analyses,

●

A	demarcation	of	permissible	logical	steps	that	avoids	the

contradictions	that	plagued	the	Cantor-inspired

mathematics	of	the	late	19th	and	early	20th	centuries,	●

A	formal	model	that,	however	absurd,	captures	and

reproduces	the	formal	infrastructure	of	mathematics	with	a

minimum	number	of	formal	axioms.	That	formal	model,

however	inappropriately,	is	taken	to	provide	a	warrant	for

the	formal	soundness	of	their	mathematical	pursuits.



the	formal	soundness	of	their	mathematical	pursuits.

In	short,	mathematicians	take	what	they	need,	and	ignore

the	rest.

General	Conclusions

My	goal	in	this	chapter	was	to	outline	the	proper	role	and

scope	of	set	theory	in	mathematics.	I	have	discerned	its	essential

function	in	isolating	a	portion	of	a	mathematical	domain,	isolating

a	range	of	instances	of	a	mathematical	concept.	In	this,	I	have

stressed	the	importance	of	hierarchy	in	mathematics.	Concepts,

pertaining	to	quantitative	relationships	in	the	world,	come	first.

Sets	presuppose	mathematical	abstraction;	they	presuppose	a

mathematical	domain.

Sets	provide	differentiation	within	a	domain,	a	domain

consisting	of	systems	of	mathematical	measurements	or	geometric

objects	of	a	particular	type.

In	discussing	point	set	topology,	I	have	provided	an

extended,	nontrivial,	example	of	the	proper	use	of	set	theory	to

measure	precision	standards	of	convergence,	an	example	that

further	indicates	the	ubiquity	of	geometry	in	mathematics,	an

example	that	also	has	great	interest	in	its	own	right.

Finally,	I	have	argued	that	the	standard	approach	to	set



theory	starts	in	mid	air,	violates	hierarchy,	and	has	only	a	formal

connection	to	actual	mathematics.
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Chapter	7	Vector	Spaces:	A	Study	in
Mathematical	Abstraction

Introduction

The	nineteenth	century	was	the	most	eventful	century	in	the	entire	history	of
mathematics.	In	the	conventional	view,	the	nineteenth	century	movement	toward
greater	mathematical	rigor	and	abstraction	simultaneously	discarded	the
geometric	foundations	of	mathematics	and	even	its	mission,	across	millennia,	as
the	science	of	quantity.

The	nineteenth	century	changed	the	practice	of	mathematics	and	it	also	changed
the	way	that	people	think	about	mathematics.	Yet,	contrary	to	the	modern,
almost	universal,	consensus,	the	movement	to	greater	mathematical	abstraction
and	rigor	that	began	in	the	late	nineteenth	century	did	not	change,	and	has	not
changed,	the	fundamental	nature	of	mathematics.	It	remains,	even	as	it	is
practiced,	in	Ayn	Rand’s	characterization,	“the	science	of	measurement.”1

I	say	this,	despite	the	formal	abandonment	of	any	relationship	of	mathematics	to
the	world	and	despite	the	rise	and	later	evolution	of	set	theory,	culminating	with
the	ZermeloFraenkel	axioms	of	set	theory	in	the	twentieth	century,	discussed	in
Chapter	6.

But	to	show	what	I	mean	by	my	claim	will	require	more	than	discussions	of
elementary	mathematics.	For	I	maintain	that	the	many	abstract	mathematical
sub-specialties,	in,	for	example,	geometry,	differential	equations,	and	abstract
algebra,	that	flourished	in	the	twentieth	century,	remain,	in	their	method	and	in
their	achievements,	though	not	in	their	presentations,	vigorous	sub-specialties	of
the	science	of	measurement.

A	full	vindication	of	this	viewpoint	would	require	a	broad	survey	of	the
conceptual	foundations	and	methods	of	the	major	branches	of	20th/21rst
mathematics.	I	can	only	begin	that	task	within	the	scope	of	this	book.

As	a	first	example,	I	explained,	in	Chapter	6,	how	the	fundamental	definition	of
a	topological	space	serves	to	address	a	very	general	problem	of	measurement,
namely	the	need	to	measure	processes	of	successive	approximation.	I	will	devote



namely	the	need	to	measure	processes	of	successive	approximation.	I	will	devote
this	chapter	and	the	next	to	showing	how	the	measurement	perspectives	I	have
presented	in	this	book	illuminate	and	provide	a	similar	conceptual	foundation	for
two	other	important	domains	in	modern	mathematics.	My	treatment	of	these
subjects	will	be	elementary,	but	the	subjects	are	both	more	advanced	and	more
abstract	than	those	treated	in	the	first	five	chapters	of	this	book.	Both	subjects,
vector	spaces	and	abstract	groups,	have	fundamental	importance	in	both	their
scientific	and	mathematical	applications.

This	chapter	explains	the	most	fundamental	concepts	of	vector	spaces.	Vector
spaces	have	a	central,	a	fundamental,	and	a	pervasive	importance	in
mathematics.	The	theory	of	vector	spaces	is	part	of	abstract	algebra.	And	yet,	in
its	mathematical	and	scientific	applications,	the	analysis	of	vector	spaces	retains
a	form	that	is	reasonably	concrete.

Historically,	the	theory	of	vector	spaces	is	a	bridge	from	the	prior,	more
concrete,	perspectives	in	mathematics	to	the	more	abstract	modern	perspectives.
In	this	book,	the	theory	of	vector	spaces,	also	known	as	linear	algebra,	will
serve	as	a	similar	bridge	in	understanding	the	universal	role	of	measurement	in
mathematics.	For	this	reason,	vector	spaces	provide	a	useful	case	study	in
mathematical	abstraction.

The	modern	concept	of	vector	space,	and	of	the	linear	transformations	that
relate	them,	is	a	culmination	of	a	development	across	millennia.	The	implicit
concept	of	a	vector	is	at	least	as	old	as	Archimedes.2	Linear	algebra,	the	study	of
simultaneous	linear	equations	is	even	older:	The	Babylonians	were	solving
simultaneous	linear	equations	in	two	unknowns	4,000	years	ago.3

In	its	earliest	physical	form,	a	vector	is	a	magnitude	associated	with	a	particular
direction.	A	displacement	is	a	vector;	so	is	a	force.

But	the	need	for	solving	simultaneous	equations	is	far	broader	than	the	need	for
the	physical	concept	of	a	vector.	Simultaneous	equations	arise	as	a	problem	in
indirect	measurement.	They	arise	whenever	two	or	more	relationships	are	known
about	an	unknown	quantity	or	a	set	of	quantities.

If	I	say,	for	example,	that	John	is	three	years	older	than	Mary,	that	the	sum	of
their	ages	is	17,	and	I	then	ask	for	their	respective	ages,	I	am	posing	a	problem
that	involves	simultaneous	equations.	Whenever	Euclid	intersects	two	lines,	he	is
solving,	geometrically,	two	simultaneous	equations.



solving,	geometrically,	two	simultaneous	equations.

The	connection	between	these	perspectives,	the	connection	of	the	algebra	to
Euclid,	is	supplied	by	analytic	geometry.	One	expresses	the	equations	for	a	pair
of	lines	as,	for	example:

x	+	y	=	17	x	–	y	=	3

One	solves	these	equations	to	find	their	intersection,	concluding	that	x	=	10	and
y	=	7.
The	modern	theory	of	linear	algebra	integrates	the	physical	theory	of	vectors
with	the	older	theory	of	simultaneous	linear	equations.	Like	analytic	geometry,	it
brings	analytic	methods	to	bear	on	geometric	problems	and	provides	a	geometric
perspective	on	problems	that	have	no	direct	relationship	to	space	and	time.
The	value	of	and	need	for	vector	spaces	and	linear	algebra	should	not	be
controversial.	As	a	fairly	early	example	of	the	modern	abstract	approach,	it	is
also	ideal	for	my	purposes,	because	of	the	way	that	the	concepts	of	linear	algebra
further	exemplify	the	relationship	between	quantity	and	the	measurements	by
which	quantities	are	quantified.

Vector	Spaces

In	its	most	primitive	form,	vectors	date	back	to	Archimedes.	The	vectors	of
Archimedes	are	forces,	forces	acting	in	but	two	directions:	up	and	down.	In	one
of	his	analyses,	the	forces	are	weights	acting	on	lever	arms.	In	another,
Archimedes	starts	with	the	understanding	that	objects	float	when	their
gravitational	force	is	balanced	by	the	opposing	force	of	water	pressure.
Archimedes’	analyses	are	analyses	of	forces	in	balance.

Archimedes	discovered	his	famous	law	of	levers	by	analyzing	centers	of	gravity.
He	starts	from	a	simple	empirical	observation:	Two	equal	weights	standing	at
equal	distances	from	a	fulcrum	will	balance.	Moreover,	the	force	exerted	on	the
fulcrum	is	equal	to	the	combined	force	of	the	two	weights	and	is,	therefore
opposed	by	an	equal	force	exerted	by	the	fulcrum.	This	is	illustrated	in	the
following	diagram:4



Figure	1

From	this	observation,	Archimedes	either	concludes	or,	perhaps,	also	observes
that	two	equal	weights	located	elsewhere	on	a	balance	beam	will,	likewise
balance	an	opposing	force	at	their	midpoint,	no	matter	where	the	fulcrum	of	the
entire	beam	might	be	located.	That	is,	the	equilibrium	of	the	beam	will	not	be
changed	if	the	two	equal	weights	are	each	moved	the	same	distance	in	opposiste
directions.	It	is	as	though	a	second	scale	were	located	at	their	midpoint.	This
situation	is	illustrated	in	Figure	2	as	it	relates	to	Figure1:

Figure	2

In	this	diagram	the	two	equal	weights	on	the	right	have	been	moved	equal
distances	in	opposite	directions	from	their	original	positions	in	Figure	1.
Regardless	of	how	far	each	weight	is	moved,	as	long	as	these	distances	are
equal,	the	scale	will	always	remain	in	balance.5	In	the	form	needed	by
Archimedes,	if	two	equal	weights	are	each	moved	to	their	midpoint	on	a	balance
beam,	this	movement	will	not	affect	the	balance.

However,	although	this	principle	is	assumed	in	Archimedes’	argument,	he
neither	states	that	principle	as	a	premise	(or	observation)	nor	provides	a
demonstration.	But	what	he	offers,	with	full	rigor	thereafter	from	this	base,	is	a
beautiful	demonstration	of	his	famous	law	of	levers:

“Two	magnitudes,	whether	commensurable	or	incommensurable,	balance	at
distances	reciprocally	proportional	to	the	magnitudes.”6

Archimedes’	argument	is	stated,	and	proven,	in	a	very	general	way,	but	his
approach	to	demonstrating	his	law	amounts	to	the	following:

Suppose	one	wants	to	balance	three	equal	weights	against	five.	Start	with	the
following	scale,	in	which	eight	weights	(eight	being	the	sum	of	three	and	five)



following	scale,	in	which	eight	weights	(eight	being	the	sum	of	three	and	five)
are	equally	spaced	on	a	balance	beam.	The	beam	will	balance	when	the	fulcrum
is	placed	in	the	middle:

Figure	3

As	a	first	step	toward	balancing	3	of	these	weights	against	5,	Archimedes,	in
effect,	consolidates	the	three	weights	on	the	right,	without	disturbing	the	balance
of	the	beam,	as	follows:

Figure	4

The	balance	is	maintained	because	the	two	weights	were	both	moved	the	same
distance	in	opposite	directions.
Next,	in	the	same	fashion,	he	consolidates	the	five	remaining	to	their	central
point,	again	moving	weights,	in	pairs,	for	equal	distances	in	opposite	directions:

Figure	5

Once	again,	for	the	same	reason,	the	scale	remains	in	balance.
It	remains	to	relate	the	respective	distances	from	the	fulcurm	of	the	two	piles	of
weights.	These	respective	distances	from	the	fulcrum	are	1.5	units	and	2.5	units.
One	can	verify,	by	multiplying,	that	the	product	of	the	weight	on	the	left	(5)
times	the	distance	from	the	fulcrum	(1.5)	is	equal	to	the	weight	on	the	right	(3)
times	its	distance	from	the	fulcrum	(2.5).	Numerically,	both	products	are	7.5.
This	relationship	will	always	hold:	the	scale	will	balance	if	and	only	if	the
product	of	weight	and	distance	on	the	left	is	equal	to	the	corresponding	product
on	the	right.	In	the	modern	formulation,	these	two	products	are	called	moments,
and	the	Law	of	Archimedes	states	that	the	left	moment	is	equal	to	the	right
moment.



Archimedes,	however,	states	his	law	a	little	differently,	as	an	equality	of	two
ratios.	The	corresponding	weights	are	5	and	3.	In	terms	of	these	numbers,
Archimedes	law	of	levers	states,	and	one	verifies	in	this	case,	that	2.5/1.5	=	5/3.
When	the	beam	is	in	balance,	the	distances	of	the	weights	from	the	fulcrum	are
in	inverse	proportion	to	the	weights.	From	a	modern	perspective,	the	modern
formulation	is	mathematically	equivalent	to	that	of	Archimedes.	But,	as	noted	in
Chapter	2,	the	Greek	mathematicians	did	not	consider	products	of	magnitudes.
One	can	apply	this	approach	to	any	number	of	weights.	For	example,	to	balance
5	equal	weights	against	7	equal	weights,	start	with	12	(=	5	+	7)	equally	spaced
weights	and	consolidate	5	on	the	right	and	7	on	the	left.	One	finds,	again,	the
inverse	proportion	of	Archimedes	and	the	equality	of	left	and	right	moments	of
the	modern	formulation.
One	could	translate	this	process	into	a	general	algebraic	argument	to	establish
the	general	case.	However,	for	technical	reasons,	a	slight	variation	of	the
argument	is	somewhat	easier	to	follow.
So	suppose	that	weights	of	m	×	W	and	n	×	W	are	spread	out	side	by	side	along
the	balance	beam.	Here,	m	and	n	are	integers	and	W	is	taken	as	the	amount	of
the	total	weight	spanning	any	two	successive	vertical	distance	markers.	So	the
weight	m	×	W	spans	m	distance	units	and	n	×	W	spans	n	distance	units.The
situation	is	illustrated	in	Figure	6:

Figure	6



Figure	6

The	two	green	bands	represent	the	two	weights	mW	and	nW.	(I	now	omit	the
times	sign,	×	between	the	integer	and	the	weight.).	Since	the	entire	length	of	the
balance	beam	spans	m	+	n	units	of	length,	the	midpoint	at	which	the	beam
balances	is	at	the	point	(m	+	n)/2	units	from	the	leftmost	edge	of	the	beam.
Similarly,	the	midpoint	of	the	portion	of	the	beam	occupied	by	mW,	on	the	left,
is	at	m/2	units	and	the	midpoint	of	the	portion	occupied	by	nW,	on	the	right,	is	at
n/2	units	past	the	end	of	mW,	and,	therefore,	at	the	point	n/2	+	m	length	units
from	the	leftmost	edge	of	the	beam.

One	checks	that	the	midpoint	of	the	left	mW	weight,	in	relation	to	the	center	of
the	beam,	is	a	distance	of	n/2	(=	(m	+	n)/2	–	m/2)	units	from	the	center	of	the
beam	and	the	right	midpoint	of	the	nW	weight	is	a	distance	of	(n/2	+	m)	–	(m	+
n)/2	=	m/2	units	from	the	center	of	the	beam.	Then	as	stated	in	Figure	6,	one
notices	that	mW	×	n/2	(left	moment)	=	nW	×	m/2	(right	moment)	=	nmW/2.	This
is	the	Law	of	Archimedes	stated	as	an	equality	of	moments.

The	consolidation	of	each	weight	at	its	respective	center	is	illustrated	in	Figure
7:
	

Figure	7

Archimedes’	proof	is	more	elegant,	though	less	intuitive,	than	this	rendition,	but
this	is	the	central	idea	behind	his	method.	His	argument	proves	his	law	in



general,	for	any	pair	of	commensurate	weights.	He	then	applies	the	Eudoxus
conception	of	ratio	to	extend	his	conclusion	to	incommensurable	magnitudes
and,	thereby,	to	complete	his	argument.7

The	study	of	forces	in	equilibrium	and	the	first	seeds	of	the	mathematical
concept	of	a	vector	begin	with	this	proposition.
I	said	in	Chapter	2	that	Archimedes	used	line	segments	to	represent	force.	And
so	he	does.	But	his	forces	are	not	just	magnitudes;	they	act	in	a	certain	direction,
even	if	that	direction	is	either	up	or	down.
This	directionality	of	force	is	especially	evident	in	Archimedes’s	analysis	of
floating	bodies.	To	state	his	key	propositions:

“Any	solid	lighter	than	a	fluid	will,	if	placed	on	the	fluid,	be	so	far	immersed
that	the	weight	of	the	solid	will	be	equal	to	the	weight	of	the	fluid	displaced.”8

and
“If	a	solid	lighter	than	a	fluid	be	forcibly	immersed	in	it,	the	solid	will	be	driven
upwards	by	a	force	equal	to	the	difference	between	its	weight	and	the	weight	of
the	fluid	displaced.”9

Archimedes	also	states	a	proportion:

“If	a	solid	lighter	than	a	fluid	be	at	rest	in	it,	the	weight	of	the	solid	will	be	to
that	of	the	same	volume	of	the	fluid	as	the	immersed	portion	of	the	solid	is	to	the
whole.”10

Archimedes’s	understanding	of	buoyancy	reflects	a	focus	on	one	key	question:
At	what	point	does	the	upward	force	exerted	by	water	pressure	balance	the
weight	of	the	object?

Archimedes’s	analysis	of	forces	is	restricted	to	one	dimension.	But	his
treatments	of	levers	and	buoyancy	are	the	first	analyses	in	history	of	the
equilibrium	of	forces,	of	the	combined	effect	of	various	forces	acting	on	a	body.

In	the	modern	era,	one	of	Newton’s	great	innovations	was	to	treat	velocity	and
acceleration	as	vectors,	as	magnitudes	associated	with	a	particular	direction.
And,	further,	to	relate	both	velocity	and	acceleration	to	forces,	magnitudes	acting
in	a	particular	direction.	Newton’s	innovation	was	essential	to	the	discovery	of
his	laws	of	motion.11



Vectors	are	first	conceived	geometrically,	but	they	can	be	meaningfully	related
arithmetically	in	a	way	that	has	both	geometric	and	physical	significance.	Most
importantly,	two	vectors	of	the	same	type	can	be	added	to	yield	a	third	vector	of
that	same	type.

The	easiest	way	to	understand	how	vectors	add	is	to	start	with	vectors	of
displacement.	Suppose	one	goes	one	mile	east	and	two	miles	north.	In
coordinates,	one	goes	from	the	point	(0,	0),	one’s	starting	place,	to	the	point	(1,
2).	Next,	one	goes	3	miles	east	and	1	miles	north.	In	all,	one	has	gone	4	miles
east	(1	+	3)	and	3	miles	north	(2	+	1).	The	second	displacement,	had	it	acted
from	the	origin,	would	be	written	as	(3,	1).	And,	as	a	displacement,	the	relevant
characteristics	are,	in	fact	these	very	coordinates.	One	doesn’t	measure	a
displacement	by	where	the	displaced	object	ends,	but	by	the	change	in	its
coordinates	during	the	displacement.

The	total	displacement	in	each	direction	is	the	sum	of	the	displacements,	of	the
net	changes	in	each	of	the	respective	directions.	In	other	words,	the	total
displacement	is	given	by	(1,	2)	+	(3,	1)	=	(4,	3):	The	combined	effect	of	two
displacements	is	found	by	adding	their	coordinates.	Figure	8	depicts	these
relationships:

Figure	8

The	reverse	displacement	has	the	same	magnitudes,	but	in	the	opposite	direction
and	their	combined	effect	is	the	zero	displacement	(0,	0).	So,	for	example,	(1,	2)



and	their	combined	effect	is	the	zero	displacement	(0,	0).	So,	for	example,	(1,	2)
+	(-1,	-2)	=	(0,	0).	It’s	also	clear	that	the	order	in	which	the	two	displacements
are	carried	out	does	not	affect	the	outcome.	In	short,	adding	works	for
displacements,	the	same	way	it	works	for	numbers.	One	would	not	call	it
addition,	even	in	this	generalized	sense,	were	that	not	the	case.

But	the	relationship,	between	addition	of	displacements	and	ordinary	addition,	is
even	stronger	than	that.	Each	direction,	north	and	east,	represents	a	distinct	axis.
Progress	along	either	of	these	axes	is	independent	from	progress	along	the	other
axis.	What	I’m	calling	the	sum	of	two	displacements	can,	with	perhaps	even
greater	justice,	be	characterized	as	simply	carrying	out	two	additions,	additions
of	simple	magnitudes,	pertaining	to	two	separate	measurements	of	the	moving
object.	To	bring	them	together	in	one	expression,	to	take	them	together	as	a
displacement,	is	to	make	an	intellectual	integration.	But	it	is	the	integration	of
two	independent	measurements,	of	two	independent	axes	of	measurement,	into
one	more	complicated	measurement.

What	I	have	discussed	for	displacements,	applies	equally	well	to	velocities,
accelerations,	and	force.	A	displacement	is	a	magnitude,	a	distance	moved,	in	a
certain	direction,	the	direction	of	the	displacement.	A	velocity	is	a	speed	in	a
certain	direction,	i.e.,	a	displacement	per	unit	time	in	a	certain	direction.
Acceleration	is	the	rate	of	change	in	a	velocity;	that	rate	of	change	resolves	itself
as	a	magnitude	in	a	certain	direction.	Indeed,	the	coordinates	that	measure	the
acceleration	of	a	moving	object	are	calculated	as	the	time	derivative	of	the
respective	coordinates	of	its	velocity.

Finally,	for	forces,	one	finds	that	the	vector	sum	of	two	forces	has	the	same
physical	effect	as	the	two	forces	acting	independently.	This	is	usually	referred	to
as	the	parallelogram	law	of	forces	and	the	equivalence	of	that	law	to	the
coordinate	conception	is	illustrated	in	the	following	elaboration	of	Figure	8:



Figure	9

In	Figure	9	one	sees	that,	if	the	vector	operations	are	performed	in	reverse	order,
the	resulting	picture,	illustrating	both	sequences	of	displacements,	is	a
parallelogram	and	the	vector	sum,	of	either	sequence,	is	the	diagonal	of	the
parallelogram.

From	a	measurement	perspective,	one	uses	Cartesian	coordinates.	But	this	is	a
choice	one	makes	in	how	one	measures.	From	a	physical	perspective,	a
displacement	or	a	velocity	is	a	unitary	fact,	albeit	a	fact	with	distinguishable
aspects.	To	even	look	at	a	velocity	as	a	speed	in	a	certain	direction	involves	a
choice,	probably	the	simplest,	among	reasonable	perspectives.	Yet,	the
complexity	involved	in	this	last	choice	resurfaces	when	one	measures	direction.

So	far,	a	vector	is	a	magnitude	that	is	also	directional.	Expressed	in	coordinates,
one	adds	vectors	by	adding	the	respective	coordinates.

Magnitudes	can	be	multiplied	by	numbers.	Three	miles	per	hour	in	a	south-
eastern	direction	multiplied	by	ten	is	30	miles	per	hour	in	a	south-eastern
direction.	If	expressed	in	coordinates,	to	multiply	the	vector	by	7	is	to	multiply
each	coordinate	by	7.	And	this,	just	because	each	coordinate	represents	a
separate,	independent	measurement.	Thus,	7	×	(1,	2)	=	(7,	14).

Not	to	belabor	the	point,	but	multiplication	interacts	with	addition	in	the	usual
way.	Specifically,	the	so-called	distributive	law	holds:



way.	Specifically,	the	so-called	distributive	law	holds:

5	×	(	(1,	2)	+	(3,	5)	)	=	5	×	(1,	2)	+	5	×	(3,	5)
	This	can	be	seen	by	calculating	each	side	of	the	equality,	comparing	the	results,
and	realizing	why	the	results	are	equal:
	5	×	(1,	2)	+	5×	(3,	5)	=	(5,	10)	+	(15,	25)	=	(20,	35)	5	×	(	(1,	2)	+	(3,	5)	)	=	5	×
(4,	7)	=	(20,	35)

As	the	calculation	illustrates,	the	distributive	law	holds	for	vectors	because	it
holds,	separately,	for	each	coordinate:	for	each	independent	measurement	that
one	treats	as	a	separate	coordinate.

Vectors	can	be	drawn,	as	arrows,	from	the	origin	in	the	Cartesian	plane.	For
every	point	in	the	Cartesian	plane	there	is	a	vector	ending	at	that	point.	Equipped
with	this	addition	of	vectors	and	with	multiplication	by	numbers,	the	Cartesian
plane	can	be	regarded	as	a	vector	space.	And	there	is	nothing	special	about	the
number	of	coordinates.	Exactly	the	same	approach	to	addition	and	to
multiplication	by	numbers	works	for	3	coordinates,	for	4	coordinates,	and,	in
general,	for	n	coordinates	where	n	is	any	integer	greater	than	0.	With	these
definitions	of	addition	and	of	multiplication	by	numbers,	Rn	can	be	regarded	as	a
vector	space.

But	addition	of	vectors	and	multiplication	by	numbers	is	not	restricted	to
coordinate	pairs	or	even	to	n-tuples	of	coordinates	representing	points	or	vectors
in	Rn.

For	example,	as	I	already	illustrated	in	Chapter	6,	one	can	add	polynomials	and
multiply	them	by	numbers,	as	well.	For	example,

(x2	+	x	–	5)	+	(2x2	–	2x	+	7)	=	3x2	–	x	+	2	and	3	×	(x2	+	x	–	5)	=	3x2	+3	x	–	15

Addition	of	polynomials	and	multiplication	by	numbers	for	polynomials	obeys
the	same	distributive	law	that	they	do	for	numbers,	just	as	they	do	for	coordinate
pairs.

And,	in	general,	one	can	say	the	same	for	functions,	as	long	as	these	functions
take	values	that	can	be	added	and	can	be	multiplied	by	numbers.	To	repeat	the
formulas	from	Chapter	6,	one	adds	functions	f	and	g,	by	adding	their	values	at
every	point:

(f	+	g)(x)	=	f(x)	+	g(x)



(f	+	g)(x)	=	f(x)	+	g(x)
	One	multiplies	a	function	by	a	number	A	by	multiplying	the	value	of	the
function	at	every	point:
	(Af)(x)	=	A	×	f(x)

Read	this	as:	The	value	of	the	function	Af,	at	a	point	x,	is	equal	to	A	times	the
value	of	the	function	f	at	the	point	x.
Addition	of	functions	works	the	way	it	does	for	numbers.	Multiplication	by
numbers	and	addition	of	functions	working	together,	obey	the	distributive	law,
simply	because	they	obey	it	at	every	point.	Adding	commutes	with
multiplication.	One	can,	without	difference	in	effect,	carry	out	the
multiplications	first	and	then	add	the	results,	or	one	can	add	the	functions
together	first	and	then	apply	the	multiplier.
One	can	even	look	at	coordinate	vectors	and	functions	in	a	similar	way.	From	a
certain	perspective,	one	can	view	an	n-tuple	of	coordinates	as	a	function	on	the
set	of	integers	from	1	to	n.	Namely,	if	the	coordinates	are	(y1,	y2,	…	,	yn)12	then
the	related	function	maps	the	number	i	to	the	coordinate	yi.	To	make	this	more
concrete,	one	looks	at	the	3-tuple	(2,	4,	5)	as	a	function	f	acting	on	the	domain	{1
,	2,	3}	by	the	rule	f(1)	=	2,	f(2)	=	4,	and	f(3)	=	5.
And	one	can	turn	this	around.	Speaking	somewhat	loosely,	think	of	a	function
f(x)	as	having	an	infinite	number	of	coordinates,	all	them	particular	values	of	x
contained	in	the	domain	of	the	function.	From	this	perspective,	the	value	of	the
function	at	x,	namely	f(x)	is	thought	of	as	the	xth	coordinate.	In	adding	two
functions,	one	performs	an	independent	addition	for	each	value,	x,	of	the
independent	variable.	In	multiplying	a	function	by	a	number,	one	performs,	in
effect,	a	separate	multiplication	for	each	value	of	x.	The	laws	for	addition	of
functions	and	for	multiplying	them	be	numbers	follow	from	the	laws	of
arithmetic.
But	this	point	is	somewhat	of	a	diversion.	In	regards	to	their	abstract	status	as
vectors,	the	important	point	is	this:	From	a	formal	perspective,	n-tuples	of
numbers,	functions,	and	polynomials	(a	special	class	of	functions)	are	all	subject
to	the	same	kinds	of	mathematical	operations.	They	all	have	an	addition
operation	that	functions	the	way	addition	is	supposed	to	function.	They	can	all
be	multiplied	meaningfully	by	numbers	and	the	multiplication	obeys	the
distributive	law	with	respect	to	the	addition	operation.	And	as	mathematical
domains,	they	all	have	a	certain	closure	property.	If	one	adds	two	of	anything	in
the	domain,	one	gets	something	else	in	the	domain.	If	one	multiplies	something
in	the	domain	by	a	number	the	result	is	something	in	the	domain.	There	is	a	zero
value	in	the	domain	(the	result	of	multiplying	anything	in	that	domain	by	zero).



And	the	negative	of	anything	in	the	domain	(the	result	of	multiplying	by	-1)	is
also	in	the	domain.
Any	mathematical	domain	satisfying	these	characteristics	is	called	a	vector
space.
Indeed,	we	studied	such	a	domain	in	Chapter	2.	When	I	discussed	the	pre-
arithmetic	of	magnitudes,	I	was	talking	about	one-dimensional	vector	spaces,
except	that	I	usually	ignored	negative	magnitudes.
In	a	certain	sense,	mathematicians	maintain	the	distinctions	among	these
different	kinds	of	vector	spaces.	Vector	spaces,	as	mathematical	domains,	are
regarded	abstractly,	but	even	on	an	abstract	level,	one	regards	them	as
distinguishable,	as	possibly	referring,	in	application,	to	different	concretes.
These	distinctions	become	particularly	relevant	when	one	introduces	other
measurements	into	the	mix:	such	measurements,	for	example,	as	inner	products
and	topological	structures.	I	will	discuss	inner	products	later	in	this	chapter;	I
discussed	various	topologies	involving	function	spaces	in	Chapter	6.
But	there	is	a	great	body	of	knowledge	about	vector	spaces	that	doesn’t	depend
on	these	other	facets.	And	a	systematic	treatment	of	this	knowledge,	though
always	illuminated	by	particular	examples,	treats	these	other	facets	as	omitted
measurements.
The	abstract	theory	of	vector	spaces	is	a	theory	that	embraces	the	things	that	all
vector	spaces	have	in	common.	Mathematicians	bought	into	this	abstract
approach	for	a	very	good	reason:	because	otherwise	they	would	find	themselves
proving	essentially	the	same	theorems,	by	essentially	identical	arguments,	in
special	case	after	special	case.	Avoiding	such	redundant	efforts,	achieving	what
Ayn	Rand	calls	unit	economy,13	and	integrating	one’s	knowledge	is	what
abstractions	are	for.
One	can	be	led,	or	misled,	to	believe	that	to	think	about	something	abstractly,
especially	in	mathematics,	is	to	think	of	it	as	being	nothing	in	particular.
Perhaps,	for	example,	one	might	view	abstract	thinking	in	mathematics	as	a
formal	game,	as	following	a	prescription	for	manipulating	meaningless	symbols.
But	this	is	simply	a	perversion,	a	misunderstanding,	of	what	abstractions	are.
Abstractions,	as	mathematical	history	and	practice	illustrates,	are	a	means	of
conceptual	integration.	When	one	thinks	about	vector	spaces,	one	is	thinking
about	Rn	and	polynomials	and	functions,	thinking	about	them	from	a	perspective
that	applies	to	all	of	them	without	regard	for	their	irrelevant	differences.	It	is	a
perspective	that	focuses	on	the	structure	of	a	complex	of	relationships	and	omits
from	view	the	distinctions	among	the	embodiments	of	that	structure.
The	term	“abstract	vector	space”,	when	it	is	used,	is	really	a	redundancy.	An



abstract	vector	space	is	really	just	a	vector	space,	not	a	separate	concept	or
floating	abstraction.	When	one	proves	theorems	about	vectors	spaces,	as	such,
one	proves	theorems	that	do	not	depend	on	the	differences	between	polynomials
and	vectors	in	Rn;	these	theorems	apply	to	both	equally	and	in	the	same	respects.
For	example,	the	configuration	space	of	potential	velocities	and	accelerations	of
a	particular	object	in	the	universe	is	a	vector	space.	A	particular	velocity	of	a
particular	object	is	a	vector.	We	saw,	in	Chapter	2,	that	the	concept	of	magnitude
applies	universally,	to	attributes	such	as	mass	and	volume	pertaining	to	any
existing	object,	any	future	object,	or	any	potential	object	in	the	universe.
Similarly,	every	magnitude	with	a	directional	sense,	attributable	to	any	object	in
the	universe,	is	a	vector.
In	dealing	with	vector	spaces	abstractly,	one	does	not,	thereby,	wipe	out	their
referential	character.	Rather,	one	treats	the	particular	quantities	to	which	they
apply	as	omitted	measurements.	And,	in	so	doing,	in	comparing	different	vector
spaces,	one	focuses	on	the	structural	similarities	and	differences	between	the
vector	spaces.14

In	this	regard,	compare	vectors	in	R33	tuples	of	numbers	(a,	b,	c),	with	quadratic
polynomials	ax2	+	bx	+	c.	A	3-tuple	is	determined	by	three	coordinate	numbers,
a,	b,	and	c.	A	quadratic	polynomial	is	determined	by	its	coefficients	a,	b,	and	c.
What	happens	if	I	add	two	3-tuples?	As	a	representative	example,	for	3-tuples,

(1,	-2,	3)	+	(3,	2,	-1)	=	(4,	0,	2)
	For	polynomials,
	(x2	–	2x	+	3)	+	(3x2	+	2x	-1)	=	4x2	+	2	=	4x2	+	0x	+	2

The	behavior	of	the	coordinates,	in	the	first	case,	exactly	matches	the	behavior
of	the	coefficients	in	the	second.	What	about	multiplication?	For	3-tuples,

4	×	(1,	-2,	3)	=	(4,	-8,	12)
	and,	for	polynomials,
	4	×	(x2	–	2x	+	3)	=	4x2	–	8x	+	12

Again,	the	behavior	matches	exactly.
One	can	map	pairs	of	3-tuples	to	polynomials,	add	them	together	or	multiply
them	by	numbers,	and	then	reverse-map	the	resulting	polynomials	back	to	3-
tuples.	The	resulting	calculations	are	unaffected	by	the	detour	into	the
polynomial	domain.	In	the	above	example,	one	maps	(1,	-2,	3)	and	(3,	2,	-1)	to
(x2	–	2x	+	3)	and	(3x2	+	2x	-1).	Adding	these	polynomials,	one	then	maps	the



result,	4x2	+	0x	+	2,	back	to	(4,	0,	2).	Which	we’ve	already	seen	to	be	the	sum	of
(1,	-2,	3)	and	(3,	2,	-1).
As	far	as	the	kinds	of	calculations	that	apply	to	all	vector	spaces,	addition	of
vectors	and	multiplication	of	vectors	by	numbers,	are	concerned,	there	is	no
difference	in	the	arithmetic	of	3-tuples	and	the	arithmetic	of	quadratic
polynomials.	There	is	an	exact	correspondence.	As	vector	spaces,	one	says	that
they	are	isomorphic	and	the	map,	or	correspondence,	that	I	exhibited	between
them	is,	regarded	as	a	map,	an	isomorphism.	As	far	as	their	vector-space
structure	is	concerned,	they	are	identical.
As	systems	of	measurements,	n-tuples	and	polynomials	of	degree	(n	–	1)
correspond	to	different	things	in	the	world,	just	as	magnitudes	of	length	versus
magnitudes	of	weight	correspond	to	different	things	in	the	world.	And	when	it
matters,	for	whatever	reason,	one	focuses	on	these	differences.	But	when	one
studies	vectors	abstractly,	one	omits	these	differences,	because	the	conclusions
and	understandings	one	is	reaching	don’t	depend	on	these	differences.
Structurally,	as	vector	spaces,	one	regards	n-tuples	and	polynomials	of	degree	(n
–	1)	as	identical,	on	the	principle	that	each	vector	space	must	measure	some
relevant	aspect	of	the	world,	but	may	measure	any.	In	any	concrete	case,	specific
vectors	must	relate	to	some	appropriate	measurable	concrete,	but	may	relate	to
any.	This	relationship	to	the	world	might	be	more	direct	in	the	case,	say,	of	3-
tuples	than	in	the	case	of	quadratic	polynomials.	But,	from	the	standpoint	of
their	vector	space	structure,	this	doesn’t	matter.	All	of	these	considerations,	from
an	abstract	perspective	on	vector	spaces,	are	omitted	measurements.
One	treats	isomorphic	vector	spaces	as	identical	structurally.	But	one	also
distinguishes	them	when	necessary	or	appropriate.	In	particular,	when	one	maps
vectors	from	one	vector	space	to	another,	one	treats	the	two	vector	spaces,	thus
related,	as	separate	and	distinguishable,	just	as	they	would	actually	be	in
application	to	concretes.	But	one	does	this,	while,	at	the	same	time,	regarding
any	particular	application	to	concretes	as	omitted	measurements.
For	example,	Newton’s	famous	formula	F	=	ma	relates	two	different	vectors,	one
representing	the	force	on	an	object	and	the	other	representing	the	acceleration
that	the	force	causes.	Both	the	force	and	the	acceleration	are	thought	of,
mathematically,	as	vectors	in	R3.	But	the	vector	space	of	forces	is	a	different
vector	space	than	the	vector	space	of	accelerations.	The	two	instances	of	R3	are
treated,	properly,	as	two	separate,	though	structurally	identical,	mathematical
domains.
As	a	concrete	quasi-numerical	example,	consider	the	map	A	from	R2	to	R2
defined	as



A(a,	b)	=	(2a,	3b)
	Applying	the	formula	to	the	coordinate	pair	(10,	5):
	A(10,	5)	=	(20,	15)

In	general,	the	vectors	in	the	domain	of	the	mapping	A	will	represent	a	different
kind	of	quantity	than	the	vectors	in	the	range,	i.e.,	in	the	second	vector	space,
just	as	in	the	example	from	Newton’s	physics.	So,	even	though	one	represents
both	vectors	as	coordinate	pairs,	one,	nonetheless,	treats	them,	with	or	without
comment,	as	distinct.	And	this	is	certainly	the	case	with	the	isomorphism	I
exhibited	between	3-tuples	and	quadratic	polynomials.

In	this,	mathematicians	are	acting	on	the	right	principle.	And,	in	regards	to
abstraction	in	general,	when	mathematicians	give	examples	of	mathematical
concepts,	they	are	implicitly	acknowledging	that	these	examples	are	what	the
concepts	are	about,	are	referents	of	the	concepts.	Finally,	the	vector	space
concept,	in	application,	is	open-ended	or	as	I	put	it	in	Chapter	6,	wide-open
ended.	Considered	structurally,	one	considers	isomorphic	vector	spaces	as
identical,	but	considered	in	application,	there	are	no	known	limits	to	the
applicability	of	a	vector	space	of	a	given	structure.	A	vector	space,	considered
abstractly,	without	regard	to	a	specific	application	to	external	referents,
considered	as	a	specific	range	of	mathematical	possibilities,	as	a	mathematical
domain,	is	a	set.	But,	insofar	as	one	distinguishes,	say,	force	vectors	from
acceleration	vectors,	there	is	no	such	thing	as	the	set	of	all	vector	spaces.

In	sum,	mathematicians	view	two	instances	of	R3	as	the	same,	but	also	as
different,	though	not	in	the	same	respect.	They	are	the	same	structurally	but	are
distinct	instances,	distinct	mathematical	domains	that	have	the	same	vector-
space	structure.

When	one	looks	at	vector	spaces	in	this	way,	one	treats	them,	not	as	systems	of
measurements,	but	as	systems	of	quantities,	as	an	abstract	perspective	on
something	in	the	universe:	potential	velocities	or	accelerations	of	an	object	or
possible	forces	acting	on	an	object.	One’s	perspective	is	geometric.	Vectors,	as
such,	are	not	dimensionless	ratios	the	way	that	numbers	are.	Vectors	are	not	a
measurement	of	an	object	or	attribute;	they	are	the	object	or	attribute	that	is
being	measured.	They	are	measurable	aspects	of	an	object	considered	as
something	external	that	is	measured	and	considered	solely	in	relation	to	a	set	of
measurements.	One	looks	at	vectors	the	way	that	I	looked	at	magnitudes	in	my
treatment	of	the	pre-arithmetic	of	magnitudes	in	Chapter	2.



And	this	is	true,	at	one	remove,	even	when	the	vectors	are	polynomials.	It	is	true
because	the	essence	of	the	geometric	perspective	is	its	focus	on	an	object,	any
object,	even	if	that	object	itself	is	a	mathematical	abstraction.	The	geometric
perspective	is	a	focus	on	something	that	is	taken	to	have	an	independent
existence,	as	being	an	object	of	awareness.	It	is	true	that	polynomials	are	the
product	of	an	earlier	action	of	consciousness.	But,	as	an	object	of	further	study,
they	exist	prior	to	that	subsequent	study.15

The	measurement	side	arises	when	one	establishes	coordinates,	chooses
coordinates	having	an	unspecified,	but,	in	any	concrete	instance,	specifiable
relationship	to	concretes.	N-tuples,	considered	as	ordered	sets	of	numbers
applying	to	some	corresponding,	unspecified	set	of	measurements,	are	a	system
of	measurements.	A	vector	space	considered	geometrically,	by	contrast,	is	a
system	of	quantities,	a	system	that	contemplates	actual	or	potential	existents,
bearing	determinant	relationships	to	each	other,	relationships	that	are
independent	of	any	particular	system	of	measurements,	relationships	that	can	be
studied	independently	of	any	particular	system	of	measurements.

Polynomials	are	an	interesting	case	because,	as	such,	qua	polynomials,	they	are	a
system	of	measurements.	Nonetheless,	when	they	are	considered	as	elements	of
a	vector	space,	these	elements	are	quantities	having	measurable	relationships	to
each	other.	And,	of	course,	as	in	the	case	of	numbers,	these	relationships	derive
from	the	relationships	between	the	things	that	polynomials	measure.

A	coordinate	space,	Rn,	regarded	as	a	vector	space	is	a	similar	case	in	point.	A
coordinate	space,	as	such,	constitutes	a	system	of	measurements,	measurements,
indeed,	relating	to	a	vector	space.	But	the	particular	constellation	of	magnitudes,
and	the	units	by	which	they	are	to	be	measured,	are,	once	again,	omitted
measurements.	If	one	focuses	on	the	arithmetic	of	a	coordinate	space	then,	from
that	perspective	the	coordinate	space	is	a	system	of	measurements.	But	if	one
focuses	on	these	n-tuples	as	referring	to	a	system	of	unspecified	quantities,	as
one	necessarily	does	when	considering	the	effect	of	coordinate-system	changes,
then,	from	that	geometric	perspective,	they	are	a	system	of	quantities.

Indeed,	the	relationship	of	the	two	perspectives,	here,	is	similar	to	the
relationship	between	the	real	numbers,	considered	as	a	system	of	measurements
and	the	real	number	line,	considered	as	something	measurable.	To	pursue	the
analogy	a	little	further,	in	the	first	instance,	numbers	are	looked	at	measurements
of	something	external	whereas,	in	the	second	instance,	they	are	looked	at	as	a



range	of	external	possibilities,	considered	in	measurable	relationships	to	each
other.

Bases	and	Dimension

A	vector	in	R3	is	uniquely	specified	as	a	3-tuple	(a,	b,	c).	One	thinks	of	the	first
coordinate	as	a	value	in	one	direction,	say	the	x	direction	and	the	second	as	the
value	of	the	vector	in	a	second	direction,	namely	the	y	direction.	One	way	to
make	this	relationship	more	explicit	is	to	write:

(a,	b,	c)	=	a	×	(1,	0,	0)	+	b	×	(0,	1,	0)	+	c	×	(0,	0,	1)
	(Here,	‘×’	refers	to	multiplication.)

Clearly,	every	vector	in	R3	can	be	uniquely	represented	in	this	form.	In	this
context,	one	calls	the	three	vectors,	(1,	0,	0),	(0,	1,	0),	and	(0,	0,	1),	basis	vectors
and	considers	the	three	vectors,	taken	together,	as	constituting	a	basis	for	the
vector	space.16	One	often	introduces	special	symbols	for	these	vectors.	For
example,	one	may	write:

(1,	0,	0)	=	ê1
(0,	1,	0)	=	ê2
(0,	0,	1)	=	ê3

In	this	notation,
	(a,	b,	c)	=	aê1	+	bê2	+	cê3

This	notation	indicates	the	same	relationship	of	a	vector	to	its	basis,	but	with	less
clutter,	using	fewer	symbols.	Moreover,	this	means	of	expression	is	equally
applicable	to	other	vector	spaces.	For	example,	a	natural	basis	for	quadratic
polynomials	is	the	following:

x2	=	ê1	x	=	ê2	1	=	ê1

In	this	table,	all	three	expressions,	x2,	x,	and	1	should	be	regarded	as	quadratic
polynomials.	For	example,	one	should	regard	1	as	the	quadratic	polynomial	0x2
+	0x	+	1.	One	has,	in	this	notation,



ax2	+	bx	+	c	=	aê1	+	bê2	+	cê3

There	is,	however,	nothing	unique	about	these	particular	bases.	Just	as	one	can
change	coordinates	in	the	Cartesian	plane,	one	can	change	bases	in	a	vector
space.	The	reason	for	changing	bases	is	less	obvious	for	polynomials,	but,	even
in	that	case,	there	are	situations	in	which	a	different	basis,	a	basis	consisting	of
polynomials	that	satisfy	some	additional	criterion,	is	more	appropriate.

As	an	example	of	a	change	in	basis,	consider	the	three	vectors:

v1	=	(1,	-1,	0)	v2	=	(1,	1,	1)	v3	=	(0,	0,	1)

I	say	that	any	vector	(a,	b,	c)	can	be	written	as	the	following	linear	combination
of	v1,	v2,	and	v3:	Namely,
	(a,	b,	c)
	=	(a/2	–	b/2)v1	+	(a/2	+	b/2)v2	+	(c	–	a/2	–	b/2)v3
	For	example,	(2,	4,	5)	=	v1	+	3v2	+	2v3.
	One	checks	the	general	formula	by	the	following	computation:

(a/2	–	b/2)	v1	+	(a/2	+	b/2)v2	+	(c	–	a/2	–	b/2)v3	=	(a/2	–	b/2)(1,	-1,	0)	+	(a/2	+
b/2)(1,	1,	1)	+	(c	–	a/2	–	b/2)	(0,	0,	1)
=	(a/2	–	b/2,	-a/2	+	b/2,	0)
+	(a/2	+	b/2,	a/2	+	b/2,	a/2	+	b/2)
+	(0,	0,	c	–	a/2	–	b/2)	=	(a,	b,	c)

But	how	did	I	discover	this	particular	relationship	to	begin	with?	I	set	up	and
solved	a	system	of	simultaneous	equations,	thus:
First	write	down	the	problem	one	needs	to	solve.	One	is	looking	for	coefficients
A,	B,	and	C	such	that

Av1	+	Bv2	+	Cv3	=	(a,	b,	c)
	Expanding	this	relationship,
	(A,	-A,	0)	+	(B,	B,	B)	+	(0,	0,	C)	=	(A	+	B,	-A	+	B,	B	+	C)	=	(a,	b,	c)	Equating
corresponding	coordinates	leads	to	the	system	of	simultaneous	linear	equations:

A	+	B	=	a
-A	+	B	=	b	B	+	C	=	c

One	solves	this	system	of	equations	by	standard	techniques	to	derive	the



One	solves	this	system	of	equations	by	standard	techniques	to	derive	the
expression	of	A,	B,	and	C	in	terms	of	a,	b,	and	c.
In	general,	to	change	bases	in	a	vector	space,	to	translate	a	vector	expressed	in
terms	of	one	basis	to	an	expression	in	terms	of	a	different	basis,	requires	solving
such	a	system	of	simultaneous	equations.
The	equations,	in	this	case,	had	a	unique	solution.	They	can	be	solved	for	any	set
of	constants	a,	b,	and	c	and	there	is	only	one	set	of	values,	A,	B,	and	C	that
simultaneously	satisfies	all	three	equations.
But	such	is	not	always	the	case.	For	example,	suppose	I	had,	instead,	chosen	the
vectors:

v1	=	(1,	-1,	0)	v2	=	(1,	2,	1)	v3	=	(3,	0,	1)

Now	I	need	to	solve	the	equations:

A	+	B	+	3C	=	a
-A	+	2B	=	b	B	+	C	=	c

Adding	the	first	equation	to	the	second	yields:
	3B	+	3C	=	a	+	b
	Next,	subtracting	3	times	the	last	equation	from	this	one	yields:
	0	=	a	+	b	-3c

This	means,	for	example,	that	if	a	=	b	=	c	=	1,	there	can	be	no	solution	to	the
equations,	since	that	would	imply	that	0	=	-1.	On	the	other	hand,	if,	say,	a	=	0,	b
=	3,	and	c	=	1,	then	there	is	a	simultaneous	solution	to	the	equations,	but	it	isn’t
unique.	One	solution,	for	example,	is	given	by	A	=	-1,	B	=	1	and	C	=	0;	another
is	given	by	A	=	-3,	B	=	0	and	C	=	1.	That	these	are	both	solutions	can	be	seen	by
substitution.

In	general,	whenever	a	+	b	-3c	=	0,	one	can	choose	C	arbitrarily,	then,	based	on
the	second	equation,	set	B	=	c	-	C	and,	based	on	the	first	equation,	set	A	=	2c	–	b
-2C.	One	checks	that	all	three	equations	are	satisfied,	as	follows:

A	+	B	+	3C	=	(2c	–	b	-2C)	+	(c	–	C)	+	3C	=	3c	–	b	=	a	[This	last	equality,
because	a	+	b	-3c	=	0]
-A	+	2B	=	-(2c	–	b	-2C)	+	2(c	–	C)	=	b
B	+	C	=	(c	–	C)	+	C	=	c

Regarding	this	system	of	equations	the	general	situation	has	been	understood



since	the	nineteenth	century.17	One	calculates	the	so-called	determinant	of	the
linear	system.	(The	determinant	is	a	number	that	is	calculated	from	a	formula
based	on	the	coefficients	of	the	set	of	equations.)	If	the	determinant	is	non-zero,
there	is	a	unique	solution.	If	the	determinant	is	zero	then,	depending	on	the
particular	values	of	a,	b,	and	c,	there	will	either	by	no	solutions	or	an	infinite
number	of	solutions.

But	there	is	another	way	to	look	at	the	problem,	one	more	closely	related	to	the
vector	space	perspective.	In	my	last	example,	I	deliberately	chose	vectors	v1,	v2,
and	v3	that	were	linearly	dependent,18	meaning,	by	definition,	that	there	exist
numbers	A1,	A2,	and	A3,	not	all	of	them	zero,	such	that

A1v1	+	A2v2	+	A3v3	=	0
	In	this	case,
	2v1	+	v2	v3	=	0

This	means,	for	example,	that	the	last	vector	in	this	sum	can	be	expressed	as	a
linear	combination	of	the	previous	two.19	Specifically,

v3	=	2v1	+	v2

This	means,	in	turn,	that	any	vector	that	can	be	expressed	as	a	linear	combination
of	the	three	vectors	v1,	v2,	and	v3,	can	already	be	expressed	as	a	linear
combination	of	the	first	two.	Indeed,	the	sum	Av1	+	Bv2	+	Cv3,	by	substitution
of	the	expression	for	v3,	yields:

Av1	+	Bv2	+	Cv3	=	Av1	+	Bv2	+	C(2v1	+	v2)	=	(A	+	2C)v1	+	(B	+	C)v2
	To	put	this	point	another	way,	any	linear	combination	of	the	form	Av1	+	Bv2	has
the	form:
	Av1	+	Bv2	=	A(1,	-1,	0)	+	B(1,	2,	1)
	=	(A,	-A,	0)	+	(B,	2B,	B)	=	(A	+	B,	-A	+	2B,	B)
	And,	by	inspection,	the	coordinates	(a,	b,	c)	of	any	vector	of	this	form	are	related
by	the	equation:
	a	+	b	–	3c	=	0

The	three	vectors	cannot	span	R3	because	they	are	linearly	dependent.	To	span
R3,	to	be	serviceable	as	a	basis	for	R3,	they	must	be	linearly	independent,	the



opposite	of	being	linearly	dependent.	To	state	this	condition	more	positively,
vectors	w1,	w2,	…,	wn	are	linearly	independent	if	and	only	if

A1w1	+	A2w2	+	…	+	Anwn	=	0	implies	A1	=	A2	=	…	=	An	=	020

By	the	argument	I	made	for	the	last	example,	vectors	are	linearly	independent
when	it	is	impossible	to	express	one	of	the	vectors	as	a	linear	combination	of	the
others	and	are	linearly	dependent	exactly	when	it	is	possible	to	express	one	of
the	vectors	as	a	linear	combination	of	the	other.

In	the	last	example,	I	showed	that	v3	=	2v1	+	v2,	which	is	equivalent	to	2v1	+	v2
v3	=	0.	That	is	to	say	v1,	v2,	and	v3	are	linearly	dependent.	Conversely,	there	is
clearly	no	way	to	express	any	of	(1,	0,	0),	(0,	1,	0),	or	(0,	0,	1)	as	a	linear
combination	of	the	other	two.	These	vectors	are	linearly	independent	because

a(1,	0,	0)	+b(0,	1,	0)	+	c(0,	0,	1)	=	(a,	b,	c)	can	only	be	zero	if	a	=	b	=	c	=	0.

So,	as	I	said	earlier,	these	vectors,	(1,	0,	0),	(0,	1,	0),	and	(0,	0,	1),	are	a	basis	of
R3.	Recall	that	a	set	of	vectors,	v1,	v2,	…,	vn,	in	a	vector	space	V,	form	a	basis	if
and	only	if	any	vector	in	the	vector	space	V	can	be	uniquely	expressed	as	a
linear	combination	of	v1,	v2,	…,	vn.21

One	should	expect,	first,	that	any	four	vectors	in	R3	are	linearly	dependent	and,
conversely,	that	any	basis	of	R3	contains	exactly	three	vectors.	One	might,
perhaps,	try	to	confirm	this	expectation	by	writing	down	the	appropriate	system
of	simultaneous	linear	equations	and	arguing	from	the	properties	of
determinants.	However,	there	is	a	standard	argument,22applying	to	vector	spaces
generally,	that	makes	this	unnecessary.

First	an	important	distinction:	In	some	vector	spaces	such	as	Rn,	there	is	a	finite
limit	to	the	number	of	linearly	independent	vectors	one	can	find.	In	general,	if
there	exists	a	finite	set	of	vectors	in	a	vector	space	V	that	“span”	the	vector	space
then	the	vector	space	is	said	to	be	finite	dimensional.	To	span	the	vector	space
means	that	every	vector	in	the	vector	space	can	be	expressed	as	a	linear
combination	of	vectors	selected	from	that	finite	set	of	vectors.

Rn,	for	example,	is	finite	dimensional.	On	the	other	hand,	the	domain	of	real-
valued	continuous	functions	defined	on	the	interval	from	0	to	1	is	not	finite



dimensional.	As	another	infinitedimensional	example,	the	domain	of
polynomials,	without	limitation	on	degree,	is	not	finite	dimensional.

Suppose	that	the	vector	space	V	is	finite	dimensional.	Then	there	exists	a	finite
set	of	linearly	independent	vectors	v1,	v2,	…,	vn	that	span	the	vector	space	V.
Now	suppose	there	is	another	finite	set	of	linearly	independent	vectors	w1,	w2,
…,	wm	that	also	spans	the	space.	Here,	n	and	m	are	positive	integers.	What	can
one	conclude	about	the	relationship	of	n	(the	number	of	v	vectors)	and	m	(the
number	of	w	vectors)?	One	should	expect,	and,	indeed	one	finds,	that	m	=	n.

To	see	this,	I	follow	an	argument	presented	in	Halmos.23To	begin	with,	in	any
finite	ordered	set	of	linearly	dependent	non-zero	vectors,	there	is	a	first	vector
that	is	a	linear	combination	of	all	the	preceding	ones.	Assuming	that	none	of	the
vectors	is	zero,	that	vector	cannot	be	the	first	vector.	As	one	continues	to
consider	additional	vectors	from	the	list	one	must	ultimately	come	to	a	vector
that	first	spoils	the	linear	independence	since	the	entire	set	is	linearly	dependent.
Linear	dependence	means	that	there	is	a	nontrivial	linear	combination	of	the
vectors	that	sums	to	the	zero	vector.	Non	trivial	means	that	at	least	one
coefficient	of	the	linear	combination	is	non-zero.	But,	in	particular,	the
coefficient	of	the	most	recently	added	vector	cannot	be	zero,	because	otherwise
the	relationship	of	linear	dependence	would,	contrary	to	assumption,	hold
without	it.	But	that	means	one	can	solve	the	equation	for	the	most	recently	added
vector,	simply	by	dividing	the	entire	relationship	by	the	coefficient	of	the	last
vector	and	then	moving	everything	else	to	the	other	side	of	the	equation.24	This
is	essentially	what	I	did	in	the	example	of	linear	dependence	that	I	discussed
earlier.

But	how	does	this	bear	on	my	question?
Suppose,	again,	that	sets	of	linearly	independent	vectors	v1,	v2,	…,	vn	and	w1,
w2,	…,	wm	both	span	V.	Since	the	w	vectors	span	V,	then	v1	is	a	linear
combination	of	the	w	vectors	and,	therefore,	the	set

v1,	w1,	w2,	…	,	wm

is	linearly	dependent.	So	one	of	the	wi	vectors	is	a	linear	combination	of	the
previous	vectors	in	the	list.	Remove	the	first	such	vector.	Since	the	removed
vector	is	a	linear	combination	of	the	previous	vectors,	the	vectors	that	remain
still	span	the	entire	vector	space	V.



Now	add	another	v	vector	after	the	previous	v	vector.	The	result	is	the	set
	v1,	v2,	w1,	w2,	…	,	wm

where	one	of	the	w	vectors	is	missing.	This	set	is	linearly	dependent	because	the
set,	without	the	added	v	vector,	already	spans	the	space,	which	means	that	the
new	vector	is	a	linear	combination	of	all	the	vectors	in	the	previous	set.	So,	once
again,	find	the	first	vector	that	is	a	linear	combination	of	the	previous	ones	and
discard	it.	The	v	vectors	are	all	linearly	independent	so	the	discarded	vector	will
have	to	be	one	of	the	w	vectors.	Continue	in	this	way	until	all	of	the	v	vectors
have	been	added	to	the	list,	discarding,	each	time,	exactly	one	of	the	w	vectors.
At	each	step	the	list	of	vectors	that	remains	spans	the	entire	vector	space	V.

If	one	were	to	run	out	of	w	vectors	before	the	end,	the	implication	would	be	that
a	subset	of	the	v	vectors	already	spans	the	space.	But	this	cannot	be	because	the
entire	set	of	v	vectors	is	linearly	independent.	So	there	must	be	at	least	one	w
vector	remaining	in	the	list	as	the	last	v	vector	is	introduced.	It	follows	that	n	≤
m.	But	one	could	also	make	the	same	argument	in	reverse,	starting	with	the	v
vectors	and	adding	w	vectors	one	by	one.	But	this	time	one	would	conclude	that
m	≤	n.	The	two	inequalities,	taken	together,	imply	that	m	=	n.25	In	conclusion,	if
V	is	a	finite	dimensional	vector	space,	any	two	maximal	sets	of	linearly
independent	vectors	contain	the	same	number	of	vectors.	That	number	is	called
the	dimension	of	the	vector	space.

It	follows	that	Rn	is	an	n-dimensional	vector	space	since	one	can	exhibit	a	basis,
consisting	of	n	vectors,	namely	ê1,	ê2,	…	,	ên,	(as	defined	above	for	n	=	3).

The	argument	that	I	gave	earlier	to	show	that	R3	is	isomorphic	to	the	vector
space	of	quadratic	polynomials	extends	to	show	that	any	two	vector	spaces	of
the	same	dimension	n	are	isomorphic.	My	presentation	in	the	earlier	case	was
informal:	I	simply	showed	how	sums	of	vectors	and	products	of	vectors	by
numbers	lined	up	exactly	between	the	two	vector	spaces.	In	effect,	in	providing	a
correspondence,	I	specified	a	map	between	them	by	associating	(1,	0,	0)	to	x2,
(0,	1,	0)	to	x	and	(0,	0,	1)	to	1	(the	quadratic	polynomial	with	zero	coefficients
for	powers	of	x	and	1	for	the	constant	term.)	I	matched	up	basis	vectors	and,
thereby,	matched	up	all	corresponding	linear	combinations	of	basis	vectors.
Implicitly	my	correspondence	was	a	map	from	one	vector	space	to	the	other.	But
I	did	not	give	that	map	a	name.



To	treat	the	general	case,	I	will	follow	exactly	the	same	procedure,	but,	in	this
case	I	give	that	map	a	name,	namely	T.
Begin	by	choosing	bases	for	each	vector	space,	say	v1,	v2,	…	,	vn	for	the	vector
space	V	and	w1,	w2,	…	,	wn	for	the	vector	space	W.	Define	the	correspondence
map	T	from	V	to	W	by	setting	first	T(vi)	=	wi	for	each	integer	i	between	1	and	n.
Having,	thus,	lined	up	the	basis,	one	next	matches	corresponding	linear
combinations	of	basis	vectors.	In	this	fashion,	one	defines	T	generally,	as
applying	to	any	linear	combination	of	basis	vectors	in	V	by	the	formula

T(A1v1	+	A2v2	+	…	+	Anvn)
	=	A1T(v1)	+	A2T(v2)	+	…	+	AnT(vn)

I	write	the	formula	in	this	way	to	emphasize	the	dependence	of	the	mapping	on
the	chosen	values	T(vi)	for	i	=	1,	2,	…	,	n.	But	this	amounts	to,	i.e.,	reduces	to
T(A1v1	+	A2v2	+	…	+	Anvn)	=	A1w1	+	A2w2	+	…	+	Anwn

Thus	the	map	T	matches	the	linear	combination	A1v1	+	A2v2	+	…	+	Anvn	in	V	to
the	linear	combination	A1w1	+	A2w2	+	…	+	Anwn	in	W,	simply	replacing	each
basis	vector	in	V	by	the	corresponding	basis	vector	in	W.	This	is	exactly	the
process	I	followed	in	comparing	quadratic	polynomials	with	R3.

Clearly	this	map	T	is	reversible.	If	T	maps	each	V	basis	vector	to	a
corresponding	basis	vector	in	W,	then	the	reverse,	which	is	normally	written	T-1,
maps	in	the	opposite	direction,	mapping	each	basis	vector	in	W	to	the
corresponding	basis	vector	in	V.	Thus:

T-1	(A1w1	+	A2w2	+	…	+	Anwn)	=	A1v1	+	A2v2	+	…	+	Anvn

One	notices	the	same	substitution	of	basis	vectors,	but,	this	time,	in	the	opposite
direction.	In	sum,	like	the	earlier	example,	T	sets	up	an	exact	one-to-one
correspondence	between	the	two	vector	spaces	V	and	W	that	preserves	all	vector
space	operations	between	the	two	spaces.

If,	for	example,	I	take	a	linear	combination	of	two	vectors	in	V,	I	can	either
perform	the	calculation	in	V	or	I	can	map	the	vectors	to	W,	perform	the
calculation	there,	and	then	apply	the	inverse	mapping.	Because	the	mapping	T,
from	a	formal	standpoint,	is	just	a	relabeling	of	basis	vectors:	Rename	the	V



basis	vectors	to	w1,	…	,	wn,	perform	the	operations,	and	then	rename	them	again
to	v1,	…	,	vn.

In	showing	that	any	two	finite	dimensional	vector	spaces	have	the	same
structure,	i.e.,	are	isomorphic,	I	have	shown,	in	particular,	that	any	finite
dimensional	vector	space	is	isomorphic	to	Rn	for	an	appropriate	value	of	n.

As	a	mathematician	might	put	it,	finite	dimensional	vector	spaces	are	completely
classified	by	their	dimension,	classified,	one	sometimes	says,	up	to	isomorphism.
Qua	vector	spaces,	there	is	no	structural	difference	between,	say,	R3,	and
quadratic	polynomials.	As	different	as	they	are	in	other	respects,	considered	as
vector	spaces,	such	differences	are	omitted	measurements.

The	issue	of	classification	arises	precisely	because	some	vector	spaces	have	a
different	structure,	qua	vector	spaces,	than	others.	In	this,	vector	spaces,	as
mathematical	domains,	differ	from	numbers:	There	is	a	unique	mathematical
domain	of	real	numbers,	but	multiple	mathematical	domains	consisting	of
vectors.	In	this	respect,	it	is	the	number	domain	that	is	atypical	in	its
uniqueness.26

Typically,	there	are	multiple	structurally	distinct	mathematical	domains	of	a
particular	type.	General	speaking,	for	any	general	category	of	similar
mathematical	domains,	there	is	a	concept	of	isomorphism,	a	one-to-one	mapping
that	preserves	the	entire	constellation	of	structural	relationships	that	characterize
the	scope	of	each	domain.	In	the	case	of	vector	spaces	these	relationships,	that	an
isomorphism	must	preserve,	are	addition	of	vectors	and	multiplication	of	vectors
by	numbers.

In	the	earlier	example	of	a	topological	space,	considered	only	as	a	topological
space,	an	isomorphism	is	a	one-to-one	map	that	preserves	open	sets,	the	defining
structural	characteristic	of	a	topological	space,	as	described	in	Chapter	6.	If	f	is
an	isomorphism	between	topological	spaces	X	and	Y,	this	means,	first,	that	for
any	open	subset	U	of	X,	its	image	f(U)	is	an	open	subset	of	Y	and,	conversely
that	if	V	is	an	open	subset	of	Y	and	f-1	is	the	inverse	map	of	f,	then	f-1(V)	is	an
open	subset	of	X.	Here,	by	definition,	if	U	is	a	subset	of	X,	f(U)	is	the	set
consisting	of	all	elements	y	in	Y	for	which	y	=	f(u)	for	some	element	u	of	U.
Similarly,	f-1(V)	is	the	set	consisting	of	all	elements	x	in	X	for	which	x	=	f-1(v)
for	some	element	v	of	V.



Since	the	mapping	f	is	one-to-one,	the	isomorphism	establishes	a	one-to-one
correspondence	between	the	open	sets,	respectively	of	X	and	Y,	the	defining
characteristics	of	their	structures	qua	topological	spaces.

A	central	problem	with	regard	to	any	important	type	of	domain	is	to	classify
mathematical	domains	of	that	type,	to	determine	the	structural	ways	in	which
two	domains	of	that	type	can	differ	from	each	other,	differ	in	the	set	of
relationships	that	specifically	characterize	that	type	of	domain.	It	is	to	find	ways
to	measure	the	structural	differences	between	two	domains	of	a	particular	type.
The	case	of	finite	dimensional	vector	spaces	is	one	of	the	easiest	cases.	One
number,	the	number	of	dimensions,	is	all	that	is	required	to	identify	a	class	of
isomorphic	vector	spaces.

Choosing	a	basis	of	vectors	in	a	finite	dimensional	vector	space	and	then	using
them	to	compute	is	the	bridge	between	the	geometric	perspective	and	the
measurement	perspective.	In	the	earlier	part	of	this	section	I	started	with	a	basis
already	at	hand	and	proceeded	to	solve	systems	of	simultaneous	equations.	That
is	the	measurement	perspective.

Later	on,	I	presented	Halmos’s	abstract	argument	that	the	number	of	vectors	in	a
maximal	set	of	linearly	independent	vectors	characterizes	the	vector	space:	that
this	number	is	independent	of	which	particular	maximal	set	of	vectors	I	might
happen	to	come	up	with.	Halmos’s	argument	demonstrates	the	power	of	the
abstract	perspective:	its	ability	to	cover	a	wide	terrain	without	getting	bogged
down	in	irrelevant	details,	and	to	show	clearly	the	underlying	principles
involved.	But,	to	the	point	of	this	discussion,	the	abstract	perspective	of	that
argument	was	the	geometric	perspective.

One	can	sum	it	up	another	way.	A	vector	is	a	quantity	and	a	basis	is	a	set	of
quantities.	Coordinates	are	numbers;	coordinates	are	measurements.	A	focus	on
basis	vectors	is	a	geometric	perspective;	a	focus	on	coordinates	is	the
measurement	perspective.

One	can	switch	between	the	two	perspectives	because	these	perspectives	are,	in
fact,	two	different	perspectives	of	the	very	same	unitary	relationship,	a
relationship	that	is	viewed	from	two	different	directions:	It	is	the	relationship,	on
the	one	hand,	between	the	existents,	or	attributes,	that	one	measures	and,	on	the
other	hand,	the	measurements	that	one	makes	of	those	existents	or	attributes.

There	are,	as	this	section	illustrates,	advantages	to	both	perspectives,	to	the



There	are,	as	this	section	illustrates,	advantages	to	both	perspectives,	to	the
geometric	perspective	on	quantities	and	to	the	measurement	perspective.	One
needs	both	perspectives.	And	full	understanding	requires	the	integration	of	the
two	perspectives.

Matrices	and	Linear	Transformations	Matrices

The	core	concept	of	the	modern	theory	of	linear	algebra	is	that	of	a	vector
space.	But,	as	its	core	concern,	linear	algebra	is	about	solving	simultaneous
linear	equations.	In	this	respect,	linear	algebra	is	far	older	than	the	modern
theory	of	vector	spaces;	it	is	older,	even,	than	algebra.	As	Kleiner	points	out,27
the	Babylonians,	4000	years	ago,	knew	how	to	solve	a	system	of	two	equations
in	two	unknowns.

The	need	to	solve	simultaneous	equations	arises,	in	some	form,	in	every	branch
of	mathematics.	When	Euclid	intersected	two	lines	he	was,	from	the	perspective
of	analytic	geometry,	solving,	geometrically,	a	system	of	two	equations	in	two
unknowns.	It	would	be	apt	to	say	that	all	mathematical	roads	lead	to	linear
algebra.

Although	the	physical	concept	of	a	vector	dates	back	to	Archimedes,	the	concept
of	a	vector	space	came	much	later.	In	general,	the	key	concepts	in	the	modern
theory	of	vector	spaces	made	their	debut	prior	to	the	formal	definition	of	a
vector	space,	by	Peano,	in	1888.	Peano’s	definition	was	inspired	by	Grassman’s
earlier,	little	studied,	1844	work	“whose	aim	was	to	construct	a	coordinate-free
algebra	on	n-dimensional	space.”28

Among	these	central	concepts	of	linear	algebra	are	determinants,	matrices,	linear
transformations,	and	linear	independence.	The	concept	of	determinants,	central
to	a	systematic	solution	of	systems	of	n	simultaneous	equations	in	n	unknowns,
was	defined	by	Leibniz	in	1693.29	Matrices,	following	many	precursors	in	the
seventeenth	and	eighteenth	centuries,	were	formally	introduced	by	Cayley	in
1850,	having	been	given	their	modern	English	name	by	Sylvester	in	that	same
year.	Cayley	notes	that	matrices	“comport	themselves	as	single	entities.”30
Linear	transformations,	a	closely	related	concept,	dates	back	to	the	seventeenth
century.31	Finally,	Euler,	in	the	eighteenth	century,	investigating	linear
differential	equations,	expressed	the	general	solution	as	linear	combinations	of
linearly	independent	solutions.32



All	of	these	concepts	relate,	in	some	way,	to	systems	of	simultaneous	equations.
The	discovery	of	the	modern	concept	of	vector	spaces	culminated	an	inductive
process	that	spanned	millennia.	By	the	time	the	definition	of	vector	space	had
been	crystallized,	much	was	already	known	about	the	essential	characteristics
and	the	diverse	applications	of	vector	spaces.	The	vector	space	concept
organizes	and	systematizes	all	of	these	diverse	strands.	And	it	does	so,
fundamentally,	by	providing	a	geometric	perspective.
But	vector	spaces	provide	that	geometric	perspective	in	a	form	that,	thanks	to
analytic	geometry,	is	amenable,	as	well,	to	analytic	treatment,	amenable	to
calculation.	As	such,	for	my	purposes,	the	theory	of	vector	paces	provides	a
laboratory	in	which	one	can	observe	the	interactions	and	interconnections
between	the	geometric	perspective	and	the	measurement	perspective	in
mathematics.	This	interconnection	is	nowhere	more	evident	than	in	the
relationship	between	matrices	and	linear	transformations.
The	simplest	system	of	simultaneous	equations	has	two	equations	and	two
unknowns.	Take,	for	example,	the	system

One	easily	solves	this	directly.	The	unique	solution	is	given	by	x	=	2	and	y	=	4.
But	my	interest,	here,	does	not	center	on	solving	this	equation.	Rather,	it	centers
on	alternative	ways	of	capturing	or	expressing	the	essential	relationships
embodied	in	this	set	of	equations.
I	begin	with	the	matrix	representation.	A	matrix	is	a	rectangular	array	of
numbers	and/or	variables.33
One	expresses	the	very	same	equations	in	the	following	form:

The	square	array	on	the	left	is	a	matrix	consisting	of	the	coefficients	of	x	and	y
in	the	set	of	equations.	As	for	the	remaining	single-column	matrices,	one	should
think	of	them	as	column	vectors,	simply	a	different	way	of	representing	vectors
in	R2	than	the	coordinate-pair	representation	that	I	used	earlier.	Thus	the	equality
on	the	right,	thought	of	as	equating	two	vectors,	is	another	expression	of	the	two
simultaneous	equations.

Next,	think	of	the	middle	column	vector	as	defining	a	set	of	calculations	in



Next,	think	of	the	middle	column	vector	as	defining	a	set	of	calculations	in
relation	to	the	matrix	and	vector	on	the	left.	Specifically,	think	of	the	implied
matrix	multiplication	operation	as	involving	two	separate	calculations,	one
calculation,	respectively,	for	each	row	of	the	column	vector	shown	between	the
two	equal	signs.	The	first	row	(2x	+	3y)	of	the	column	vector	is	calculated	by
multiplying	the	first	row	of	the	square	matrix	by	corresponding	entries	in	the
column	vector	next	to	it	and	adding	the	results.	One	places	this	sum	(2x	+	3y)	in
the	first	row	of	the	resulting	column	vector.	Next,	one	performs	the
corresponding	operation	for	the	second	row	of	the	square	matrix	and	places	the
result	in	the	second	row	of	the	resulting	column	vector.

The	result	is	the	column	vector	between	the	two	equal	signs.	In	sum,	the
expression	on	the	left	is	a	way	of	indicating	the	set	of	calculations	captured	in
the	middle	column	vector.

The	final	equality	on	the	right	says	that	corresponding	entries	in	the	two	column
vectors	are	equal	and	can	be	thought	of	as	a	reduction	of	the	two	simultaneous
equations	to	one	equation	between	two	column	vectors.

The	entire	exercise,	so	far,	can	be	regarded,	simply,	as	a	way	of	organizing	one’s
calculations.	The	leftmost	matrix	organizes	the	four	coefficients	into	a
convenient	array,	an	array	corresponding	to	their	positions	in	the	system	of
equations.	The	column	matrix,	as	I	said,	is	like	a	coordinate	pair,	and	can	be
thought	of	as	a	column	vector.	The	right	hand	equality,	again,	simply	equates
two	column	vectors.	Once	one	has	understood,	as	a	process,	the	meaning	of	the
so-called	“matrix	multiplication”	on	the	left,	one	can	omit	the	intermediate
column	vector	and	regard	the	remaining	matrix	multiplication	on	the	left	and	its
equality	to	the	column	vector	on	the	right	as	providing	an	alternate	expression	of
the	system	of	simultaneous	equations.

So	what	is	a	matrix?	Visually,	it	is	an	array.	But	it’s	an	array	that	captures	a	set
of	instructions,	a	set	of	calculations	on	a	column	vector.	So	one	should	think	of	a
matix	as	an	array	that	specifies	a	set	of	calculations	on	a	column	vector.

Now,	suppose	one	multiplies	each	of	the	two	column	vectors	on	the	right	by	the
carefully	chosen	matrix
	

Multiplying	the	first	of	these	column	vectors,	following	the	process	just
discussed,	one	finds,
	



Multiplying	the	second	column
vector,	one	finds:
	

Applying	the	same	recipe,	the	same	set	of
calculations	to	equal	quantities	yields	equal	results.	It	follows	that
	

Notice	what	happened	here.	Earlier,	I	multiplied	the	x-y	column	vector	by	the
coefficient	matrix	and	got	a	complicated	expression.	But	later,	when	I	multiplied
the	result	of	the	first	multiplication	by	the	second	matrix,	the	result	of	the	second
multiplication	was	the	original	column	vector.	In	effect,	as	the	composite	of	the
two	steps,	I	multiplied	the	x-y	column	vector	by	1.	And,	in	the	process,	of
course,	I	solved	the	system	of	equations.

What	happens	if	I	generalize	this	matrix	multiplication	a	bit?	Suppose	that	I
arrange	two	square	2	by	2	matrices	next	to	each	other.	Then,	suppose	that	one
regards	the	matrix	on	the	right	as	just	a	pair	of	column	vectors,	each	one	acted
on	independently	by	a	matrix	on	its	left.	Each	entry	in	the	resulting	matrix	is	a
separate	calculation,	as	follows:

The	matrix	on	the	right	is	called	the	identity	matrix	and	is	usually	designated	by
the	capital	letter	I,	the	letter	I	standing	for	the	word	identity.	To	see	why	the
name	is	justified,	consider	the	product:

Now	consider	the	expression
	

Having	defined	matrix	multiplication	one	now	has	two	choices.	For	example,
one	can	multiply	the	column	vector,	in	succession,	by	the	two	matrices,	starting
with	the	right-most	matrix.	Or,	alternatively,	one	can	first	multiply	the	two
matrices	together	in	the	fashion	I	have	just	indicated	and	apply	the	result	to	the
column	vector.	Either	way	(and	this	is	true	for	all	sequences	of	matrix



column	vector.	Either	way	(and	this	is	true	for	all	sequences	of	matrix
multiplications)	one	gets	the	same	result,	regardless	of	which	operation	one
performs	first.

The	identity	matrix	acts	like	the	number	1	when	it	multiplies	a	vector	and	it	also
acts	that	way	when	it	multiplies	another	matrix.	Finally,	the	matrix	that	I
multiplied	the	coefficient	matrix	by	to	get	the	identity	matrix	is	called	the
inverse	of	the	coefficient	matrix.	To	save	writing,	and	state	the	relationship	in
general,	use	the	letter	A	to	designate	the	coefficient	matrix.	In	this	notation,	one
writes	the	inverse	matrix	as	A-1.	How	to	calculate	A-1	is	a	standard	topic	in
linear	algebra	textbooks	and	there	is	a	formula,	involving	determinants,	for	the
inverse	of	a	matrix.

Not	all	square	matrices	have	inverses,	but	when	they	do,	one	always	has	A	A-1	=
A-1A	=	I.	Here,	there	is	nothing	special	about	two	dimensions.	In	n	dimensions,
the	identity	matrix	is	the	matrix	with	all	zeros	except	for	the	diagonal	that	runs
from	the	upper	left	to	the	lower	right.	This	diagonal,	called	the	principal
diagonal,	contains	the	number	1	in	every	position.	For	example,	the	3x3	identity
matrix	looks	like	this:

Finally,	to	complete	this	introduction,	or	review,	of	matrices,	one	adds	two
matrices	of	the	same	shape	by	adding	corresponding	entries	and	one	multiplies	a
matrix	by	a	number	by	multiplying	each	entry	in	the	matrix	by	that	number.
Considered	only	in	regard	to	these	two	operations,	the	set	of	matrices	of	a
particular	shape	can	be	regarded	as	a	vector	space.	So	everything	one	knows
about	vector	spaces	applies	immediately	to	matrices.	But,	obviously,	matrices
are	more	than	that.	They	have	an	independent	wider	interest,	an	interest,
however,	that	derives	from	their	relationship	to	a	coordinatized	vector	space.

The	vector	space	operations	for	matrices,	the	addition	of	two	matrices	and	the
multiplication	of	a	matrix	by	a	number,	are	meaningful	because	of	the	way	that
matrix	multiplication	applies	to	column	vectors.	If	the	sum	of	two	matrices	is
applied	to	a	column	vector,	the	result	is	the	same	as	multiplying	the	vector	by
each	matrix	separately	and	then	adding	the	results.	Multiplication	of	a	matrix	by
numbers	follows	the	same	principle.



To	illustrate	the	case	of	addition,	assume	that	A	and	B	are	matrices	and	v	is	a
column	vector.	Interpret	Av	to	represent	matrix	multiplication	of	the	column
vector	v	by	the	matrix	A	from	the	left.	Then	Av	is	a	column	vector.	If	one
interprets	(A	+	B)	as	the	matrix	addition	I	described	above,	then	(A	+	B)v	=	Av
+	Bv	is	a	symbolic	expression	of	the	relationship	between	matrix	addition	and
vector	addition.	One	adds	the	matrices	the	way	we	do	because,	by	doing	so,	one
can	add	the	matrices	together	instead	of	applying	each	matrix	separately.	The
meaning	of	addition	of	matrices	derives	from	the	effect	of	matrix	multiplication
on	vectors.	The	sum	of	two	matrices	represents	the	sum	of	the	effects	of	the	two
matrices	on	vectors.

This	continues	a	pattern	that	I	have	pointed	out	in	this	and	earlier	chapters.	In
general,	addition	in	mathematics	relates	ultimately	to	addition	of	numbers	in	one
way	or	another.	We	saw	this	for	addition	of	fractions,	addition	of	polynomials
and	functions,	for	addition	of	vectors,	and,	now,	at	one	further	remove,	for
additions	of	matrices.	In	general,	two	aspects	enter	into	the	development	of
derived	notions	of	addition:	first,	the	introduction	of	new	units,	as	in	the	case	of
fractions,	and,	second,	the	multiplicity	of	distinct	units	within	a	single	complex
quantity.	For	functions,	one	adds	values	at	every	point;	for	vectors,	one	adds
separate	components.

To	be	a	little	more	comprehensive,	there	is	a	final	twist	because	some	kinds	of
quantities	have	a	cyclic	character.	For	example,	if	one	add	an	angle	of	300	to
itself	a	sufficient	number	of	times,	one	ultimately	reaches	the	sum	of	3600.	And
now	one	has	a	choice.	If	one	is	interested	in	the	final	position,	one	regards	this
final	total	as	0.	But	if	one	looks	at	this	operation	as	successive	rotations,	and	is
specifically	interested	in	the	amount	of	the	rotation,	one	regards	this	total	as
3600,	a	total	that	becomes	even	higher	with	the	next	rotation.	Both	viewpoints
are	valid	within	their	appropriate	contexts.	And,	either	way,	these	successive
additions	are,	properly,	called	addition.

Conversely,	one	should	notice	that,	if	A	is	a	matrix	that	acts	on	vectors	v	and	w,
and	if	a	and	b	are	numbers,	a	kind	of	distributive	law	holds.	Specifically,

A(av	+	bw)	=	aAv	+	bAw

Considered	as	an	array	of	numbers,	matrices	constitute	a	system	of
measurements.	Each	entry	in	every	matrix	is	a	number	and	each	entry	functions
as	a	number:	Each	number	is	a	positive	or	negative	measurement	of	some



magnitude,	a	magnitude	that	is	one	of	a	complex	of	quantities	that,	in	some
context,	are	related	somehow	to	each	other.	Just	as	the	column	vectors	on	which
they	act	reflect	a	choice	of	coordinate	system,	a	matrix	expression	reflects	the
choices	of	coordinate	systems	for	the	column	vectors	involved,	first	for	the	x-y
coordinate	system	in	the	vectors	to	which	it	is	applied	and,	secondly	for	the
column	vectors	that	result	from	the	matrix	multiplication.	By	the	time	matrices
enter	the	scene,	these	coordinate	systems	have	already	been	chosen	and	the
coordinates	for	the	matrix	simply	reflect	those	choices.	The	ultimate	physical	or
external	meaning	of	a	matrix	derives	from	the	meaning	of	the	vectors	to	which	it
is	applied	and	the	meaning	of	the	vectors	that	result	from	that	application.

A	mathematical	domain	of	matrices	is	a	system	of	measurements;	matrices	are
used	to	compute.	In	regards	to	their	application	to	vectors,	a	matrix	is	a	unitary
constellation	of	separate	measurements	treated	as	a	single	complex
measurement.

Linear	transformations

Linear	transformations	(also	known	as	linear	operators)	are	a	certain	kind	of
function	or	mapping	from	one	vector	space	V	to	another	vector	space	W.	There
is	no	restriction	on	either	vector	space	participating	in	the	relationship.	There	is
no	requirement	that	they	have	the	same	dimension;	either	one	or	both	vector
spaces	might	be	infinite	dimensional.	Whatever	the	details,	a	mapping	L	from	V,
taking	values	in	W	is	a	linear	transformation	exactly	when,	for	any	two	vectors
v1	and	v2	in	V	and	any	two	numbers	a1	and	a2,	the	following	relationship	holds:

L(a1v1	+	a2v2)	=	a1L(v1)	+	a2L(v2).34

	As	a	simple	example,	the	mapping	from	V	to	V	that	multiplies	every	vector	by	2
is	linear.	One	sees	this,	as	follows:
	L(a1v1	+	a2v2)	=	2(a1v1	+	a2v2)	=	2(a1v1)	+	2(a2v2)	=	a12v1	+	a22v2	=	a1L(v1)	+
a2L(v2)
	The	mapping	L(ax2	+	bx	+	c)	=	ax2	+	bx	is	linear,	as	is	the	mapping
	R(ax2	+	bx	+	c)	=	(a	+	b)x2	+	bx	+	c
	One	sees	the	first,	for	the	sum	of	two	quadratic	polynomials,	by	the	calculation:

L(	(ax2	+	bx	+	c)	+	(Ax2	+	Bx	+	C)	)	=	L(	(a	+	A)x2	+	(b	+	B)x	+	(c	+	C)	)	=	(a	+
A)x2	+	(b	+	B)x



=	(ax2	+	bx)	+	(Ax2	+	Bx)
=	L(ax2	+	bx	+	c)	+	L(Ax2	+	Bx	+	C)

A	similar	exercise	shows	linearity	with	respect	to	multiplication	of	a	polynomial
by	a	number	and	similar	calculations	show	that	the	map	R	is	linear,	as	well.

The	mapping,	from	quadratic	polynomials	to	linear	polynomials,	that	takes	the
calculus	derivative	of	the	quadratic	polynomial	is	linear.	This	follows	from	the
familiar	facts	that	the	derivative	of	a	sum	is	the	sum	of	the	derivatives	and	the
derivative	of	a	function	that	has	been	multiplied	by	a	constant	is	equal	to	that
constant	multiplied	by	the	derivative	of	the	function.	If	I	give	this	linear
transformation	a	name,	namely	Dx,	one	has,	for	example:

Dx(ax2	+	bx	+	c)	=	2ax	+	b
	One	can	also	define	an	anti-derivative	mapping	Intx,	also	linear,	from	quadratic
polynomials	to	third-degree	polynomials:
	Intx(ax2	+	bx	+	c)	=	(a/3)x3	+	(b/2)x2	+	cx

Linear	transformations	are	aptly	named,	because	they	map	lines	to	lines.	To	see
this	in	R2,	consider	the	following	parameterization	of	a	line	in	R2:

Applying	any	linear	operator	to	the	right
hand	side,	one	finds:
	

The	expression	on	the	right	has	the	form	of	a	parameterized	line.	This	argument
depends	not	at	all	on	the	nature	of	the	particular	vector	space	involved.	Indeed,	if
a	and	b	are	fixed	vectors	in	a	vector	space	V,	then	a	+	tb	is	a	parameterized	line
in	V.	Applying	a	linear	transformation	L,	to	this	expression	yields:

L(	a	+	tb)	=	L(a)	+	tL(b)
This	is	a	parameterized	line	in	the	image	vector	space,	say	W,	in	which	the	fixed
vectors	if	a	and	b	in	V	are	replaced	by	the	fixed	vectors	L(a)	and	L(b)	in	the
vector	space	W.

The	action	of	any	linear	map	on	a	finitedimensional	vector	space	is	completely



determined	by	its	action	on	any	basis.	If	v1,	v2,	…,	vn	is	a	basis	for	the	vector
space	V	then	any	vector	in	V	can	be	written	in	the	form	A1v1	+	A2v2	+	…	+
Anvn	for	numbers	Ai.	If	L	is	any	linear	transformation,	then	successive
applications	of	the	linearity	condition	yields:

L(A1v1	+	A2v2	+	…	+	Anvn)
	=	A1L(v1)	+	A2L(v2)	+	…	+	AnL(vn)

Assuming	that	the	value	of	L	is	given	on	each	basis	vector,	that	L(vi)	is	known
for	I	=	1	.	.	.	n,	this	expression	determines	the	value	of	L	for	all	vectors	in	V.

Assume,	for	example,	that	L	is	defined	on	the	standard	basis	of	column	vectors
in	R3,	as	follows:
	

Applying	L	to	a	general	vector
	

In	other	words,	L	is
represented,	for	this	basis,	by	the	matrix:
	

A	matrix,	then,	is	a	way	of	expressing	a	linear	transformation.35
Every	matrix	acts	as	a	linear	transformation	and	every	linear	transformation,	at
least	in	the	finite	dimensional	case,	can	be	represented	by	a	matrix.	So	what	is
the	difference	between	the	two	concepts?



The	difference	is	one	of	perspective.	A	matrix	is	an	array	of	numbers;	its
application	depends	completely	on	the	choice	of	basis	of	the	vector	space,	i.e.,
its	coordinate	system.	A	domain	of	matrices	is	a	system	of	measurements.	A
linear	transformation,	conversely,	is	conceived	geometrically	as	having	a	fixed
meaning	independent	of	coordinate	system.	If	a	coordinate	system	changes,	a
matrix	representation	of	the	linear	transformation	will	need	to	change	with	it,
but	the	meaning	of	the	linear	transformation,	its	effect	on	vectors,	remains	the
same.
The	difference,	specifically,	is	in	the	context	of	what	is	being	regarded	as	fixed.
A	matrix	is	an	array	of	numbers;	if	one	chooses	different	bases	for	the	vector
spaces,	changing	the	coordinates	of	the	vectors,	without	changing	the	numbers	in
the	matrix,	the	calculations	with	respect	to	the	new	coordinates	will	remain	the
same,	but	the	coordinates	of	the	result	will	now	specify	different	vectors	in	the
vector	spaces	and	the	matrix	calculations	will,	therefore,	specify	a	different
mapping,	a	different	linear	transformation.	As	it	applies	to	vector	spaces,	the
meaning	of	the	matrix,	of	the	array	of	numbers,	changes	when	the	meaning	of
the	coordinates	to	which	it	applies	changes.
So	a	matrix	is	something	that	acts	on	coordinates	whereas,	a	linear
transformation	is	something	done	to	vectors.	If	one	changes	coordinates,	a	linear
transformation	keeps	its	meaning,	but	the	matrix	that	would	be	required	to
specify	that	linear	transformation	needs	to	change.	To	this	point,	if	a	matrix	is
viewed	as	a	representation	of	a	particular	linear	transformation,	then	when	the
coordinates	change,	the	matrix	changes	as	well,	in	order	to	represent	the	same
transformation	in	the	context	of	the	new	coordinates.
There	is	a	kind	of	duality	here	that	one	encounters	over	and	over	in	mathematics.
The	source	of	that	duality	is	almost	always	the	same.	It’s	built	into	the	nature	of
measurement,	as	involving	a	relationship.	A	relationship	is	a	unitary
phenomenon,	a	unitary	fact.	But	any	relationship	can	be	viewed	from	two
alternate	perspectives	corresponding,	respectively,	to	the	two	things	being
related:	One	relationship;	two	perspectives.	The	interplay	between	geometry	and
systems	of	measurement	is	but	one	instance	of	this	phenomenon.

Multiplication

If	T	is	a	linear	transformation	from	vector	space	U	to	vector	space	V	and	S	is	a
linear	transformation	from	V	to	vector	space	W,	one	defines	the	composite
function	ST	from	U	to	W	as



(ST)(u)	=	S(T(u))36

Read	this	as:	The	action	of	the	composite	function	ST	on	a	vector	u	in	U	consists
of	first	applying	T	to	obtain	a	vector	T(u)	in	V	and	then	applying	S	to	that	vector
T(u)	to	obtain	a	vector	in	W.	The	parentheses	that	I	placed	around	ST	emphasize
that	the	composite	transformation,	thus	defined,	can	be	regarded	as	a	single
conceptual	unit,	as	a	single	transformation.	Henceforth,	I	shall	omit	those
parentheses.

I	say	that	ST	is	a	linear	transformation.	To	see	that,	pick	any	two	vectors	u1	and
u2	In	U	and	numbers	a1	and	a2.	Applying	definitions	and	using	the	linearity	of
both	S	and	T:

ST(a1u1	+	a2u2)	=	S(T(a1u1	+	a2u2))
=	S(a1T(u1)	+	a2T(u2))	=	a1S(T(u1))	+	a2S(T(u2))	=	a1ST(u1)	+	a2ST(u2)

The	final	result,	ST(a1u1	+	a2u2)	=	a1ST(u1)	+	a2ST(u2),	is	the	defining
characteristic	of	a	linear	transformation,	that	linear	transformation	being	ST.

As	an	important	special	case,	if	vector	space	U	=	V	=	W,	then	S,	T,	and	ST	are	a
linear	mappings	from,	say,	U	to	itself.
As	examples	involving	polynomials,	consider	the	following	composite	linear
transformations	involving	differentiation	and	the	anti-differentiation	operator	Int
defined	earlier:
Dx2(x3	+	2x2	+	5)	=	DxDx(x3	+	2x2	+	5)	=	Dx(3x2	+	4x)	=	6x	+	4

IntxDx(x3	+	2x2	+	5)	=	Intx(3x2	+	4x)	=	x3	+	2x2

	DxIntx(x3	+	2x2	+	5)	=	Dx(1/4	x4	+	2/3	x3	+	5x)	=	x3	+	2x2	+	5

Notice	that	DxIntx≠	IntxDx	and	also	that	DxIntx	=	I	where	I	is	the	identity
mapping	I(v)	=	v.
Now	consider	a	matrix	example.	Suppose	S	and	T	are	represented	by	matrices.
Starting	with	T,	take,	for	example,

Then
	



Now,	suppose	that
	

So
	

Then,	applying	the	definition	of
composition,
	

But
	

So	ST	is	represented	by	the	matrix
	

On	the	other	hand,	matrix	multiplication	also	yields:
	

So	the	product	of	the	matrices	representing	S	and	T	is	the	matrix	representing
ST.	What	I	called	matrix	multiplication,	in	accordance	with	standard	usage,	turns
out	to	be	the	same	thing	as	composition	of	linear	transformations.	As	a	first
observation,	this	confirms	the	claim	I	made	when	I	introduced	the	product:	that
the	multiplication	of	matrices	derives	from	the	effect	that	matrices	have	on
vectors.

What	about	this	multiplication?	
I	have	already	argued	that	the	operations	that	mathematicians	call	addition	are
generally,	if	not	always,	derived	from	addition	of	numbers.	That	there	might	be
multiple	units,	e.g.,	independent	vectors,	involving	multiple	dimensions	of
measurement,	does	not	change	the	principle.	It	only	means	that	more	than	one
unit	is	involved	in	the	constellation	of	measurements	that	one	is	further
integrating	into	a	single	conceptual	unit.	Cyclic	cases,	like	odd	versus	even,
provide	a	more	complex	example.	In	the	even/odd	example,	there	are	only	two
measurements,	odd	and	even.	One	adds,	for	example,	odd	plus	even	and	gets
odd.	Yet,	behind	the	scenes,	numbers	are	still	involved;	one	is	simply	omitting
measurements,	retaining	only	whatever	remains	upon	division	by	two.
In	general,	whenever	a	binary	operation	is	called	addition	there	is	always	a	zero,
every	element	in	the	system	of	measurements	has	an	additive	inverse,	and



addition	is	commutative.	To	say	that	addition	is	commutative	means	that,	for	any
elements	a	and	b	contained	in	the	system	of	measurements,	a	+	b	=	b	+	a.
Not	so	with	multiplication.	It	is	true	that	there	is	generally	an	identity	element,
like	the	identity	matrix.	An	identity	is	an	element,	I,	such	that,	for	any	A	in	the
system	of	measurements	AI	=	IA	=	A.	But	even	in	the	case	of	matrices	there	are
many	elements	without	multiplicative	inverses.	And	one	does	not	require	that	an
operation	be	commutative	to	be	called	a	multiplication.	Matrices	and	linear
transformations	exemplify	this	point,	as	well.	I’ve	already	pointed	out,	for
example,	that	DxIntx	≠	IntxDx.	Here’s	a	matrix	example:

But
	

Where	matrices	are	concerned,	it	is	the	exception	for	multiplication	to	be
commutative.	So	why	the	appellation?	Why	call	it	multiplication?

The	analogy	to	arithmetic	operations	is,	certainly,	not	as	strong	for
multiplication	of	matrices	and	linear	transformations	as	it	is	for	addition	of
matrices,	linear	transformations,	and	vectors.	And	mathematicians	could,
certainly,	call	this	operation	something	else.

But	they	don’t.	When	mathematicians	“multiply”	things,	they	think	of	it	as	a
kind	of	multiplication,	all	the	time	remembering	the	respects	in	which	it	differs
from	the	numerical	operation	with	the	same	name.	And	I	don’t	think	this	is	an
accident.	And	I	don’t	think	it’s	the	wrong	thing	to	do.

To	begin	with,	there	are	some	relatively	superficial	points.	First,	whatever	one
calls	it,	the	notation,	writing	elements	next	to	each	other	to	indicate	the	desired
operation,	for	example,	is	the	most	compact	and	suggestive	notation	available
for	the	relationships	being	expressed.	And	that	includes	singling	out	the	identity
element.	Indicating,	the	inverse	of	an	element	A	by	A-1	is	similarly,	and	rightly,
done	generally,	to	mean,	essentially,	to	undo	the	effect	of	A	on	something.	And
when	one	speaks	of	multiplying	(as	opposed	to	forming	a	“product”,	which	is
still	more	general)	the	associative	law	always	holds:	If	A,	B,	and	C	are	elements
in	a	system	of	measurements	or	a	system	of	quantities,	it	is	always	the	case	when
A,	B,	and	C	are	multiplied	together,	that	(AB)C	=	A(BC).	This	means	that	one



can	first	multiply	A	and	B,	obtaining	their	product	and	then	combine	that
product	with	C	or,	conversely	and	to	the	same	effect,	multiply	B	and	C	together
to	find	their	product	and	then	combine	that	result	with	A.	The	results	will	be	the
same.

In	this,	however,	one	must	always	keep	track	of	the	order;	one	cannot
interchange	two	elements	without	possibly	affecting	the	result:	It	would	not	be
true,	in	general,	that	(AB)C	=	A(CB).

When	does	one	use	the	term	multiplication	in	mathematics?	There	are	two	kinds
of	typical	cases.	First,	there	are	cases	that	really	do	derive	from	numbers.
Multiplying	two	polynomials	together	to	get	another	polynomial	is	such	an
example.	The	value	of	the	product	polynomial	at	every	point	is,	simply,	the
product	of	the	values	of	the	two	multiplied	polynomials.	In	cases	like	this,
multiplication	is	commutative	because	of	the	relationship	to	ordinary
multiplication.

The	other	situation,	to	which	one	typically	applies	the	term,	multiplication,	arises
as	the	composition	of	two	functions	or	transformations.	Generally,	though	there
are	exceptions,	the	term	multiplication	is	applied	only	when	the	functions
involved	map	a	domain	onto	itself.

Matrices,	as	we	saw,	are	coordinate	representations	of	linear	transformations;
their	product	represents	a	composition	of	linear	transformations.	But	they	are	a
counterexample	to	the	general	tendency.	Namely,	one	can	multiply	matrices	that
relate	different	vector	spaces	of,	e.g.,	different	numbers	of	dimensions	as	long	as
the	domain	of	each	matrix	contains	the	range	of	the	previous	matrix	(on	its
right).

In	the	typical	case,	when	the	functions	under	consideration	map	a	domain	into
itself,	there	is	always	an	identity	mapping,	an	element	that	maps	every	element
in	the	domain	to	itself.	And,	for	a	1	to	1	map,	there	is	an	inverse	that	is	just	the
backwards	map.	Finally,	if	there	is	an	addition	being	considered	as	part	of	the
system	of	measurements,	the	multiplication	and	addition	should	interact	in	the
right	way:	there	is	the	kind	of	distributive	law	that	I	have	observed	in	the	case	of
matrices.

Considering	the	general	need	for	conceptual	integration,	these	are	probably
sufficient	considerations	to	justify	extending	the	term,	multiplication,	widening



its	meaning,	by	analogy,	to	a	vastly	broader	context	than	its	original	meaning.

But	there	is	also	a	deeper	similarity.
In	the	realm	of	numbers,	addition	relates	to	counting,	but	multiplication	relates
more	specifically	to	measurement,	in	the	sense	of	identifying	the	relationship	to
a	unit.	It	is	because	of	multiplication	that	one	cannot	think	of	the	number	line	as
embodying	an	omitted	unit,	such	as	feet	or	decibels.	One	has	to	think	of	numbers
on	the	number	line	as	dimensionless,	as	ratios,	as	representing	the	multiplicative
relationship	between	two	magnitudes	of	the	same	kind,	whatever	that	kind	might
be.	A	number,	in	the	context	of	multiplication	and	measurement	of	continuous
quantities,	is	a	quantitative	relationship	to	a	unit.37
Therein	lies	the	analogy	to	transformations:	A	transformation,	or	a	function,
represents	a	relationship	between	the	elements	that	it	relates.	It	is	not	always
specifically	a	measurement	qua	relationship	to	a	unit.	But	it	does	represent	an
abstract	measurement,	a	quantitative	relationship	that	can	potentially	represent
part	of	an	indirect	measurement.	In	this	sense,	multiplication	operations	that
represent	compositions	of	transformations	are	closer	to	the	essence	of	numerical
multiplication	than	the	multiplication	of	polynomials,	based	on	their	point-wise
numerical	values.
The	role	of	abstract	measurement	was	a	major	theme	in	the	chapter	on	Euclid’s
Method,	but	this	role	has	been	part	of	the	background	of	everything	I	have
discussed	since.	And	sometimes,	in	important	cases,	a	transformation	is	more
than	an	abstract	measurement,	a	relationship	between	two	quantities.	Sometimes
a	transformation	is	a	measure	of	symmetry.	Measuring	symmetry	is	the	province
of	group	theory,	something	that	I	will	discuss	in	Chapter	8.

Kernels	and	Quotient	Spaces

Linear	Algebra,	as	I’ve	said,	is	about	solving	simultaneous	systems	of	equations.
Looking	at	it	abstractly,	from	a	vector-space	perspective,	one	wants	to	solve	an
equation	Av	=	w,	where	v	is	in	one	vector	space,	V,	w	is,	possibly,	in	another
vector	space,	W,	and	A	is	a	linear	transformation,	possibly	represented,	in	a
coordinate	expression,	by	a	matrix.

But	solutions	to	simultaneous	equations	are	not	always	unique.	For	example,
consider	the	matrix	equation:
	



This	matrix	equation	represents	four	simultaneous	equations,	of	which	two	are
trivial.	After	discarding	the	two	trivial	equations,	what	remains	are	two
equations:	6w	=	12	and	2x	=	0.	Solving,	one	finds	a	particular	solution:

Are	there	any	other	solutions?	
Notice	that	neither	y	nor	z	entered	into	the	pair	of	equations.	While	the	values	of
w	and	x	were	forced,	the	equations	impose	no	restrictions	whatever	on	either	y
or	z.	So	the	general	solution	is:

for	arbitrary	numbers	a	and	b.

And	why	is	there	no	restriction	on	the	values	of	y	and	z?	Because	y	and	z	do	not
appear	in	the	equations,	6w	=	12	and	2x	=	0.	As	far	as	this	particular	problem	is
concerned,	y	and	z	are	totally	irrelevant.	The	value	of	w	is	forced	by	the	first
equation	and	the	second	equation	forces	x	to	be	zero.	But	y	and	z	might	as	well
not	even	be	there.	One	could	take	them	out	of	the	matrix	equation	totally,	and	it
wouldn’t	matter.

Indeed,	the	equations,	6w	=	12	and	2x	=	0,	expressed	as	a	matrix	equation,
amount	to:
	

In	this	formulation,	of	the	same	problem,	the	variables	y	and	z	are	nowhere	in



sight.	Nor	are	the	variables,	r,	s,	t,	u,	or	v	anywhere	in	sight.	These	latter
variables,	whatever	they	might	be	used	to	designate,	have	no	more	bearing	on
the	actual	problem,	but,	also,	no	less	bearing,	than	the	variables	y	and	z.	The
only	difference	between	the	variables	y	and	z,	versus	these	other	variables,	is
that	y	and	z	refer	to	some	specific	factors,	initially	presumed	to	be	relevant,	that,
on	further	analysis,	turn	out	to	be	irrelevant.

Had	y	and	z	been	left	out	of	the	problem	in	the	first	place,	there	would	have	been
a	unique	solution	to	the	problem.	But,	because	they	are	included,	there	is	an
entire	family	of	solutions,	namely,

If	one	thinks	about	this	geometrically,	as	a	problem	in	a	fourdimensional	vector
space,	one	finds	that,	in	this	example,	four	dimensions	are	included	in	the
statement	of	the	problem,	but	only	two	dimensions	are	actually	relevant	to	the
problem.	So	the	fourdimensional	problem	reduces	to	a	two	dimensional	problem.

Now	consider	a	more	numerically	complicated	example.	Consider	the	equation
	

Without	showing	the	derivation,	I	note,	and	one	can	check,	that	x	=	2,	y	=	1,	z	=
-1	is	a	particular	solution	to	this	equation.	For,	by	direct	computation:

I	now	ask	the	same	question	as	I	did	for	the	first	example:	Is	the	solution	x	=	2,	y
=	1,	z	=	-1	unique?	There	is	a	general	conceptual	approach	to	such	problems.

In	the	general	formulation,	Av	=	w,	where	v	is	a	vector	in	a	vector	space	V	and
w	is	a	vector	in	a	vector	space	W.	As	a	matter	of	terminology,	if	w	is	chosen	to



be	0	(the	vector	0	in	W)	then	the	resulting	equation	Av	=	0	is	known	as	the
homogeneous	equation.	Otherwise,	when	w	≠	0,	the	equation	Av	=	w	is	known
as	the	inhomogeneous	equation.

I’m	interested	in	uniqueness.	Accordingly,	suppose	that	v1	and	v2	are	two
solutions	of	the	inhomogeneous	equation.	That	is,	suppose	that	v1	and	v2	satisfy,
respectively,	the	equations	Av1	=	w	and	Av2	=	w.	It	follows	that

Av1	-	Av2	=	w	–	w	=	0
	By	the	linearity	of	A,	A(v1	-	v2)	=	Av1	-	Av2	and,	therefore
	A(v1	-	v2)	=	0

So	the	difference	(v1	-	v2)	between	two	solutions	of	the	inhomogeneous	equation
(Av	=	w)	is	a	solution	of	the	homogeneous	equation,	namely,	Av	=	0.

The	set	of	solutions	to	the	homogeneous	equation	Av	=	0	has	a	special	name.	It’s
called	the	kernel	of	the	transformation	A.
My	first	example	had	a	very	simple	kernel	consisting	of	vectors	of	the	form

For,	clearly,	the	equation,

holds	precisely	when	w	=	x	=	0.
By	the	nature	of	this	example:

●	Any	two	solutions	to	the	inhomogeneous	equation	differ	only	in	their	last	two
coordinates,	since	the	values	of	the	first	two	coordinates	of	the	solution	were
forced.

●	The	values	of	the	variables	a	and	b	can	be	chosen	freely.	●	By	the	same	token,



for	the	homogeneous	equation,	w	and	x	must	be	zero,	and,	once	again,	the	values
of	the	variables	a	and	b	can	be	chosen	freely.
●	These	solutions	of	the	homogeneous	equation	form	a	vector	space,	namely	the
vector	space	consisting	of	vectors	for	which	both	w	and	x	are	zero.

In	general,	the	solutions	to	a	homogeneous	equation,	Av	=	0,	always	form	a
vector	space.	To	see	this,	start	with	the	obvious	fact	that	A0	=	0,	where	the	first	0
is,	again,	the	zero	vector	in	V.	Secondly,	if	v1	and	v2	are	solutions	to	the
homogeneous	equation,	and	a1	and	a2	are	numbers,	then

A(a1v1	+	a2v2)	=	a1A(v1)	+	a2A(v2)	=	0	+	0	=	0

In	other	words,	any	linear	combination	of	solutions	to	the	homogeneous	equation
is,	itself,	a	solution	to	the	homogeneous	equation.	But	this,	closure	under
addition	of	vectors	and	multiplication	by	numbers,	is	the	defining	property	of	a
subspace.	So	the	solutions	to	the	homogeneous	equation	form	a	subspace	of	the
larger	vector	space	to	which	they	are	already	known	to	belong.	And	this	means
that	the	solutions	to	the	homogeneous	equation	are,	themselves,	a	vector	space.

But	how	does	this	bear	on	the	inhomogeneous	equation?	Simply	this:	If	K	is	the
kernel	of	a	linear	transformation	A,	and	v0	is	a	particular	solution	to	the
inhomogeneous	equation,	then	the	complete	set	of	solutions	is	completely
characterized	as	the	set	of	vectors	of	the	form	v0	+	vk	where	vk	is	contained	in
the	kernel	of	A.	First,	as	we	have	just	seen,	any	two	solutions	differ	by	a	solution
to	the	homogeneous	equation,	in	short,	by	a	vector	in	the	kernel.	Conversely,	one
computes:

A(v0	+	vk)	=	A(v0)	+	A(vk)	=	w	+	0	=	w
	With	this	as	a	background,	I	return	to	our	problem	with	the	3	X	3	matrix:
	

for	which	x	=	2,	y	=	1,	z	=	-1	is	a	particular
solution	to	this	equation.

What	is	the	kernel?	In	light	of	this	discussion,	one	reformulates	this	question,	as
follows:	What	are	the	values	of	x,	y,	and	z	such	that	the	following	holds?



This	matrix	equation	amounts	to	three
simultaneous	equations	that	can	be	solved	by	inspection:

x	–	y	=	0
x	+	2y	+	z	=	0
3x	+	z	=	0

My	plan	of	attack	for	this	particular	example	is	straightforward:	First	choose	a
value	for	x.	Next,	use	the	third	equation	to	force	the	value	of	z	and	use	the	first
equation	to	force	y.	Finally,	one	checks	that	these	values	of	x,	y,	and	z	also
satisfy	equation	2.

For	example,	if	x	=	1,	then	from	the	third	equation,	z	=	-3.	And,	from	the	first
equation,	one	must	have	y	=	1.	One	checks	that	these	three	values	also	satisfy	the
second	equation.

In	this	example,	one	has	a	free	choice	for	the	value	of	x.	But,	once	x	is	chosen,
the	corresponding	values	of	y	and	z	are	forced.

Obviously,	and	as	we’ve	seen,	any	multiple	of	a	solution	to	a	homogeneous
equation	is	also	a	solution.	So,	If	a	is	any	constant,	it	follows	that	all	vectors	of
the	form

satisfy	the	homogeneous	equation.	On	the	other	hand,	we	have	already	seen	that
x	=	a	implies	that	y	=	a	and	z	=	-3a.	In	light	of	our	general	discussion,	therefore,
the	general	solution	of	the	inhomogeneous	equation	is



Here,	a	is	any	constant	number.
This	second	example	involved	more	computation	than	the	first	and	the	answer	is
also	more	complicated.	In	the	first	example,	the	irrelevance	of	the	last	two
variables	was	transparently	obvious.	There	is	no	such	transparency	in	this
example.
Yet	the	same	principle	applies.	Assuming	that	one’s	sole	concern	is	finding	a
solution,	there	is	an	abundance	of	riches	here.	There	is	a	one-parameter	family	of
solutions;	yet	one	requires	but	one	solution.	Differences,	of	the	form	avK,	don’t
matter;	they	do	not	affect	the	result.	If	one	adds	a	multiple	of	vK	to	a	solution	to
the	equation,	the	result	is	another	solution	to	the	equation.	If	one	adds	a	multiple
of	vKto	a	vector	that	is	not	a	solution,	the	resulting	sum	is	still	not	a	solution.
Either	way,	differences	in	the	direction	of	vK	are	irrelevant;	they	do	not	affect
the	outcome.
The	contrast	between	this	example	and	the	first	example	is	not	a	geometric
contrast;	rather,	it	involves	a	difference	in	one’s	choice	of	coordinates.	Had	I
chosen	a	basis	of	R3	for	which	the	vector	vk	were	one	of	these	basis	vectors,	the
second	example	would	have	looked	very	much	like	the	first.
To	speak	more	generally,	consider	any	matrix	equation	Av	=	w	in	relation	to	the
kernel	of	the	homogeneous	equation	Av	=	0.	To	the	extent	one’s	only	purpose	is
to	solve	Av	=	w,	it	doesn’t	matter	which	solution	one	chooses.	The	choices	are
identical	with	respect	to	their	image	under	the	linear	transformation	A.	For	this
purpose,	any	two	such	choices	are	equivalent.	Any	two	vectors	in	V	that	differ
by	an	element	k	in	the	kernel	of	A	will	map	to	the	same	vector	in	W.
If	u	and	v	are	vectors	in	V	for	which	u	–	v	=	vK,	a	vector	in	the	kernel	K,	then

u	=	v	+	vK
	and
	Au	=	a(v	+	vK)	=	Av	+	AvK	=	Av



Insofar	as	one’s	only	concern	is	the	value	of	Av,	the	two	vectors	u	and	v	are
equivalent.	In	effect,	the	difference	between	u	and	v	can	be	ignored,	can	be
treated	as	an	omitted	measurement.

Mathematicians	call	this	sort	of	relationship	an	equivalence	relation:	Two
vectors	are	regarded	as	equivalent,	in	this	context,	if	and	only	if	their	difference
is	in	the	kernel	K	of	the	linear	transformation	A.

In	general,	an	equivalence	class	is	a	set	of	vectors	in	a	vector	space	that	are
distinguished	as	being	equivalent	from	a	particular	perspective.	In	this	respect,
two	vectors	are	equivalent	by	virtue	of	the	fact	that	their	difference	lies	in	the
specific	subspace	K.

These	equivalence	classes	can	be	viewed	as	a	vector	space	because	it	turns	out,
from	the	perspective	of	this	notion	of	equivalence,	the	results,	the	equivalence
classes,	of	linear	combinations	of	vectors	does	not	depend	on	which	vectors	are
chosen,	within	their	respective	classes.

This	is	a	difficult	concept.	I	will	complete	the	general	discussion	shortly.	But	the
best	way	to	visualize	what	is	happening	is	to	start	with	a	simpler	example.

Consider,	then,	vectors	in	R3.	For	certain	purposes,	one,	in	effect,	projects
vectors	into	the	xy	plane.	One	regards	two	vectors	as	equivalent	if	they	differ
only	in	their	zcomponent.	Two	vectors	are	treated	as	equivalent	if	their
difference	is	a	vector	along	the	z	axis,	a	vector	that,	expressed	in	row
coordinates,	takes	the	form	(0,	0,	z).	One	focuses	on	the	x	and	the	y	coordinates,
treats	them	in	the	usual	way,	and	simply	ignores	the	zcomponent	as	an	omitted
measurement,	as	irrelevant,	on	the	usual	principle:	The	zcomponent	must	have
some	value,	but	it	may	have	any	value.

If	one	takes	a	linear	combination	of	two	vectors	in	R3,	one	can	continue	to
restrict	one’s	focus	on	the	x	and	y	coordinates	because	the	values	of	the	z
coordinates	of	the	two	added	vectors	does	not	affect	the	x	and	y	coordinates	of
the	result.

In	treating	these	vectors	as	equivalent,	one	focuses	on	the	measurements	that	are
relevant	in	a	particular	context.
When	physicists	restrict	their	attention	to	two	dimensions,	in	analyzing	a
particular	problem,	this	is	exactly	what	they	are	doing:	focusing	on	the



measurements	that	are	relevant	to	a	particular	analysis	and	ignoring	the	rest.
For	example,	in	analyzing	the	effects	of	gravitation	on	a	falling	object,	one
typically	studies	the	height	z	of	the	falling	object	as	a	function	of	time	t.	One
ignores	x	and	y.	One	ignores,	for	example,	the	effect	of	a	breeze	blowing	in	a
north-eastern	direction	because	one	is	not	interested	in	the	north-easterly	drift.
One	can	ignore	this	drift	precisely	insofar	as	it	does	not	affect	the	height	z,	as	a
function	of	time.
To	recap	and	continue	the	general	discussion,	if	V	is	any	vector	space	and	K	is	a
subspace	of	V,	then	vectors	are	considered	equivalent,	with	respect	to	K,	if	their
difference	lies	in	the	subspace	K.	The	vector	space	that	ignores	distinctions
among	vectors	occupying	the	same	equivalence	class,	is	called	the	quotient
space	of	equivalence	classes	with	respect	to	K.	In	standard	notation,	this	vector
space	is	written	V/K.
A	vector	in	V/K	is	simply	a	vector	in	V	for	which	one	omits	certain	distinctions,
in	which	one	treats	any	two	vectors	differing	by	a	vector	in	K	as	the	same	vector.
I	have	yet	to	show	that,	in	fact,	one	can	successfully	treat	V/K	as	a	vector	space.
As	a	first	step	in	that	direction,	I	will	specify	the	recipes	for	adding	two
equivalence	classes	and	for	multiplying	an	equivalence	class	by	a	number.	Then
I	will	illustrate	how	this	recipe	applies	to	a	concrete	example.	Finally,	I	will
provide	a	general	argument	to	show	that	these	operations	are	welldefined,	that
choices	of	particular	representatives	of	equivalence	classes	do	not	affect	the
result.
This	last	point	is	the	critical	one:	If	it’s	truly	the	case	that	the	distinctions
between	equivalent	vectors	don’t	matter,	then	the	distinctions	between	their
sums,	for	example,	shouldn’t	matter	either.
I	start	with	the	recipe.	First,	addition	of	vectors	in	V/K	consists	in;
1.	choosing	a	representative	from	each	equivalence	class,	2.	adding	these
representatives,
3.	assigning	the	resulting	sum	to	the	equivalence	class	of	the
result.

Multiplication	by	a	number	is	similar.	One

1.	chooses	a	representative	from	an	equivalence	class,
2.	multiplies	it	by	the	number,
3.	assigns	the	result	to	its	equivalence	class.

My	claim,	still	in	question,	is	that	the	equivalence	classes	of	these	results	are
unaffected	by	one’s	optional	choices	along	the	way.	Let’s	see	how	this	applies	to
my	projection	example.	Suppose	that	one	starts	with	a	vector	(x,	y,	z)	for	which



my	projection	example.	Suppose	that	one	starts	with	a	vector	(x,	y,	z)	for	which
only	the	x	and	y	coordinates	are	important.	Let’s	say	the	x	and	y	coordinates	are
(x,	y)	=	(1,	2).	Now	take	a	second	vector	for	which	the	x	and	y	coordinates	are
(x,	y)	=	(3,	-1).

Let’s	choose	representatives	from	their	equivalence	classes.	One	knows	the	first
and	second	coordinates	of	the	first	vector,	but	the	z	coordinate	could	be
anything.	So,	for	the	sake	of	the	argument,	choose	the	vector	(1,	2,	4)	as	a
representative	of	the	first	equivalence	class.	This	vector	is	a	representative
because	it	has	the	correct	x	and	y	coordinates.

In	similar	fashion,	for	the	sake	of	the	argument,	choose	the	vector	(3,-1,	15)	as	a
representative	of	the	second	equivalence	class.
Their	sum	in	R3	is	(4,	1,	19).	The	equivalence	class	of	this	sum	consists	of	all
vectors	in	R3	for	which	the	x	coordinate	is	4	and	the	y	coordinate	is	1.
There	are	two	important	points	about	this	sum.	First,	the	z	component,	19	is
irrelevant	because	it	does	not	affect	the	equivalence	class	of	the	result.	But,
equally	important,	neither	of	the	z	components,	4	and	15,	of	the	two	summands
affected	anything	but	the	z	component	of	the	result.	Neither	the	x	component	nor
the	y	component	of	the	result	was	affected	by	these	choices.
In	effect,	one	might	as	well	have	left	out	the	z	component	altogether,	and	written
(1,	2)	+	(3,	-1)	=	(4,	1).
The	same	point	applies	to	multiplication	by	a	number.	Suppose,	for	example,
one	multiplies	the	first	vector	by	3.	Choosing	the	same	representative	of	the	first
vector	that	I	chose	earlier,	one	finds,	3	×	(1,	2,	4)	=	(3,	6,	12).	The	equivalence
class	of	this	result	consists	of	all	vectors	in	R3	for	which	the	x	coordinate	is	3
and	the	y	coordinate	is	6.
Once	again,	the	choice	of	z	component,	namely	4,	for	the	vector	(1,	2,	4),	does
not	affect	the	x	and	y	coordinates	of	the	result	and	the	z	coordinate	of	the	result
does	not	affect	the	equivalence	class	of	the	result.
At	least	in	this	case,	one	can	treat	these	equivalence	classes	as	welldefined
vectors,	because	the	effect	of	vector	addition	and	multiplication	by	numbers,	the
equivalence	classes	of	the	results,	does	not	depend	on	which	equivalent	vector
one	chooses	to	subject	to	these	operations.	The	results	corresponding	to	different
equivalent	choices	will	always	be	equivalent.
Now	the	general	situation	is	not	so	straightforward.	The	same	principles	apply,
but	their	operation	is	not	as	transparent.
To	make	that	general	argument:	Take	two	representatives	u	and	v	of	equivalence
classes	u^	and	v^	in	V/K.	Here,	I’m	simply	using	the	^	as	a	way	to	distinguish	a



vector	in	V	from	its	equivalence	class	in	V/K.	The	vectors	u	and	v	are	vectors	in
V;	the	equivalence	classes	u^	and	v^	are,	as	I	intend	to	validate,	welldefined
vectors	in	V/K.	The	vector	u	is	a	member	of	the	set	u^	and	the	vector	v	is	a
member	of	the	set	v^.
I	need	to	show	that	the	equivalence	class	of	the	sum	does	not	depend	on	one’s
choices	of	the	representative	vectors	u	and	v.	One	needs	to	show	that	the
equivalence	class	of	u	+	v,	which	I	would	like	to	write	(u	+	v)^,	is	independent
of	my	choices	of	u	and	v.
So	assume	that	u1	is	equivalent	to	u	and	that	v1	is	equivalent	to	v.	I	need	to	show
that	u1	+	v1	is	equivalent	to	u	+	v.
Since	u1	and	u,	are	equivalent,	their	difference	u1	–	u	is	equal	to	some	vector	in
K.	Call	this	vector	u1k.	That	is,	u1	–	u	=	u1K,	is	contained	in	K.	Likewise	suppose
that	v1	–	v	is	equal	to	some	vector	v1K	contained	in	K.
I	need	to	show	that	the	sum	(u1	+	v1)	is	equivalent	to	the	sum	(u	+	v).	But,	by
straightforward	calculation,	one	finds	(u1	+	v1)	–	(u	+	v)	=	(u1	–	u)	+	(v1	–	v)	=
u1K	+	v1K.	This	sum	is	contained	in	K	because	K	is	a	vector	space.	If	I	add	two
vectors	in	K,	the	result	is	in	K.
A	similar,	but	easier,	argument	applies	to	multiplication	of	u	by	a	constant	a.
One	needs	to	show	that	au1	is	equivalent	to	au.	But	this	also	follows	by	a
calculation,	namely:	au1	–	au	=	a(u1	–	u)	=	au1K.	This	product,	au1K,	is	a	vector
in	K	because,	once	again,	K	is	a	vector	space.
Now	how,	from	a	reality-based	perspective,	should	one	look	at	this?
Notice	that	the	elements	of	this	vector	space	are,	literally,	in	the	conventional
view,	sets	of	vectors,	sets	of	equivalent	vectors.	But	these	sets	are	condensed	to	a
single	unit,	just	as	one	does	when	one	forms	a	concept.	Mathematically,	the
equivalence	class	is	a	set,	but	it	is	a	set	viewed	from	a	particular	conceptual
perspective.	In	this	perspective,	one	is	doing	more	than	simply	isolating	vectors
into	disjoint	sets,	one	is	regarding	any	two	vectors	residing	in	the	same	set	as
conceptually	equivalent	in	regards	to	a	particular	context.
One,	as	an	incidental	matter,	can	regard	these	vectors	as	elements	in	various	sets.
But	one’s	interest	in	the	vectors	is	not	specifically	as	elements	of	the	set.	Rather,
one	is	interested	in	them	because	they	are	equivalent	from	a	particular
perspective.	One’s	use	of	set	theory	is	helpful	technically.	But	it	is	not	the	use	of
set	theory	that	makes	it	meaningful.	An	equivalence	class	is	a	mathematical
abstraction	that	transcends	a	set-theoretic	perspective	on	mathematics.
Within	a	particular	context,	a	particular	quotient	space	should	be	regarded	as	a
concept	and	as	a	mathematical	domain.	However,	the	resulting	particular



quotient	space	is	not	a	permanent	conceptual	unit	that	one	would	normally
transfer	to	another	context.
Nonetheless,	within	the	scope	of	a	particular	analysis,	it	is	a	concept.	The
elements	of	each	subset	have	been	conceptually	isolated	according	to	a	specific
characteristic,	such	as	their	image	under	the	mapping	A.	The	elements	of	the	set
are	the	immediate	referents	of	that	conceptual	distinction	and	they	are	also	the
link	to	their	ultimate	referents	in	the	world,	to	all	potential	referents	of	the
vectors	in	V	itself.	And	the	formation	of	that	concept	follows	the	fundamental
principle	of	concept	formation,	the	principle	identified	by	Ayn	Rand,	of	omitting
measurements.
Recall	my	discussion	of	odd	versus	even	numbers	versus	the	classification	of
numbers	by	their	remainder	on	division	by	5	in	Chapter	6.	One	forms	a	concept
of	even	versus	odd;	it	is	a	concept	that	children	learn.	But	one	does	not	form	a
permanent	concept,	a	specific	conceptual	unit,	to	each	possible	remainder	upon
division	by	5.	One	could	not	reasonably	do	so	for	each	possible	divisor.
Yet,	in	certain	limited	contexts,	one	does	exactly	that.	So	mathematicians	need	a
general	way	of	dealing	with	contexts	in	which	a	remainder	is	all	that	one	cares
about.	And	that	is	what	they’ve	done:	One	says	x	=	y	(mod	5)	precisely	when	(x
–	y)	is	divisible	by	5	(x	and	y	being	integers).	And	this	is	a	general	method	that
can	apply	to	any	divisor:	One	also	says	that	x	=	y	(mod	7)	precisely	when	(x	–	y)
is	divisible	by	7.
In	viewing	remainders	in	this	way,	one	follows	the	same	principle	that	one
follows	in	forming	quotient	spaces	of	vector	spaces.	As	I	remarked	at	the
beginning	of	Chapter	3,	many	of	the	most	profound	conceptions	in	mathematics
make	their	first	appearance	in	ordinary	arithmetic.
This	notion	of	a	quotient	is	a	very	broad	concept	in	mathematics	that	extends	to
many	other	systems	of	measurement	and	systems	of	quantities	in	mathematics.
The	formation	of	a	quotient,	of	some	sort,	always	follows	the	principle	of
omitting	measurements	and	it	is	always	done	for	the	same	reason	–	to	restrict
one’s	focus,	in	a	particular	context,	to	the	relevant	measurements	in	that
particular	context.
We	will	meet	this	concept	of	a	quotient	again,	in	the	next	chapter,	for	a	very
different	mathematical	domain.

Distances	and	Angles	in	Vector	Spaces	Distance
Formula	in	Vector	Spaces



According	to	the	Pythagorean	Theorem,	the	square	of	the	distance	from	the
origin	(0,	0)	of	R2	to	a	point	X	=	(x1,	x2)	is	x12	+	x22.38	As	an	expression	of	this
relationship,	it	is	convenient	to	introduce	the	notations	|X|	=	√(	x12	+	x22	)	and,
more	importantly,	|X|2	=	x12	+	x22	as	the	square	of	the	distance	from	(0,0)	to	(x1,
x2).

Consider	how	this	works	in	R3.	The	square	of	the	distance	from	(0,	0,	0)	to	(x1,
x2,	0)	is,	clearly,	x12	+	x22	because	adding	a	coordinate	simply	adds	an	additional
measurement,	one	that	doesn’t	impact	my	measurements	in	the	xy	plane.	Now
consider	the	line	from	(x1,	x2,	0)	to	(x1,	x2,	x3).	This	line	is	perpendicular
(orthogonal)	to	the	line	from	(0,	0,	0)	to	(x1,	x2,	0).	The	line	from	(0,	0,	0)	to	(x1,
x2,	x3)	represents	the	hypotenuse	of	a	right	triangle.	The	square	of	the	distance
from	(0,	0,	0)	to	(x1,	x2,	0)	having	been	determined	as	x12	+	x22,	a	final
application	of	the	Pythagorean	Theorem	yields,	for	vectors	in	R3:

|X|2	=	x12	+	x22	+	x32
	Refer	to	Figure	10	regarding	this	argument:
	

Figure	10

In	this	instance,	although	every	step	in	the	argument	focused	on	a	distance
within	a	plane,	the	symbol	|X|2	pertains	to	vectors	in	R3	instead	of	R2.	A	less
ambiguous	notation	would	distinguish	these	two	applications	of	the	symbol	|X|2
by	adding	a	subscript:	thus,	|X|22	versus	|X|32.



What	about	R4?	Simple	analogy	would	suggest:
	|X|42	=	x12	+	x22	+	x32	+	x42

An	analogy	is	certainly	needed,	but	it	is	needed	at	an	earlier	point	in	the
conversation.	Notice	that	in	going	from	R2	to	R3,	one	applied,	at	each	point,	a
two-dimensional	analysis.	In	the	first	step,	one	looks	at	the	xy	plane	for	which	x3
=	0.	Then	having	established	|X|22	for	the	vector	from	(0,	0,	0)	to	(x1,	x2,	0),	one
introduces	a	third	point,	namely	(x1,	x2,	x3).	These	three	points	determine	a
plane.	And,	in	that	plane,	the	line	from	(x1,	x2,	0)	to	(x1,	x2,	x3)	is	perpendicular
to	the	line	from	(0,	0,	0)	to	(x1,	x2,	0).	So,	the	Pythagorean	Theorem	applies	to
the	triangle	determined	by	the	vertices	(0,	0,	0),	(x1,	x2,	0),	and	(x1,	x2,	x3).	What
makes	the	argument	work	is	the	fact	that	the	direction	of	the	new	axis	is
orthogonal	to	the	other	two.

It	is	at	this	point	that	one	is	forced	to	make	an	analogy.	With	each	new	axis,	one
thinks	of	that	additional	axis	as	being	orthogonal	to	all	of	the	previous	axes.

And	even	that	involves	something	a	little	deeper:	a	kind	of	homogeneity
assumption.
For	consider	the	difference	between	three	planes	in	R4:	Consider	the	difference
between	the	plane	consisting	of	points	(x1,	x2,	0,	0),	the	plane	consisting	of
points	(0,	0,	x3,	x4),	and	the	plane	consisting	of	points	(0,	x2,	x3,	0).	Prior	to	the
addition	of	the	fourth	axis,	one	could	regard	the	first	and	the	last	of	these	as
Euclidean	planes,	subject	to	the	Pythagorean	Theorem.	However,	the	second	of
these	planes	can	only	be	regarded	as	Euclidean	if	one	thinks	of	the	fourth	axis	as
being	orthogonal	to	the	other	three.
But	if	one	does	not	think	of	it	this	way,	then	one	is	saying	that	there	is	something
different	about	this	fourth	axis	or	something	special	about	the	first	three	axes.	If
there	is	value	in	the	measurement	that	one	applies	to	the	first	three	dimensions
then	it	is	arbitrary	to	withhold	it	from	the	fourth.
Geometrically,	the	issue	is	this:	In	any	mathematical	analysis	involving	four
independent	variables,	if	one	regards	those	four	variables	as	being	similar	in
kind,	as	being	similar	in	the	kinds	of	magnitudes	one	represents,	then	none	of
those	dimensions	is	really	a	spatial	dimension,	because	space	is	three
dimensional.	(Here,	contrary	to	much	of	this	chapter,	I	refer	to	geometry	in	the
spatial	sense.)
Notwithstanding,	there	is	a	context	for	which	all	four	coordinates	might	all



represent	spatial	coordinates,	namely	a	problem	involving	multiple	bodies,	each
measured	spatially.	In	such	cases,	it	is	not	at	all	unreasonable	to	regard	the
coordinates	of	the	second	body	to	be	orthogonal	to	the	coordinates	of	the	first.
Although	this	represents	an	extension	of	the	concept	orthogonal,	that	extension
is	a	natural	one.
But	the	analogy	is	broader	than	such	cases.	And,	in	general,	the	resort	to	analogy
does	not	occur	when	one	adds	the	fourth	axis	to	the	first	three.	It	occurs	when
one	adds	the	second	axis,	regards	the	second	axis	as	comparable	to	the	first,	and
regards	the	new	axis	as	orthogonal	to	the	first.	The	essential	analogy	consists	in
applying	geometric	(spatial)	measures	of	distance	and	angles	to	nongeometric
settings.
Why	might	one	apply	concepts	of	distance	and	angles	to	nongeometric	settings?
To	measure	an	approximation:	A	distance	function	provides	a	way	to	measure
the	difference	between	two	constellations	of	quantities	by	a	single	number.
Consider,	first,	the	case	of	magnitudes.	For	magnitudes,	one	measures	the
difference	between	individual	magnitudes	in	numerical	terms,	based	upon	a
choice	of	standard.
But,	where	a	multitude	of	different	dimensions	are	concerned,	one	cannot	study
limiting	processes	without	some	way	to	ascertain	that	two	constellations	of
measurements	are	close	to	each	other.	One	needs	some	category	or	categories	of
measurements	to	make	this	determination.
As	I	discussed	in	Chapter	Six,	one	can	define	topologies	to	achieve	this	goal,	in
general,	without	defining	a	distance	function	embracing	all	of	the	relevant
dimensions	into	one	formula.	So	defining	a	metric,	specifying	a	measurement	of
distance	to	integrate	the	separate	differences	along	each	axis	into	a	single
numerical	measurement,	is	not	a	strict	necessity.
Still,	there	is	often	value	in	finding	a	single	number	to	measure	and	summarize	a
difference.	This	is	especially	true	when	the	various	axes	are	commensurate	in
some	way.	But	distancemeasures	are	valuable	more	generally.
Take	a	case	of	two	independent	variables	involving	totally	different	kinds	of
quantities,	say	weight	and	volume.	In	general,	measurements	of	weight	and
volume	cannot	meaningfully	be	compared.	Nonetheless,	the	importance	of
differences	in	two	variables	sometimes	can	be	compared	and	even	a	very	rough
comparison	is	sometimes	helpful.	In	some	contexts,	one	can	assess	how	a
difference,	in	pounds,	for	one	variable,	compares	in	importance	to	a	difference,
in	cubic	feet,	for	the	second	variable.	For	example,	based	on	limitations	in	one’s
ability	to	make	approximations,	one	might	weight	an	error	of	¼	of	a	pound	to	be
roughly	equal	in	importance	to	an	error	of	1/8	of	an	inch.	In	a	broader	numerical
example,	one	might	assign	weighting	factors	to	signify,	for	example,	that	a



numerical	difference	of	2	in	the	first	variable	is	roughly	equal,	in	importance,	to
a	numerical	difference	of	5	in	the	second	variable.
Once	such	weights	are	given,	one	can	adjust	the	units	for	the	two	dimensions	to
make	them	homogeneous:	In	these	adjusted	units,	a	difference	of	1	in	the	x
direction	has	roughly	the	same	importance	as	a	difference	of	1	in	the	y	direction.
Treating	these	independent	variables	as	orthogonal,	one	applies	the	distance
formula	to	estimate,	with	one	number,	the	importance	of	any	difference	between
two	pairs	of	values	for	the	two	variables.
This	procedure	should	be	regarded	as	a	concept	of	method,	as	a	way	of
meaningfully	capturing,	of	measuring,	certain	relationships	and	differences	that
do	exist	and	are	important	in	some	way.
With	all	that	said,	let	us	grant	a	way	of	looking	at	Rn	that	treats	every	axis	as
orthogonal	to	the	other	axes	and,	for	some	legitimate	purpose,	treats	the
magnitudes	in	each	direction	as	comparable.	With	that	as	a	starting	point,	the
extension	of	the	Pythagorean	Theorem	to	Rn	follows	from	induction.
For,	suppose	that	one	has	already	established	that

|X|n-1	2	=	x12	+	x22	+	.	.	.	+	xn-12

In	Rn,	this	is,	then,	the	distance	from	(0,	0,	.	.	.	,	0)	to	(x1,	x2,	.	.	.	+	xn-1,	0).	The
line	from	(x1,	x2,	.	.	.	+	xn-1,	0)	to	(x1,	x2,	.	.	.	+	xn-1,	xn)	makes	a	right	angle	with
the	first	one.	Therefore,	by	the	Pythagorean	Theorem,

|X|n	2	=	|X|n-1	2	+	xn2	=	x12	+	x22	+	.	.	.	+	xn2

Inner	Products:	Measurement	of	Angles

With	this	definition,	one	has	a	measurement	of	distance.	What	about	angles?	The
best	place	to	start	is	with	the	two	dimensional	case.	Consider	the	diagram:



Figure	11

x	and	y	are	vectors,	x	+	y	is	their	vector	sum.	To	avoid	ambiguity	I	use	the
expressions	|x|,	|y|,	and	|x	+	y|	to	designate	their	lengths.	The	angle	between	the
vectors	x	and	y	is	θ.	And	the	cosine	of	that	angle	is	given	by	cosθ	=	a/|x|	or,	in
the	form	in	which	I	intend	to	apply	the	formula,	|x|cosθ	=	a.

By	the	Pythagorean	Theorem,
	|x|2	=	a2	+	b2
	and
	(|y|	+	a)2	+	b2	=	|x	+	y|2
	Expanding	the	left	hand	side	of	the	second	equation	and	substituting	for	b2	from
the	first	equation,	one	obtains:
	|y|2	+	2a|y|	+	a2	+	|x|2	-	a2	=	|x	+	y|2
	Cancelling	terms	and	moving	two	terms	to	the	right	hand	side	of	the	equation
yields:
	2a|y|=	|x	+	y|2	-	|x|2	|y|2

As	a	matter	of	historical	interest,	Euclid	establishes	this	very	relationship	in
Book	II,	Proposition	12.39
The	term	on	the	right	hand	side	is	defined	entirely	in	terms	of	the	lengths	of	the
three	vectors	x,	y,	and	x	+	y.	The	left	hand	side,	substituting	for	a	from	the
cosine	formula,	becomes	2|x||y|cosθ.	With	this	substitution,	the	formula
becomes:
2|x||y|cosθ	=	|x	+	y|2	-	|x|2	-	|y|2

Solving	for	cosθ,



Solving	for	cosθ,
	cosθ	=	(|x	+	y|2	-	|x|2	-	|y|2	)/	2|x||y|

The	expression	for	cosθ	is	defined	entirely	in	terms	of	the	lengths	of	the	various
vectors.
It	is	worth	looking	at	the	numerator	|x	+	y|2	-	|x|2	-	|y|2	in	coordinates.	One	has,

|x	+	y|2	-	|x|2	-	|y|2

=	(	(x1	+	y1)2	+	(x2	+	y2)2	)	-	(	x12	+	x22	)	-	(	y12	+	y22	)	=	2x1y1	+	2x2y2	=	2(x1y1	+
x2y2)

If	one	reflects	on	this	calculation,	it	is	immediately	apparent	that	this	calculation,
if	carried	out	in	Rn,	would	result	in	the	expression

|x	+	y|2	-	|x|2	-	|y|2	=	2(x1y1	+	x2y2	+	.	.	.	+	xnyn)

With	this	motivation,	given	the	relationship	of	this
expressiontocosθandconsideringitsrelationshiptothelengthsof	the	vectors
involved,	define	the	expression	<	x,	y	>	by	the	following	formula:

<	x,	y	>	=	½(	|x	+	y|2	-	|x|2	-	|y|2	)

Notice	that	<	x,	x	>	=	|x|2.	This	follows,	upon	substituting	x	for	y	in	the	formula
for	<	x,	y	>.
As	one	should	notice	from	the	coordinate	expression,	this	newly	defined	quantity
is	symmetric	in	x	and	y,	obeys	a	kind	of	distributive	law,	and	is	linear	with
regard	to	multiplication	of	either	factor	by	a	number.	In	the	terms	that
mathematicians	apply	to	such	cases,	the	expression	<	x,	y	>	is	a	symmetric
bilinear	form.	This	designation	means	that,	for	all	x,	y,	z,	and	c,	the	following
formulas	hold	universally:

<	x,	y	>	=	<	y,	x	>
<	x,	y	+	z	>	=	<	x,	y	>	+	<	x,	z	>	<	x	+	z,	y>	=	<	x,	y	>	+	<	z,	y	>	<	cx,	y	>	=	c<
x,	y	>	<	x,	cy	>	=	c<	x,	y	>

All	of	these	can	be	seen	from	the	coordinate	expression	of	<	x,	y	>.
These	are	the	defining	properties	of	a	symmetric	bilinear	form.	If	the	first
property	doesn’t	hold,	it’s	still	a	bilinear	form,	but	not	a	symmetric	one.



Finally,	one	other	observation	follows	from	the	coordinate	expression	of	<	x,	y
>.	One	has

<	x,	x	>	=	x1x1	+	x2x2	+	.	.	.	+	xnxn	=	x12	+	x22	+	.	.	.	+	xn2	=	|x|2≥	0

In	other	words,	<	x,	x	>	≥	0.	Furthermore,	<	x,	x	>	=	0	if	and	only	if	x	=	0.	A
bilinear	form	with	these	two	additional	properties	is	called	positive	definite.

Therelationshipof<	x,y>totheangle	between	the	vectors	x	and	y	was	established
for	vectors	lying	in	the	Euclidean	plane.	But	any	two	vectors	in	Rn	determine	a
plane.	In	giving	distance	a	universal	significance	in	Rn,	one	gives	a	universal
significance,	as	well,	to	any	other	measurement	that	can	be	defined	in	terms	of
distance.	But	this	applies,	in	particular	to	the	measurement	<	x,	y	>,	commonly
referred	to,	in	this	context,	as	an	inner	product	or	the	inner	product	of	the
vectors	x	and	y.	One	therefore,	thinks,	in	general,	of	the	expression

cosθ	=	<	x,	y	>	/|x||y|

as	determining,	or	measuring,	the	cosine	of	the	angle	between	any	two	vectors	x
and	y	in	Rn.
The	case	θ	=	900	is	particularly	important	because	its	cosine,	cos(900)	=	0.	If
follows	from	the	formula	that	two	vectors	are	orthogonal,	are	perpendicular,	if
and	only	if	their	inner	product	is	zero.
As	a	final	cultural	point:	the	modern	way	of	looking	at	an	inner	product	is	that	it
constitutes	a	structure	that	one	has	added	to	the	vector	space.	Yet,	such	a
perspective	has	it	backwards.	One	does	not	create	the	reality	that	one	measures;
one	creates	means	of	measuring	reality.	To	introduce	an	inner	product	on	a
vector	space	is,	fundamentally,	to	recognize	a	measurable	feature,	and	to
introduce	a	way	of	measuring	that	feature,	that	one	had	previously	been	treating
as	an	omitted	measurement.
To	introduce	and	measure	a	new	distinction	is,	at	bottom,	to	recognize	an
additional	distinction.	It	is	to	treat,	as	relevant,	a	feature	that	had	previously	been
treated	as	irrelevant.
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Chapter	8	Abstract	Groups	and	the
Measurement	of	Symmetry

Symmetry,	Similarity,	and	Measurement

Abstract	algebra,	algebraic	topology,	and	non-Euclidean	geometry	helped	bury,
over	a	century	ago,	the	science	of	quantity,	as	a	characterization	of
mathematics.1	Among	the	earliest,	and	among	the	most	important,	of	such
disciplines,	and	part	of	abstract	algebra,	is	the	theory	of	abstract	groups.

There	was	never	a	need	for	this	burial;	it	reflects,	in	part,	an	overly	narrow	view
of	quantity,	one	that	has	not	been	significantly	widened	since	the	collapse	of
classical	civilization.	But,	to	widen	the	concept,	quantity,	it	is	helpful	to
understand	how	quantity	relates	to	one’s	conceptual	knowledge	of	the	world.

I	have	argued	that	the	science	of	measurement	is	a	better	characterization	of
mathematics	than	the	science	of	quantity.	Mathematics	is	about	quantity,	but	its
central	concern,	the	reason	we	need	a	science	of	mathematics,	is	to	establish
relationships	between	quantities.	Mathematics	is	a	science	of	method,
specifically	of	measurement.

And	measurement	is	all	about	distinguishing	differences,	of	measuring
differences	by	relating	them	quantitatively,	specifying	differences	within	an	axis
of	similarity.2	Mathematics,	qua	science	of	measurement,	applies	to	any	axis	of
similarity	that	can	be	distinguished	and	identified	by	the	human	mind.	It	covers,
from	a	separate,	differential,	perspective,	the	entire	conceptual	realm.

Symmetry,	the	concern	of	group	theory,	is	a	very	broad	category	that	relates	to
the	still	broader	category	of	similarity.3
If	one	moves	a	solid,	rigid	object,	such	as	a	pencil	or	a	book,	the	moved	object
remains	the	same	object.	Its	parts	retain	the	same	internal	relationships.	Its
shape,	in	all	its	aspects,	remains	the	same.	What	changes	is	the	location	of	the
object	and	its	orientation	in	space.	One	says,	for	this	reason,	that	space	is
symmetric,	with	respect	to	changes	in	location	and	orientation.	The	internal
nature	of	an	object,	or	of	a	system	of	objects,	does	not	depend	upon	its	overall



location	or	orientation.
A	reflection	is	another	kind	of	symmetry.	Objects,	as	such,	cannot	be	reflected,
but	their	images	can.	And	the	shape	of	one	object	can	be	a	reflection	of	another,
as	one’s	right	hand	is	a	reflection	of	one’s	left	hand.
In	thinking	about	reflection,	one	thinks	either	literally	or	figuratively	of	the
action	of	a	mirror.	The	internal	relationships	of	a	reflected	object	remain	the
same,	but	the	reflection	is	a	kind	of	reversal.	A	left	hand	is	reflected	to	look	like
a	right	hand.	A	left	hand	cannot	occupy	a	space	occupied	by	a	right	hand;	its
reflection	can.	Conversely,	a	right	hand,	or	an	already	reflected	left	hand,	is
reflected	to	look	like	a	left	hand.	Reflection	is	a	toggle:	The	reflection	of	a
reflection	reverses	the	reversal	to	the	original	orientation.
But	not	all	objects	look	different	when	reflected.	Some	objects,	objects
possessing	a	certain	kind	of	symmetry,	remain	the	same	under	reflection.	For
example,	a	featureless	rectangle	remains,	upon	reflection,	a	featureless	rectangle
of	the	same	shape.	A	perfectly	symmetric	face	looks	the	same	under	reflection.
In	point	of	fact,	every	feature	of	that	face	participates	in	the	reflection,	but	the
resulting	image	is	indistinguishable	from	the	original.	Objects	with	this	kind	of
symmetry	are	said	to	be	bilaterally	symmetric.4
Now	consider	the	positions	of	a	cubical	die	(singular	for	dice).	Distinguish	the
positions	of	the	die	in	two	respects,	namely,	which	side	of	the	die	is	up	and
which	side	is	facing	an	observer.	There	are	24	such	positions.	Why?	First,	any
one	of	the	six	sides	can	face	upwards.	The	opposite	side	is	automatically	face-
down	and	any	one	of	the	four	remaining	sides	may	be	facing	the	observer.	For
example,	if	the	side	with	six	dots	is	face-up,	then	the	side	with	one	dot	is	face-
down.	The	side	facing	the	observer	has	either	two,	three,	four,	or	five	dots.	So
that’s	4	faces	that	might	be	facing	the	observer	for	each	top	face.	Four	times	six,
i.e.,	24	possibilities.
The	dots	serve	to	distinguish	the	sides	of	the	cube.	But	the	shape	and	location	of
the	space	filled	by	the	cube	is	the	same	in	all	24	positions.	These	24	positions	are
considered	the	symmetries	of	the	cube	(up	to	reflection);	there	are	24	different
ways	that	the	cube	can	occupy	any	particular	space.
In	one	sense	each	of	these	24	alternatives	is	the	same;	they	are	the	same	insofar
as	they	all	occupy	the	same	space.	But	they	are	different	in	another	sense	in	that
the	arrangement	of	the	faces	is	different:	the	same,	but	also,	within	this
sameness,	different.
Finally,	consider	a	deck	of	cards.	Any	one	of	52	cards	may	be	on	top;	any	one	of
the	remaining	51	cards	may	be	next,	etc.	Accordingly,	there	are	52	×	51	×	…	×	2
×	1	(=	52!,	read	52	factorial)	possible	orderings	of	the	cards.	(One	uses	the



notation	52!,	by	definition,	to	designate	this	product	of	the	integers	from	1	to
52.)	From	the	backs	of	the	cards,	these	orderings	are	indistinguishable;	but	from
their	faces	there	are	52!	different	orderings.
Once	again,	there	is	a	kind	of	symmetry,	a	respect	in	which	each	alternative	is
the	same.	Yet,	at	the	same	time,	there	is	a	respect	in	which	every	possibility	is
different.
To	measure	symmetry,	or,	more	precisely,	to	determine	a	system	of	symmetry
measurements,	is	to	to	identify	and	to	track,	the	respects	in	which	these
possibilities,	differences	within	sameness,	differ	from	each	other.	But	not	to
measure	them	in	the	conventional	way,	in	terms	of	all	the	other	characteristics	of
the	objects	involved.	Measurement	of	symmetry	zeros	in	on	a	specific	set	of
potential	differences	within	a	wider	similarity.	For	example,	one	is	concerned
specifically	with	24	distinguished	positions	of	a	die	without	regard	for,	say,	the
size	or	material	composition	of	the	die,	or	the	extent	to	which	a	particular	face	is
facing	the	observer.
A	characterization	of	symmetry,	attributed	to	Hemann	Weyl,	author	of	the
classic,	The	Classical	Groups,	is	close	to	the	mark.	“A	thing	is	symmetrical	if
there	is	something	you	can	do	to	it	so	that	after	you	have	finished	doing	it	it
looks	the	same	as	before.”5
This	is	certainly	an	apt	characterization.	But	the	essence	of	symmetry,	I	believe,
is	deeper	than	this.	Most	generally,	as	I	have	illustrated,	symmetry	involves
situations	in	which	various	alternatives	are	identical	from	one	particular
perspective,	yet	different	from	a	second,	equally	valid,	perspective.	This
characterization	of	symmetry	applies,	universally,	whenever	one	isolates	a
dimension	or	a	specific	constellation	of	dimensions	along	which	similar	things
differ	from	one	another
The	purpose	of	mathematical	groups	is	to	measure	symmetry.	But	a	group
perspective,	as	a	system	of	measurements,	differs	from,	yet	supplements,	the
determinations	of	other	systems	of	measurement.
For	example,	when	a	number	is	applied	to	measure	a	magnitude,	it	specifies	that
magnitude	by	identifying	its	relationship	to	a	standard.	Alternatively,	when	a
number	is	treated	as	a	ratio,	that	number	measures	the	relationship	between	two
magnitudes,	without	regard	to	a	choice	of	standard	or,	indeed,	to	the	particular
kind	of	magnitude	to	which	it	may	apply.	To	say	that	A	is	twice	B	is	not,	per	se,
to	identify	either	of	the	physical	magnitudes,	not	even	in	regards	to	the	type	of
magnitude	under	consideration.
The	difference	is	one	of	perspective,	of	the	aspect	of	the	situation	that	is	being
identified.	In	either	application,	a	number	specifies	a	relationship	between	two



magnitudes.	In	the	first	case,	the	numbers	are	used	to	specify	one	particular,	as
opposed	to	other	particulars,	by	specifying	its	relationship	to	a	known
magnitude.	In	the	second	case,	the	numbers	are	used,	specifically	to	specify	a
relationship,	as	opposed	to	other	possible	relationships	between	two	magnitudes.
The	numbers	are	used	to	measure	symmetry,	to	measure,	to	distinguish	and
specify,	the	respects	in	which	two	similar	quantities	can	differ.	In	this	respect,	as
we	shall	see,	positive	real	numbers	function	as	a	mathematical	group.
The	precise	focus	of	a	group-theoretic	perspective	on	symmetry	will	become
clearer	as	we	proceed.	The	general	purpose	of	this	chapter	is	to	show	how
abstract	groups	arise,	what	they	mean,	and	what	they	measure.	I	will	explain	the
key	concepts	and	outline	the	transition	from	transformation	groups	to	abstract
groups.
The	most	profound	and	influential	early	development	in	“group	theory”	was
contributed	by	a	young	mathematician	by	the	name	of	Galois,	in	1832,	the	night
before	his	tragic	death	in	a	duel.	He	began	with	a	most	prosaic	unsolved	problem
regarding	fifth	degree	polynomials:	Can	one	find	a	general	formula,	in	terms	of
radicals	(e.g.,	fifth	roots)	involving	the	coefficients	of	the	polynomial,	to	solve	a
polynomial	equation	of	degree	5?	
Such	an	equation	can	be	written	in	the	form:	Ax5	+	Bx4	+	Cx3	+	Dx2	+	Ex	+	F	=
0.	One	says	that	this	is	a	polynomial	of	degree	5	because	5	is	the	highest
exponent	of	x.
One	seeks	a	general	formula	for	a	solution	x	in	terms	of	the	numerical
coefficients	A,	B,	C,	D,	E,	and	F.	The	formula	for	solutions	of	polynomials	of
degree	two,	the	celebrated	quadratic	formula	for	polynomials	of	the	form	Ax2	+
Bx	+	C	=	0,	is	taught	to	middle	school	and	high	school	students	today.	Important
special	cases	of	the	quadratic	formula	were	known,	in	somewhat	different	forms,
in	antiquity.	Since	the	Renaissance,	formulas	had	been	discovered,	as	well,	for
polynomials	of	degrees	three	and	four.	But	a	formula	for	degree	five	had	proven
elusive.
Enter	Galois.	Facing	the	threat	of	the	impending	duel	the	next	morning,
concerned,	evidently,	with	the	possible	consequences	of	the	duel,	he	committed
certain	of	his	discoveries,	his	lasting	legacy,	to	the	written	record.	These
discoveries	proved	that	a	general	formula	for	solving	degree-five	polynomials
does	not	exist.	But	Galois’	method	of	discovery	is	what	made	him	immortal.	For
it	helped	spark	a	new	branch	of	mathematics,	one	of	fundamental	importance:
group	theory.	By	studying	the	symmetries	of	the	fifth	degree	polynomial	from
the	perspective	of	its	roots,	he	was	able	to	cut	through	the	inessentials	and	get	at
the	essence	of	the	problem	without	becoming	mired	in	the	kind	of	calculations



that	would	otherwise	have	been	necessary,	that	had	been	common	to	earlier
attempts.6	Galois’	solution	was	a	conceptual	breakthrough.
Group	theory	is	useful	whenever	symmetry	is	important.	In	general,
mathematical	groups	provide	a	way	to	exploit	the	ways	that	various	aspects	of
things	are	the	same	without	losing	sight	of	their	differences.	Regarding	these
differences,	one	is	specifically	interested	in	the	scope	of	these	differences	and	in
the	structure	of	the	relationships	within	the	system	of	measurements	that
distinguishes	them.
For	example,	as	it	turns	out,	a	rotation	of	physical	objects	is	captured
mathematically	by	a	certain	kind	of	linear	transformation.	(Regarding	linear
transformations,	see	Chapter	7.)	Such	a	linear	transformation	identifies	a
relationship	between	the	two	positions	of	the	object.	But,	from	a	symmetry
perspective,	one	is	interested,	not	only	in	what	these	linear	transformations
differentiate,	but	also	in	what	they	preserve.
Namely,	one	is	interested	in	the	fact	that	the	shape	of	the	transformed	object,	as
manifested	in	the	dimensions	of	its	parts	and	the	angles	between	its	parts,	is
unaffected	by	the	linear	transformation.	One	isolates	this	shape-preserving	group
of	linear	transformations	as,	specifically,	that	subset	of	linear	transformations
that	preserve	the	shapes	of	the	objects	that	they	transform.	And,	insofar	as	one	is
interested	in	symmetry,	one	focuses	on	the	structure	of	this	particular	system	of
linear	transformations	without	regard	to	other	more	specific	characteristics	of
any	specific	object	that	might	be	rotated	according	to	the	specifications	of	the
linear	transformations.
Symmetries	are	abundant	in	both	the	natural	and	the	manmade	world.	And
wherever	symmetry	exists,	there	is	a	context	and	a	perspective	from	which	the
symmetry	matters.	For	example,	because	crystalline	structures	are	symmetric,
group	theory	plays	an	essential	role	in	their	study.	Because	of	certain	subtle
symmetries	in	the	way	one	measures	spatial	and	temporal	relationships,	group
theory	also	informs	more	theoretical	pursuits	such	as	quantum	mechanics	and
General	Relativity.	Within	mathematics,	itself,	symmetry	considerations	crop	up
in	almost	every	mathematical	specialty.	Group	theory	has	been	dubbed	“the
study	of	symmetry”	and	group	theory	is	the	mathematical	tool	required	for	its
study.7
But	does	group	theory	study	quantity,	once	considered	the	subject	matter	of
mathematics?	To	accommodate	group	theory,	do	we	need	to	broaden	our
understanding	of	mathematics,	beyond	quantity,	as	a	discipline	or	do	we,
perhaps	instead,	broaden	our	understanding	of	quantity	and	measurement?	Does
group	theory	force	a	change	in	the	paradigm	of	mathematical	pursuits	or	does	it



simply	study	a	new	kind	of	quantitative	relationship	unknown	or	unrecognized
in	antiquity?	Should	we	broaden	our	view	of	mathematics	and	leave	quantity
behind?	Or	do	we	broaden	our	view	of	mathematics	by	broadening	our	view	of
quantity	and	measurement?	And	is	this	a	specifically	scientific	question	or	is	it	a
philosophical	one?	To	address	this	last:	Historically	the	answer	was	made	on
philosophical	grounds.	And,	perhaps,	it	is	the	philosphical	underpinnings	that
need	to	be	challenged.	Conversely,	if	one	rejects	those	philosophical
underpinnings,	one	should	reconsider,	as	well,	the	modern	views	of	mathematics
that	they	spawned.
A	central	theme	of	this	book	has	been	that	mathematics	is	the	science	of
measurement.	Group	theory	is	part	of	that	science	and	it	measures	something	in
the	world;	it	measures	quantity.	Just	as	numbers	relate	magnitudes	and	provide
the	means	to	relate	a	particular	magnitude	to	a	standard,	a	system	of	symmetry
measurements	relates	similar	objects	and	thereby,	provides	the	means	to	specify
a	particular	point	along	a	symmetry	spectrum	by	relating	it	to	a	chosen	standard
point	on	that	spectrum.
What	is	a	mathematical	group?	The	standard	answer	is	to	simply	offer	a
definition	and	then	to	show	how	various	examples	satisfy	the	definition:	First	the
definition	and	then	the	examples.	And	such	examples,	typically,	do	not	function
to	motivate	the	concept,	but,	rather,	to	establish	the	existence	of	groups	satifying
the	stated	definition.	The	better	textbooks,	indeed,	use	well-chosen	examples	to
motivate	the	development	of	the	theory,	but	the	primary	use	of	examples	is
typically	to	motivate	and	develop	key	theorems,	important	truths,	regarding	the
subject.	The	concepts	required	to	express	and	prove	these	theorems	usually
receive	less	attention	and	motivation	even	in	these	better	treatments.
Motivating	theorems	is	important,	but	motivating	concepts	should	come	first.
Motivating	mathematical	concepts,	showing	how	they	arise,	what	they	integrate,
why	they	are	important,	and	how	they	relate	to	the	world,	should	have	central
importance	in	learning,	teaching,	and	thinking	about	mathematics.
The	goal	of	this	chapter	is	conceptual;	it	is	not	to	systematically	teach	group
theory.	Rather	it	is	to	demonstrate	the	way	that	mathematical	groups	relate	to	the
world	and	to	elucidate	what	they	measure.	Necessarily	this	requires
mathematical	content.	But	I	want,	as	far	as	possible,	to	explain	group	theoretic
concepts	for	a	non-mathematical	audience.	So	my	approach	will	be	to	start	with
a	simple,	if	somewhat	artificial	situation	and	develop	key	concepts,	in	the
simplest	possible	way,	from	their	base	in	perception.

The	Puzzle-Piece	Transformation	Group



I	start	with	a	simple	problem,	depicted	in	Figure	1:	a	puzzle	block	with	one
equilateral	triangle	as	its	puzzle	piece.	The	front	of	the	piece	is	green	(slant
pattern);	the	back,	red	(brick	pattern).	The	piece	can	be	put	in	upside	down
showing	the	red	back	of	the	piece.	How	many	ways	will	the	piece	fit	the	puzzle?

Figure	1

As	Figure	2	depicts,	the	answer	is	six.	The	corner	of	the	triangle	labeled	A	can
be	matched	with	any	of	the	puzzle-block	vertices	and	then	B	can	be	matched
with	either	of	the	remaining	vertices,	leaving	C	to	match	the	remaining	vertex.
The	position	of	A,	then,	has	three	choices.	For	each	of	these	choices,	B	has	two
possibilities.	So	the	number	of	possibilities	is	3	×	2	=	6.	I	will	sometimes	follow
standard	practice	and	refer	to	these	six	positions	as	the	symmetries	of	the
equilateral	triangle.



Figure	2

Notice	something	about	this.	First,	the	multitude	of	choices	depends	entirely	on
the	symmetry	of	the	triangle,	on	its	three	equal	sides	and	also	the	fact	that	its
shape	is	the	same	viewed	from	the	back	as	from	the	front.	The	triangular	piece
has	the	same	shape	from	each	of	these	six	perspectives.

Yet,	at	the	same	time,	there	are	six	different	perspectives.	Each	perspective
represents	a	distinct	positioning	of	the	triangular	piece.	The	positions	are
different,	but	they	can	also	be	regarded	as	the	same	or	as	similar	insofar	as	they
occupy	the	same	shape	in	the	puzzle	block.	As	Ayn	Rand	analyzes	similarity	in
regards	to	concept	formation,	the	difference	between	two	similar	things	is	one	of
measurement.8	In	this	case,	the	similar	things	consist	of	six	different	orientations
of	the	triangle	within	the	same	space.	The	relationship	between	any	two	of	these
orientations	is	a	quantitative	relationship	and	a	specification	of	this	relationship
with	respect	to	a	standard	initial	position	is	a	measurement.

What	are	those	quantitative	relationships?
If	the	position	in	the	upper	left	of	Figure	3	is	taken	as	the	starting	position,	the
other	two	triangle	positions	along	the	top	are	related	by	a	rotation	from	the
starting	position	(labeled	E).	Similarly,	the	bottom	three	positions	each	can	be
reached	by	reflecting	the	triangle	from	the	starting	position	along	one	of	its	axes.
I	have	given	each	of	these	relationships	a	name	in	Figure	3.	In	the	top	row,	“R”



stands	for	a	counter-clockwise	rotation	that	sends	each	vertex	to	the	next
available	vertex	in	the	puzzle	block.	The	second	rotation	next	to	it	is	called,
suggestively,	“R2”.	The	bottom	three	positions	all	relate	to	the	starting	position
by	a	reflection.	As	depicted,	these	reflections	labeled	Ar,	Br,	and	Cr	differ,
respectively,	from	the	original	position,	by	a	reflection	on	the	axis	through
vertex	A,	B,	or	C.	Thus	Ar	is	the	reflection	about	the	vertical	axis	that	passes
through	the	vertex	A.

Figure	3

The	names	for	the	three	reflections	may	appear	intimidating,	but	I	have	named
them	that	way	for	a	reason.	First,	the	capital	letter	is	there	to	remind	us	which
vertex,	relative	to	the	puzzle	block	is	being	kept	fixed.	Thus,	Ar	reminds	us	that
the	vertex	at	the	top,	in	position	A,	is	to	be	kept	fixed.	The	subscript	r	after	the
capital	letter	stands	for	“reflection”	and	is	there	to	remind	us	that	the	relationship
is	a	reflection.

Notice	that	in	identifying	these	relationships	there	are	a	great	number	of
measurements,	specific	to	any	individual	case,	that	I	am	ignoring.	For	example,	I
ignore	the	size	of	the	puzzle	and	the	puzzle	piece.	I	ignore	the	speed	with	which
one	might	move	the	piece	from	one	position	to	another.	I	even	ignore	the	fact
that	R	is	a	rotation	of	1200.	I	focus	solely	on	the	specification	of	the	change	from



one	position	to	another	and	only	in	regard	to	the	change	in	the	positions	of	each
vertex.	As	in	all	such	cases,	to	ignore	other	measurements	is	not	to	pretend	that
these	relationships	do	not	exist;	it	is,	rather,	to	recognize	that	these	other
relationships	do	not	affect	the	relationship	under	investigation.

Most	importantly,	one	can	look	at	each	of	these	transformations	(rotation	or
reflection)	as	acting	in	a	way	that	doesn’t	depend	on	a	particular	initial	starting
position.	No	matter	what	position	a	triangle	occupies	in	the	puzzle	block,	it	will
be	moved	to	a	new	position	by	following	one	of	the	recipes	or	prescriptions
identified	in	indicated	in	the	diagram	(Figure	3).	No	matter	what	triangle	vertex
occupies	puzzle-block	corner	A,	the	transformation	R	will	rotate	it	to	corner	B.
Similarly,	Ar	will	interchange	the	triangle	vertices	located	at	puzzle-block
positions	B	and	C,	leaving	alone	the	triangle	vertex	located	at	puzzle-block
position	A.	The	transformation	labeled	E	can	be	regarded	as	the	trivial
transformation	that	leaves	everything	the	way	it	already	is.

Finally,	these	transformations	can	be	applied	in	sequence.	For	example,	Figure	4
shows	the	effect	of	following	the	rotation	R	by	a	reflection	about	the	axis
through	A.	Since	Figure	2	contains	all	possible	symmetries	of	the	triangle,	the
combined	effect	of	R	followed	by	Ar	must	be	one	of	those	symmetries.	So	the
combined	net	effect	of	the	two	transformations	must	be	identical	to	one	of	the
transformations	depicted	in	Figure	3.	And,	indeed,	the	rightmost	triangle	in
Figure	4	can	be	derived	from	the	leftmost	triangle	by	a	reflection	about	the	axis
through	B.	So	the	combined	effect	(see	Figure	3)	is	Br.



Figure	4

The	combination	of	R	followed	by	Ar	is	normally	written	ArR.	Notice	that	the
letters	are	written	in	reversed	order	from	what	one	might	expect.	Mathematicians
follow	this	practice	because	each	transformation	is	thought	of	as	acting	on
something,	something	that,	if	shown	explicitly,	would	be	represented	to	the	right
of	the	identifier	of	the	transformation.	So	the	rightmost	transformation	in	the
expression	acts	first,	followed	by	the	transformation	to	its	left.

This	process	of	combining	two	transformations	to	yield	a	third	transformation	is
analogous	to	multiplication.	Indeed,	it	is	usually	called	“group	multiplication”
and	is	also	completely	analogous	to	the	multiplication	of	matrices	and	linear
transformations	discussed	in	Chapter	7.	The	relationship	that	I	have	just
identified	is	written	ArR	=	Br.	Also,	anticipating	definitions	to	follow,	I	will	refer
to	particular	transformations	as	elements	of	the	transformation	group,	or	as
group	elements.

This	multiplication	relationship	is	further	dramatized	in	Figure	5.	In	the	top	row,
the	transformation	on	the	leftmost	triangle	is	thought	of	as	occurring	in	two
steps.	In	the	bottom	row,	one	is	interested	only	in	where	the	triangle	ends	up.
The	precise	way	that	the	triangle	got	there	is	unimportant.	Br	identifies	the



composite	transformation	that	transforms	the	triangle	to	its	end	state.

Figure	5

In	sum	the	elements	of	the	transformation	group	express	the	quantitative
relationships	between	any	two	positions	of	the	triangle	within	the	puzzle	block.
From	a	transformation	group	perspective,	one’s	measurement	of	these
relationships	is	no	more	and	no	less	than	a	specification	of	the	starting	and
ending	positions	of	each	vertex,	as	a	complete	specification	of	the	differences	of
interest.	All	other	measurements	that	might	characterize	a	concrete	instance	are
omitted	as	unimportant	from	a	symmetry	perspective.

Taken	together	these	group	elements	possess	their	own	arithmetic	because	they
can	be	thought	of	as	operating	to	transform	one	position	of	the	puzzle	piece	to
another.	When	interpreted	in	this	way	these	elements	serve	as	a	closed	system	of
measurements	that	can,	in	the	sense	I’ve	indicated,	be	multiplied	together	to
yield	other	measurements	within	the	same	system.

The	analogy	of	group	multiplication	to	multiplication	of	numbers	can	be
illuminated	as	follows:	Consider	a	“scaling	transformation”	of	positive	numbers
that	consists	of	multiplying	every	number	by	a	fixed	positive	scaling	factor.	For
example,	if	the	scaling	factor	were	3,	the	scaling	transformation	would	multiply



example,	if	the	scaling	factor	were	3,	the	scaling	transformation	would	multiply
every	number	by	3.	With	a	scaling	factor	of	3,	the	number	5	scales	to	the	number
15,	the	number	20	scales	to	the	number	60,	and	so	on.

Every	positive	number	can	act	as	a	scaling	factor.	So,	for	example,	a	scaling
factor	of	2	scales	the	number	5	to	the	number	10	and	the	number	20	to	the
number	40.	To	apply	a	scaling	factor	to	a	number	is	to	multiply	that	number	by
the	scaling	factor.

A	scaling	factor	can	be	viewed	as	a	transformation	of	the	set	of	numbers.
Moreover,	in	applying	a	scaling	factor,	one	transforms	each	number	to	a
different	number	while	preserving	the	ratio	between	every	pair	of	numbers	in
the	set.	Suppose,	for	example,	that	one	applies	the	scaling	factor	is	2,	to	the
numbers	20	and	5.	The	ratio	between	them	is	20/5	=	4.	The	scaling	factor	maps
them,	respectively,	to	40	and	10	and	the	ratio	is,	again,	40/10	=	(2	×	20)/(2	×	5)
=	20/5	=	4.	It	is	in	this	sense,	in	the	sense	that	the	scaling	factors	preserve	ratios,
that	the	group	of	scaling	factors	measures	symmetry,	a	symmetry	of	the	real
numbers.

Again	we	see	the	general	pattern,	the	aspect	in	which	the	transformed	object	is
changed	and	the	aspect	in	which	it	remains	the	same.	A	scaling	transformation
changes	each	number	into	a	different	number.	But	the	set	of	numbers	is
unchanged	by	the	transformation	and	the	ratio	between	any	two	numbers
remains	the	same.

If	one	follows	the	application	of	one	scaling	factor	by	the	application	of	a	second
scaling	factor,	the	result	is	a	scaling	transformation	by	a	third	factor.	Thus,	if	one
applies,	first,	a	scaling	factor	of	3	and	then,	second,	a	scaling	factor	of	2,	the
result	is	a	scaling	factor	of	6	(=	2	×	3).	To	multiply	5	by	first	3	and	then	by	2	is
the	same	as	to	multiply	5	by	the	product	of	3	and	2.

In	this	instance,	multiplication	of	scaling	transformations	is	the	same	thing	as
multiplication	in	the	usual	sense.	The	example	of	scaling	transformations,	then,
captures	precisely	the	relationship	of	the	expanded	concept	of	“group
multiplication”	to	the	usual	arithmetic	concept	of	multiplication.	Group
multiplication	is	an	extension,	a	generalization	of	the	usual	concept	of
multiplication	that	captures	one	important	aspect	or	facet	of	ordinary
multiplication,	namely,	multiplication	considered	as	a	transformation.	In,
exactly,	this	respect,	as	I	also	discussed	in	Chapter	7,	a	composition	of	linear
transformations	is	a	natural	generalization	of	the	arithmetic	concept	of



transformations	is	a	natural	generalization	of	the	arithmetic	concept	of
multiplication.

Transformation	Groups

Let	us	now	return	to	the	puzzle	piece	transformations.	When	a	group	(the	next
level	of	abstraction,	yet	to	be	discussed)	arises	as	a	system	of	transformations,	it
is	called	a	transformation	group.	In	studying	a	transformation	group,	one	can
selectively	attend	either	to	the	action	of	its	elements	on	the	object	it	transforms
or	upon	the	relationships	between	the	transformations.	Specifically,	the
multiplication	of	transformations	that	I	have	just	exemplified	possesses	certain
properties	that	are	universal	to	all	transformation	groups.	These	properties,	as	I
will	elucidate,	are	all	embodied	in	the	puzzle-piece	example.

First,	as	already	elucidated	in	the	extended	example,	one	can	multiply	any	two
transformations	to	get	another	transformation.	And	notice	that,	in	general,	any
property	of	the	transformed	object	that	is	preserved	under	any	two
transformations	will	also	be	preserved	by	the	product	of	those	transformations.	If
a	transformation	A	preserves	property	Z	and	transformation	B	also	preserves
property	Z	then	A	followed	by	B	also	preserves	property	Z.

Next,	consider	what	happens	in	a	series	of	three	transformations,	as	depicted	in
Figure	6.	In	Figure	6,	R	is	followed	by	Ar,	which	is	followed	by	Cr,	resulting	in	a
composite	transformation	that	one	can	identify	as	R2	(as	shown	in	Figure	3):



Figure	6
One	can	analyze	this	sequence	of	transformations	in	three	different	ways.	To
begin,	in	the	first	row,	one	performs	all	three	transformations	in	succession
without	making	any	assessments	along	the	way.	One	can	see	that	the	resulting
transformation	is	R2	simply	by	comparing	the	last	triangle	on	the	right	with	the
first	triangle	on	the	left.

The	second	row	depicts	the	same	series	of	transformations.	However,	this	time
one	stops	to	observe	the	effect	of	the	first	two	transformations,	before	applying
the	third.	One	observes	that	the	product	ArR	of	the	first	two	transformations	is
equal	to	Br.	In	effect,	to	multiply	the	three	group	elements,	one	first	calculates
ArR	and	then	multiplies	the	result	by	Cr.	One	represents	this	order	of	calculation
by	Cr(ArR).	So	one	has	Cr(ArR)	=	CrBr	=	R2.	Although	the	calculation	is
different,	the	series	of	transformations	it	captures	is	the	same	so	the	result	is	the
same,	as	well.

Finally,	in	the	third	row,	one	takes	the	product	of	the	last	two	transformations,
which	turns	out	to	be	R.	Once	this	assessment	has	been	made,	one	begins	with
the	transformation	on	the	left	and	follows	it	by	the	product	of	the	other	two.	As



before,	this	is	simply	a	third	way	of	looking	at	the	sequence	in	the	top	row.	One
has	(CrAr)R	=	RR	=	R2.

Putting	this	together,	one	observes	the	associative	law:	Cr(ArR)	=	(CrAr)R.9

Now	this	fact,	the	associative	law	for	transformations,	is	completely	general,
applying	to	any	set	of	transformations	of	anything	whatever.	Nothing	in	my
argument	was	specific	to	the	example	at	hand.	For	any	transformation	group
with	group	elements	A,	B,	and	C,	the	equation	(AB)C	=	A(BC)	holds	universally
and	is	called	the	associative	law.	The	associative	law	is	taken	to	be	one	of	the
defining	characteristics	of	a	mathematical	group.10
The	same	law	applies,	under	the	same	name	and,	for	much	the	same	reason,	to
ordinary	addition	and	multiplication.	For	example	(2×3)×4	=	6×4	=	24.	But	one
could	also	multiply	3	and	4	first:	2×	(3×4)	=	2×12	=	24.	When	multiplying	a
series	of	numbers,	it	doesn’t	matter	which	multiplication	is	performed	first.	The
same	is	true	for	the	elements	of	a	mathematical	group.
There	are	two	other	defining	properties	that	define	a	group.	The	first	is	that	there
exists	an	element	E,	called	the	“identity,”	such	that,	for	any	other	group	element
A,	AE	=	EA	=	A.	The	identity	plays	the	same	role	that	1	does	when	one
multiplies	numbers	and	that	the	identity	matrix	does	in	matrix	multiplication.	We
have	already	met	such	an	element	in	the	present	context:	the	transformation
labeled	E	that	leaves	the	triangle	unchanged.	If	one	either	follows	or	precedes	a
transformation	A	by	E,	the	application	of	E	will	have	no	effect	on	the	outcome,
will	not	affect	the	final	state	of	the	triangle	no	matter	when	it	is	invoked:
Because	the	transformation	E	never	changes	anything!
One	remaining	property:	The	existence	of	an	inverse.	If	A	is	a	group	element,	A-
1	is	called	the	inverse	of	A	and	is	defined	as	the	unique	group	element	such	that
AA-1	=	A-1A	=	E.	(If	A	were	a	number,	this	inverse	would	usually	be	written
1/A.	So,	for	example,	the	inverse	of	5	is	1/5.)	The	inverse	of	the	rotation	R	is
illustrated	in	Figure	7.11	In	general,	A-1	is	the	transformation	that	undos	or
reverses	the	effect	of	A.
This,	again,	recalls	matrix	algebra.	The	inverse	A-1	of	an	invertible	matrix	A	is
characterized	by	AA-1	=	A-1A	=	I	where	I	is	the	identity	matrix.



Figure	7
	In	sum,	a	set	of	transformations	forms	a	transformation	group	G	if:12

1.	The	product	of	two	transformations	A	and	B	contained	in	the	group	G	is	also
contained	in	G.	One	designates	this	“multiplication”	by	AB.	It	is	the
transformation	that	first	applies	B	and	then	applies	A.	This	is	known	as	the
closure	principle.	One	says,	also,	that	the	group	is	closed	under	multiplication.

2.	There	is	a	transformation	E	contained	in	the	group	G	such	that,	for	any	other
transformation	A	contained	in	G,	EA	=	A	and	AE	=	A.	This	is	the	transformation
that	leaves	the	transformed	object	unchanged.

3.	For	any	transformations	A,	B,	and	C	in	the	group	G,	(AB)C	=	A(BC):	If	one
computes	the	product	by	multiplying	A	and	B	and	then	multiplying	the	result	by
C,	the	result	is	the	same	as	first	multiplying	B	and	C	and	multiplying	the	result
by	A.

4.	For	any	transformation	A	in	the	group	G	there	is	another	transformation	A-1	in
G	that	acts	in	reverse	to	undo	A.	So	AA-1	=	A-1A	=	E.

One	final	word	of	warning:	In	general	the	result	of	a	multiplication	of	two
transformations	depends	upon	the	order	in	which	they	are	applied.	For	example,



in	Figure	8,	ArR	=	Br,	but	RAr	=	Cr.	In	other	words,	multiplication	for	this	group
is	not	“commutative”.	Or,	to	put	it	another	way,	its	elements	do	not	“commute”
under	multiplication.

Figure	8
	For	reference,	the	group	multiplication	for	this	transformation	group	is	captured
in	Figure	9	as	a	times	table:
	

Figure	9



To	read	this	times	table:	If	an	element	in	the	shaded	column	multiplies,	from	the
left,	an	element	in	the	shaded	row,	the	result	of	the	multiplication	can	be	found
in	the	intersection	of	the	row	and	column	of	the	factors.	Thus,	RCr	=	Br.	As
illustrated	in	Figure	10,	this	can	be	read	from	the	table	by	following	the	row
labeled	R	to	the	column	labeled	Cr.	The	answer,	Br,	is	provided	in	the	cell	in
which	the	row	and	column	intersect.

Figure	10

Subgroups	and	Quotient	Groups

Now	suppose	one	was	not	able	to	turn	the	puzzle	pieces	over.	Suppose,	for
example	that	the	triangle	had	a	handle	on	the	top	that	prevented	this.	Then	the
reflection	transformations	would	no	longer	be	possible.	Every	valid
transformation	would	leave	the	green	side	showing.

One	can	see	in	Figure	3	that	the	transformations	that	keep	the	green	side
showing	are	E,	R,	and	R2.	It	is	easy	to	check	that	the	product	of	any	two	of	these
transformations	will	be	another	transformation	that	keeps	the	green	side
showing.	But	it	is	also	logical.	If	A	keeps	the	green	side	showing	and	B	also
keeps	it	showing,	then	when	I	apply	them	in	turn,	as	BA	(first	A	then	B),	then
each	step	along	the	way	keeps	the	green	side	showing	so	the	green	side	is	still



showing	when	the	series	is	complete.

This	smaller	set	of	transformations	is	called	a	“subgroup”	in	relation	to	the	larger
group	of	transformations.	It	also	has	its	own	arithmetic:	EE	=	E,	ER	=	RE	=	R,
R2E	=	ER2	=	R2,	RR	=	R2,	RR2	=	R2R	=	E	and	R2R2	=	R.	One	can	array	these	in
a	“times	table”	as	shown	in	Figure	11.	The	product	of	these	transformations	in
unaffected	by	whether	one	regards	them	as	belonging	to	the	subgroup	or	to	the
full	puzzle-piece	transformation	group.	Accordingly,	this	times	table	is	a	subset
of	the	table	for	the	full	puzzle-piece	transformation	group.	The	smaller	table
consists	of	those	combinations	of	rows	and	columns	of	the	larger	table	that
pertain	to	multiplications	among	E,	R,	and	R2.

Figure	11

Again,	to	read	this	times	table:	If	an	element	in	the	shaded	column	multiplies,
from	the	left,	an	element	in	the	shaded	row,	the	result	of	the	multiplication	can
be	found	in	the	intersection	of	the	row	and	column	of	the	factors.

Notice	that,	for	this	particular	subgroup,	multiplication	is	commutative.
Yet	another	group	can	be	associated	with	the	transformation	group	of	the	puzzle
piece.	Let	us	return	to	the	original	premise	that	one	can	turn	over	the	puzzle
piece.	But	now	suppose	that	one	only	cares	about	which	side	is	showing.
Of	the	six	transformations	of	the	puzzle-piece	transformation	group,	three	of
them	(E,	R,	and	R2)	will	leave	whatever	side	is	showing	unchanged,	but	will
possibly	rotate	the	puzzle	piece.	The	other	three	are	the	three	reflections	that	will
reverse	the	side	that	is	showing.	Consider,	first,	the	rotations.	From	the
perspective	of	only	noticing	or	caring	which	side	is	showing,	all	rotations	are
equivalent	because	none	of	them	affect	which	side	is	showing.	All	of	them



preserve	the	only	attribute	one	now	cares	about:	which	side	is	visible.	Let	us	use
the	letter	e	to	denote	a	transformation	that	preserves	the	side	that	happens	to	be
showing.	Because	e	does	not	change	anything	that	one	cares	about,	it	will
function	as	the	identity	transformation.
From	this	perspective,	E,	R,	and	R2	are	the	same	transformation,	namely	the
transformation	that	I	have	just	now	designated	by	the	letter	e.	The	rotation	that
might	be	involved	in	any	of	these	transformations	is	regarded	as	an	omitted
measurement.
To	understand	this	better,	notice	that	the	situation	for	the	full	puzzle-piece
transformation	group	exactly	parallels	this	case.	Thus,	for	the	puzzle-piece
transformation	group,	one	ignores	such	issues	as	the	size	of	the	puzzle	piece	or
how	fast	one	changes	that	piece	from	one	position	to	another,	as	irrelevant	to
one’s	specialized	concern:	One	studies	aspects	of	the	situation	that	do	not
depend	on	these	details.
By	the	same	token,	in	this	new	perspective,	the	rotational	state	is	now	a	detail.
One	may	as	well	forget	about	fitting	the	triangle	into	the	puzzle	piece	at	all,
since	this	is	no	longer	an	issue.	Indeed	the	reflection	that	turns	over	the	puzzle
piece	would	apply,	equally	well,	to	any	jigsaw	puzzle	piece,	regardless	of	its
shape.
One	is	now	studying	aspects	of	the	situation	that	do	not	depend	on	rotational
state.	In	the	original	puzzle-piece	example,	the	transformations,	say,	of	two
triangles	of	different	sizes,	fitting	into	puzzle	frames	of	correspondingly
different	sizes,	and	carried	out	at	different	speeds,	but	performing	the	same
rotation	or	reflection,	are	the	same	transformation.	In	the	current	sidereversing
example,	two	transformations	by	different	rotations,	but	both	preserving	the	side
showing	are	the	same	transformation.	To	again	paraphrase	Ayn	Rand’s
formulation	regarding	concept	formation:	the	reversed	triangle	must	be	in	some
rotational	position,	but	it	may	be	in	any	rotational	position.	One’s	identification
of	the	position	of	the	puzzle	piece,	of	which	side	is	showing,	doesn’t	depend	on
the	rotational	position.
Similarly,	still	referring	to	Figure	3,	the	reflections	(Ar,	Br,	and	Cr)	all	reverse
whatever	side	happens	to	be	showing.	In	this	respect	these	three	transformations
are	also	equivalent.	Each	changes	the	one	thing	one	cares	about	and	they	all
change	it	in	the	same	way.	If	the	side	is	green,	it	changes	to	red;	if	red,	it
changes	to	green.	Let	us	use	the	letter	r	to	denote	a	transformation	that	changes
the	visible	side.	Once	again,	the	reversed	triangle	must	be	in	some	rotational
position,	but	it	may	be	in	any	rotational	position.
Notice	that	if	I	follow	a	transformation	that	preserves	the	visible	side	with



another	one	that	preserves	the	visible	side	the	result,	no	matter	which	such
transformation	I	choose,	will	also	preserve	the	visible	side.	The	product	of	a
transformation	belonging	to	e	times	another	one	belonging	to	e	belongs	to	e.	One
can	express	this	fact	by	the	equation	ee	=	e.	Here,	the	juxtaposition	ee	is
interpreted	as	group	multiplication	resulting	from	following	a	transformation
belonging	to	e	by	another	transformation	belonging	to	e.
Thus,	for	example,	the	transformation	R	preserves	the	side	showing.	So	the
transformation	that	we	knew	as	R,	is	now	viewed	as	the	transformation	e.	Now
RR	=	R2	and	R2	also	preserves	the	side	showing.	So	R2	is	also	the
transformation	e.	Thus	RR	=	R2	is	simply	an	instance	of	the	equation	ee	=	e,	in
much	the	same	way	that	2	feet	plus	3	feet	=	5	feet	is	an	instance	of	2	+	3	=	5.	On
one	level	of	abstraction,	R	is	a	rotation.	On	the	next	higher	level	of	abstraction,
R	is	the	transformation	e	that	preserves	the	visible	side	of	the	triangle	puzzle
piece	and,	therefore,	functions	as	the	identity	transformation.
Next,	if	I	follow	a	transformation	that	preserves	the	visible	side	with	one	that
does	not	or	if,	conversely,	I	follow	a	transformation	that	does	not	preserve	the
visible	side	with	one	that	does.	I	have	turned	the	triangle	over	exactly	once.	So
the	effect	is	to	reverse	the	visible	side.	Again,	it	makes	no	difference	which
transformation	I	choose	from	their	respective	classes.	So,	in	symbols,	one	writes:
er	=	re	=	r.
Finally,	if	I	follow	a	transformation	that	reverses	the	visible	side	with	another
reversal,	I	have	turned	the	triangle	over	twice,	returning	it	to	the	original	side.	So
it	has	the	same	effect	as	one	of	the	rotations	that	preserve	the	visible	side.	In
symbols,	rr	=	e.
The	multiplication	rules	that	I	have	been	itemizing	are	captured	in	the	times
table	depicted	in	Figure	12:

Figure	12

The	group	that	I	have	just	described	is	itself	a	transformation	group	of	the
triangle,	but	it	is	not	a	subgroup	of	the	original	group.	It	no	longer	distinguishes



triangle,	but	it	is	not	a	subgroup	of	the	original	group.	It	no	longer	distinguishes
the	puzzle	piece	according	to	rotational	state.	Those	states	still	exist,	but	they	are
being	ignored;	all	three	rotational	states	are	regarded	as	the	same	state.	One
attends	to	the	sidereversing	aspect	of	the	transformation	but	ignores	the
rotational	aspect	captured	by	the	rotational	subgroup	I	discussed	earlier.

If	the	original	transformation	group	is	given	the	name	G	and	the	subgroup
consisting	of	the	rotations	E,	R	and	R2	is	given	the	name	N,	then	the	group	that	I
have	just	identified,	consisting	of	e	and	r,	is	called	the	quotient	group	of	G	by	N
and	is	commonly	written	G/N.13	One	should	notice	the	analogy	of	this	concept
of	a	quotient	group	to	the	concept	of	a	quotient	vector	space	introduced	in
Chapter	7.

The	rationale	for	this	designation	of	quotient	group	involves	the	following
observations:

1.	The	non-reversing	elements	of	G	are	the	elements	of	the	subgroup	N.	They	are
regarded	as	acting	trivially	on	the	triangle	because	they	do	not	reverse	it.	These
elements	are	E,	R	and	R2.	They	are	regarded	as	equivalent	(also	called	an
“equivalence	class”)	because	they	all	have,	to	repeat,	the	same	effect	on	the
triangle:	they	do	not	reverse	it.	Call	this	equivalence	class	‘e’.	To	repeat,	e	is	the
identity	element	because	it	acts	trivially	on	the	triangle.

2.	Choose	one	of	the	sidereversing	elements,	say	Ar.	Then	all	of	the	reversing
elements	can	be	written	as	the	product	of	Ar	and	a	rotation.	Thus,	EAr	=	Ar,	RAr

=	Cr,	and	R2Ar	=	Br.	Differing,	from	each	other,	precisely	by	a	rotation,	which
itself	does	not	affect	which	side	is	visible,	these	reversals	are	also	regarded	as
equivalent	because	they	too	have	the	same	effect:	they	all	reverse	the	triangle.
Call	this	equivalence	class	r.

3.	Each	equivalence	class	becomes	one	group	element	in	the	new	group	G/N.	To
have	the	desired	effect	(preserving	or	reversing	the	visible	face),	one	must
choose	some	member	from	the	equivalence	class,	but	one	may	choose	any.

4.	The	equivalence	class,	i.e.,	the	sidereversing	effect,	of	a	product	of	two
elements	of	G	depends	only	on	the	respective	equivalence	classes	of	the	two
elements.	This	is	why	I	have	been	able	to	construct	a	times	table	for	the	new
group.



5.	To	get	the	quotient	group,	one	divides	the	group	G	into	classes.	Each	element
in	any	particular	class	differs	from	the	others	in	that	class	by	an	element	in	the
subgroup	N.	That	is,	elements	g	and	h	are	in	the	same	equivalence	class	if	and
only	if	there	is	an	element	n	in	N	such	that	g	=	hn.	In	this	sense,	the	subgroup	N
is	the	basis	for	the	division.	And	so	also,	for	this	very	reason,	the	number	of
elements	in	the	quotient	group	G/N	is	the	number	of	elements	in	G	divided	by
the	number	of	elements	in	N.

6.	In	effect,	the	action	of	the	subgroup	N	is	regarded	as	unimportant,	so	if	two
elements	g	and	h	of	G	differ	by	an	element	of	N	(i.e.	g	=	hn	for	some	element	n
in	N)	then	they	have	the	same	effect	on	the	object	that	they	transform.	So	h,	in
this	sense,	is	equivalent	to	g.	The	transformations	(rotations,	in	the	puzzle	piece
example)	by	the	elements	n	of	the	subgroup	N	are	unimportant.

7.	The	effect	of	treating	equivalence	classes	as	quotient-group	elements	is	to
remove	the	factor	that	no	longer	matters	(e.g.,	the	effect	of	a	rotation)	from
consideration,	leaving	the	factor	that	does	matter	(e.g.,	the	visible	side	of	the
triangular	puzzle	piece).

When	one	first	studies	arithmetic	and	learns	division,	one	divides	a	collection	of
something	into	a	number	of	smaller	collections,	each	containing	the	same
number	of	units	(the	divisor).	Then	one	counts	these	smaller	collections	to	get
the	quotient.	From	the	standpoint	of	the	division,	one	distinguishes	and	counts
the	collections,	but	is	not	specifically	interested	in	the	individual	members	of
each	collection

Similarly,	and	in	general,	when	one	creates	a	quotient	group	from	a	group	G,	by
a	subgroup	N,	one	divides	the	group	G	into	“equivalence	classes”,	such	that	a)
each	class	has	the	same	number	of	elements	as	the	subgroup	N	and	b)	any	two
elements	(g	and	h)	in	the	same	equivalence	class	differ	by	an	element	of	N	(there
exists	an	n	in	N	with	g	=	hn).	Then	one	regards	the	classes	as	constituting	the
elements	of	the	quotient	group,	with	the	subgroup	N	serving	as	the	equivalence
class	that	constitutes	the	identity	element.

So	the	group	G/N,	in	a	very	literal	but	generalized	sense,	is	the	quotient	of	the
group	G	by	the	subgroup	N.	It	is	what	remains	when	the	factor	represented	by	N
has	been	removed.

But	one	word	of	warning:	The	ability	to	define	the	quotient	group	G/N	depended



critically	on	point	4:	that	the	equivalence	class	of	a	product	of	two	elements	of	G
depends	solely	on	their	respective	equivalence	classes.	In	my	example	this	was
guaranteed	because	the	action	of	each	equivalence	class	could	be	specified	in
terms	of	its	effect	on	a	transformed	object,	an	effect	that	depended	specifically
on,	but	only	on,	the	equivalence	class	of	each	element	of	G.	But	this	is	not	true
for	all	subgroups	of	all	groups.	One	can	always	form	a	distinct	set	of	equivalence
classes	but	in	general	one	cannot	define	a	unique	multiplication	of	equivalence
classes	to	form	a	group	G/N.	The	required	condition	can	be	found	in	any
textbook	on	group	theory:	The	necessary	and	sufficient	condition	is	that	the
subgroup	N	of	a	group	G	be	a	normal	subgroup,	which	means	that,	for	any
element	g	of	G,	and	any	element	n	of	N,	the	element	g-1ng	(group	product	of	g
inverse	times	n	times	g)	is	an	element	of	N.	Normality	is	a	condition	that	must
be	checked	in	each	case.

Mathematicians	study	quotient	groups	and	subgroups,	in	part,	because	subgroups
and	quotient	groups	shed	light	on	the	structure	of	the	group	from	which	they	are
derived.	Such	light	is	badly	needed;	the	range	of	possible	structures	of	groups	is
vast	and	constructing	times	tables	is	only	a	small	beginning	in	dealing	with	this
complexity.	Part	of	understanding	any	particular	group	is	to	analyze	its	structure.
And	a	key	part	of	that	structural	analysis	consists	in	breaking	a	group	into
smaller	groups:	finding	and	further	analyzing	its	subgroups	and	its	quotient
groups.

The	Permutation	Group

Now	consider	an	apparently	unrelated	problem.	Suppose	that	one	has	three
marbles	that	are	distinguished	by	their	color.	How	many	ways	can	they	be
arranged	in	a	row	from	left	to	right?	Such	rearrangements	are	known	as
permutations,	a	concept	essential	to	the	mathematical	theory	of	probability,	but
which	generally	arises	in	a	variety	of	mathematical	contexts.	Suppose	that	these
marbles	are	colored	Apple	red	(A),	Blue	(B),	and	Clover	green	(C).

Notice	the	aspect	of	symmetry.	The	three	marbles	are	identical	insofar	as	they
are	all	the	same	kind	of	object	and	have	the	same	shape.	But	they	have	different
colors.	When	one	rearranges	them,	the	collection	is	still	the	same	and	the	space
that	they	occupy	is	still	the	same.	In	that	respect,	the	two	rearrangements	are	the
same.	But	the	distribution	of	marbles	among	particular	positions	is	different.	In
this	example,	that	difference	is	made	evident	by	the	differences	in	the	colors	of
the	three	marbles.



the	three	marbles.

There	is	an	essential	similarity	between	the	permutation	problem	and	the	puzzle
piece	problem.	Both	involve	symmetry,	but	there	are	differences	in	the	kind	of
symmetry	involved.	In	the	puzzle	piece	problem,	different	rearrangements	of	the
puzzle	piece	reflect	the	symmetries	of	the	puzzle	piece.	But,	in	the	permutation
case,	different	permutations	in	the	three	marbles	reflect	a	different	sort	of
symmetry,	a	symmetry	that	is	inherent	in	one’s	ability	to	regard	a	collection	of
objects	as	being	ordered	according	to	some	rule,	principle,	or	characteristic.
Under	a	permutation,	the	collection	remains	the	same	collection,	and	it	occupies
the	same	space,	no	matter	how	it	is	ordered.	Yet	each	arrangement	is	different	in
that	one	can	distinguish	the	different	orderings	of	the	collection.	In	this	case	the
ordering	principle	consists	in	lining	up	the	marbles	from	left	to	right.

The	six	possible	permutations	are	depicted	in	Figure	13.	As	presented,	the	two
permutations	below	the	top	left	permutation	can	each	be	generated	from	the	one
above	it	by	moving	the	last	(rightmost)	marble	to	the	beginning,	in	effect,
rotating	the	letters.	Thus	ABC		CAB	is	the	rearrangement	going	from	the
permutation	on	the	top	left	to	the	permutation	below	it.	There	is	a	pattern	to	the
three	permutations	on	the	right,	as	well:	Each	permutation	on	the	right	can	be
derived	from	the	permutation	on	its	left	by	permuting	the	two	rightmost	marbles
of	the	permutation	on	the	left.

Figure	13

One	could	now	repeat	the	entire	discussion	just	completed	for	the	puzzle-piece
transformation	group,	but	apply	it	to	the	“permutation	group”	that	transforms
one	permutation	into	another	one.14	But	it	will	save	time	to	simply	match	the



permutations	for	the	permutation	group	to	the	puzzle-piece	positions	for	the
puzzle	piece	group,	as	in	Figure	14.

Figure	14

This	is	an	exact	match	that	follows	a	very	simple	rule.	In	each	case,	the	letter	at
the	top	of	the	triangle	matches	the	first	marble,	the	one	on	the	bottom	left
matches	the	second	marble	and	the	one	on	the	bottom	right	matches	the	third
marble.

The	transformations	match,	as	well,	as	shown	in	Figure	15.	Rotating	the	triangle
corresponds	to	moving	the	third	(right)	marble	in	a	permutation	to	the	front
(left).	And	a	reflection	like	Br	corresponds	to	the	permutation	that	leaves	the
middle	marble	(B)	fixed	and	interchanges	the	other	two.	The	descriptions
provided	under	each	case	can	be	considered	as	applying	to	either	the	triangle,	as
compared	to	the	top	left	triangle,	or	to	the	permutation	of	the	marbles,	as
compared	to	the	top	left	permutation.



Figure	15

In	essence,	the	puzzle-piece	transformation	group	acts	in	exactly	the	same	way
as	the	permutation	group.	If	the	same	names	were	given	to	corresponding
transformations	within	the	two	systems	of	transformations,	the	permutation
group	would	have	exactly	the	same	times	table	as	the	puzzle	piece
transformation	group.	The	physical	objects	affected	are	very	different,	but	the
transformations	of	these	objects	line	up	exactly.	Considered	from	the	aspect	of
the	relationships	between	transformations,	of	the	times	tables	for	the	two
groups,	the	puzzle-piece	transformation	group	is	identical	to	the	permutation
group.

If	one	omits	the	particular	object	of	the	transformations,	on	the	basis	that	the
group	must	transform	something,	but	may	transform	anything	possessing	the
appropriate	symmetries,	then	one	has	formed	the	concept	of	an	abstract	group.

A	group	has	an	identity	element,	every	element	has	an	inverse,	and
multiplication	is	associative.	But	what	is	the	genus	of	group?	What	is	the	sort	of
thing	that	possesses	a	group	multiplication	with	these	particular	properties?

Mathematicians	generally	define	an	abstract	group	as	a	“set”	possessing	a
multiplication	table	that	satisfies	the	properties	that	I	itemized	earlier	for



transformation	groups.15	As	I	elaborated	in	Chapter	6,	the	word	set,	as	used	by
mathematicians	and	especially	when	it	is	used	as	a	genus,	has	a	highly	technical
meaning	that	abandons	all	reference	to	the	world,	in	order	to	avoid	the
contradictions	of	earlier	notions	of	set	and	to	achieve	a	certain	conception	of
conceptual	precision.	On	such	terms,	from	my	reality-based	perspective,	the
standard	definition	of	a	group	has	no	earthly	meaning.	But	the	concept	of	an
abstract	group	captures	something	very	important	and	some	sort	of	genus	is
certainly	called	for.	And,	ironically,	mathematicians	are	even	making	an
important	distinction	in	their	choice	of	genus:	Not	everything	studied	in
mathematics	counts	as	a	set	and	it	is	critical	to	distinguish	those	things	that	are
sets	from	those	that	are	not.16

I	discussed,	in	Chapter	6,	the	need	for	a	concept	of	set,	a	way	to	rehabilitate	the
concept,	and	a	proper	hierarchy.	If	one	understands	sets	from	this	perspective,	it
might	make	sense	to	simply	retain	the	wording	of	the	standard	definition,	but	to
reinterpret	the	word	set	along	the	lines	of	Chapter	6.	Such	a	policy,	at	least	in	a
provisional	way,	for	the	sake	of	following	an	argument,	could	be	followed
generally,	whenever	one	encounters	a	mathematical	definition	along	the	lines	of
“X	is	a	set	such	that	…	.”

However,	I	believe	it	would	be	better	to	replace	the	word,	set,	and	characterize
an	abstract	group	as	a	system	of	measurements	such	as	transformations,	viewed
from	an	abstract	perspective	that	retains	the	distinctions	among	the
transformations	and	their	laws	of	composition,	but	treats	as	omitted
measurements	everything	else	about	them.

As	in	the	case	of	vector	spaces,	there	is	tremendous	value	in	and	need	for	the
abstract-group	level	of	abstraction.	But	it	would	be	a	mistake	to	forget	or	ignore
the	fact	that	groups	first	arise	as	transformations	in	certain	contexts	and	are
meaningful	because	of	those	contexts,	and/or	because	of	any	new	context	to
which	they	might	apply.

If	hierarchy	is,	indeed,	often	ignored	or	if	the	need	for	it	is	simply	unknown,	it
remains	noteworthy	that	mathematicians	point	out,	consider	important,	and
prove,	a	theorem	that,	in	fact,	every	group	can	be	“realized”	as	a	transformation
group.17	That	is,	any	system	of	elements	possessing	a	multiplication
transformation	with	the	appropriate	properties	can	be	considered	a
transformation	group,	with	the	particular	object	being	transformed	omitted.	I	will
return	to	this	point	later	in	the	chapter.



There	is	an	analogy	for	the	real	number	system.	Numbers	are	always	used	to
count	something,	but	there	is	no	limit	to	the	sorts	of	things	that	they	can	be	used
to	count:	the	unit	being	counted	depends	on	the	application.	One	can	study
relationships	between	numbers	without	having	to	choose	a	physical	unit.	These
relationships	between	numbers	will	always	hold	no	matter	what	the	unit	may	be.

In	just	this	way,	a	particular	group	will	apply	to	any	object	or	situation	that
possesses	the	structure	of	symmetry	relationships	captured	by	the	particular
group.	But	the	relationships	between	the	elements	of	the	group	are	independent
of	any	particular	object	that	they	might	transform.	Those	relationships	between
the	transformations	will	always	be	the	same	no	matter	what	object	the	elements
might	be	used	to	transform.	In	sum,	a	group	is	to	the	objects	it	transforms	as	the
number	system	is	to	the	unit	being	counted.	A	group	can	be	considered	in
abstraction	from	a	particular	object	that	it	can	transform;	the	number	system	can
be	considered	in	abstraction	from	a	particular	unit	that	it	can	be	used	to	count.

However,	the	concept	of	an	abstract	group	(though	usually	just	referred	to	as	a
group)	is	aptly	named	because	it	represents	a	higher	level	of	abstraction	than
numbers	do.	The	analogy	of	groups	to	the	number	domain	is	closer	when	one
regards	positive	numbers	in	their	role	as	multiplicative	transformations	because
a	transformation	specifies	the	relationship	between	the	similar	things	that	it
relates.	Indeed,	positive	numbers,	as	we	have	seen,	can	be	regarded,
multiplicatively,	as	a	transformation	group	acting	on	magnitudes.

But	an	abstract	group	omits	precisely	the	specific	relationships	that	are
measured	by	its	transformations	and	retains	only	the	distinctions	among	and	the
group-multiplicative	relationships	between	the	transformations	in	the	group.	In
contrast,	the	number	system	does	not	omit	the	relationship	involved	because	that
relationship	is	always	the	same,	namely,	that	of	ratio,	ultimately	a	relationship	to
a	unit.

Moreover,	two	transformation	groups	can	differ	in	structure,	whereas	there	is	but
one	number	system.	So	one	needs	to	combine,	as	exemplifying	the	same	group,
any	two	transformation	groups	that	have	the	same	structure;	one	also	needs	to
distinguish	any	two	transformation	groups	with	different	structures.	Two
transformation	groups	are	instances	of	the	same	abstract	group	precisely	when
they	have	the	same	structure.	They	exemplify	the	same	group	when	their
elements	can	be	matched	up	in	such	a	way	that	they	have	the	same	times	table.
This	entire	question	is	moot	in	regards	to	number.



To	classify	is	to	identify,	delimit,	and	conceptualize	a	range	of	possibilities.	For
example,	as	we	saw	in	Chapter	7,	one	classifies	finite	dimensional	vector	spaces
by	identifying	their	respective	dimensions.	Any	two	vector	spaces	of	the	same
dimension	have	the	same	structure.	One	classifies	abstract	groups,	as	well,	but
that	classification	is	exceedingly	difficult.18

I	have	said	that	groups	arise	as	transformation	groups,	just	as	numbers	are	used
to	count.	Groups	are	meaningful	because	they	can	be	used	to	transform	or
measure	symmetries	and	numbers	are	meaningful	because	there	are	things	to
count.

But	this	is	not	the	way	groups	are	typically	presented	in	standard	textbooks
intended	for	mathematics	majors.	Mathematicians	always	give	examples	and
they	know	that	this	is	necessary.	But	they	seldom	use	these	examples	to	motivate
their	concepts.	To	the	extent	that	such	motivation	is	lacking,	groups	are
presented	as	if	they	were	a	free	invention	of	the	human	intellect,	an	invention
that	just	happens	to	have	applications	to	something	out	there	in	the	real	world.19

Such	an	approach,	to	the	extent	that	it	is	followed,	is	both	a-historical	and	anti-
conceptual.	Historically	groups	arose	precisely	in	the	way	that	I	have	indicated,
as	permutations	or	transformations	reflecting	existing	symmetries	in	their
objects.

Conceptually,	groups	have	meaning	only	insofar	as	they	pertain,	directly	or
indirectly,	to	the	world.	Having	traced	that	connection,	it	is	clear	that	groups	do
pertain	to	existing	relationships	in	the	world.	Groups	measure	relationships
involving	symmetry.	The	study	of	groups,	though	more	specialized	than	the
study	of	number,	is	as	much	the	study	of	quantity,	of	measurement,	as	is	the
study	of	numbers.

The	Structure	of	Groups

There	is	a	rich	variety	of	distinguishable	abstract	groups;	we	have	discussed	just
a	few.	One	unique	number	system	suffices	to	measure	an	endless	variety	of
multitudes	and	magnitudes.	By	contrast,	transformation	groups	are	multi-faceted
and	are	distinguished	by	their	structures.	If	groups	are	the	means	of	studying
symmetry,	one	also	needs	a	way	to	study	groups.	One	needs	to	get	at	their
structures	and	to	identify	the	respects	in	which	two	groups	can	differ.	As



mathematicians	would	put	it,	one	needs	a	classification	of	possible	abstract
groups.	And	the	first	pair	of	related	questions	required	even	to	begin	such	a
question	are:

1.	When	are	two	groups	essentially	the	same	abstract	group?
2.	How	are	abstract	groups	distinguished?
I	have	discussed,	in	detail,	the	group	of	symmetries	of	an	equilateral	triangle,	the
puzzle	piece	transformation	group.	Then	I	introduced	a	second	group,	the
permutation	group	for	three	objects,	also	known	as	the	full	symmetric	group	on
three	objects	and,	in	the	standard	notation,	designated	S3.
We	saw	that,	in	essence,	the	two	groups	have	the	same	the	structure.	Their
respective	elements	can	be	lined	up	and	there	is	an	exact	correspondence
between	the	transformations	of	the	triangle	by	the	first	and	the	permutations	of
the	three	marbles	by	the	second.	And,	once	corresponding	elements	are
identified,	they	share	the	same	times	table.	And	this	very	circumstance	led	to	the
concept	of	an	abstract	group.
The	concept	of	an	abstract	group	is	an	essential	first	step	in	addressing	this
complexity.	Everything	essential	about	an	abstract	group,	from	a	structural
perspective,	is	captured	in	its	times	table.	If	the	elements	of	two	groups	are	lined
up	in	such	a	way	that	their	times	tables	are	the	same,	then	their	structures	are
identical,	no	matter	what	context	they	may	have	arisen	in	and	what	kind	of
symmetric	object	they	are	utilized	to	measure.	If	this	cannot	be	done,	then	the
groups	have	essentially	different	structures	and	measure	a	different	kind	of
symmetry.
Now	a	times	table	gets	very	big,	very	fast.	A	group,	containing,	say,	100
elements	has	10,000	products.	This	quickly	becomes	unmanageable.	One	needs
more	efficient	ways	to	check	that	two	groups	share	the	same	times	table.
In	this	section,	I	will	describe	one	way	that	a	particular	group	can	be	fully
characterized	without	having	to	construct	a	times	table.	This	characterization
will	provide	a	first	indication	of	a	very	large	enterprise.
I	have	already	mentioned	that	every	element	of	the	puzzle	piece	group	is	either	a
rotation	or	a	reflection	followed	by	a	rotation.	Let	us	develop	this	point.	To	this
end,	I	define	T	=	Cr.	(Recall	that	Cr	is	the	transformation	that	leaves	C	fixed	and
interchanges	A	and	B.)	For	rotations,	I	use	the	specific	rotation	that	is	already
designated	by	the	letter	R.
I	have	chosen	the	letter	T	to	stand	for	“transpose”.	The	letter	R	(for	“rotation”)	is
already	taken	and	transpose	refers	to	the	fact	that	T	transposes	the	locations	of
the	vertices	at	puzzle-block	locations	A	and	B.	Notice	also	how	R	and	T	relate	to



the	S3	group.	R	permutes	the	marbles	by	moving	the	third	marble	to	the
beginning.	T	transposes	the	first	two	marbles.
I	claim	that	every	element	of	the	puzzle	piece	group	is	either	a	power	of	R	(R
multiplied	by	itself	some	number	of	times)	or	a	product	of	T	with	a	power	of	R.
One	can	see	this	directly	by	verifying,	from	the	times	table,	the	relationships
depicted	in	Figure
16:

Figure	16

For	example,	using	the	times	table,	one	finds,	RRT	=	R(RT)	=	R(RCr)	=	RBr	=
Ar.	In	the	rightmost	column,	the	designation	of	R2	and	R3	is	defined	as	R
multiplied	by	itself	two	or,	respectively,	three	times,	or,	as	one	usually	puts	it,	R
raised	to	the	second	or	third	power.

So	every	element	of	the	group	can	be	generated	from	just	two	of	its	elements,	R
and	T.	As	mathematicians	put	it,	R	and	T	are	generators	of	the	group.20

R	and	T	generate	the	group,	so	every	string	of	multiplications	involving	R	and	T,
such	as	RRRTTTRTTTTRT,	is	an	element	of	the	group.	However,	there	are	only
six	elements	in	the	group	so	it	must	be	possible	to	simplify	every	such
combination	of	multiplications	to	discover	which	element	is	involved.	How	is
this	done?

First,	recall	that	RRR	=	E	and	TT	=	E	or,	alternatively,	R3	=	E	and	T2	=	E.	Any
string	of	three	R	letters	can	be	replaced	by	the	identity,	E,	and	any	string	of	two
T	letters	can	also	be	replaced	by	the	identity.	Recall	also	that	EA	=	AE	=	A	for
any	element	of	the	group.	Applying	these	rules	to	the	string	above,	one	finds:
RRRTTTRTTTTRT	=	ETTTRTTTTRT	=	TTTRTTTTRT	=	ETRTTTTRT	=
TRTTTTRT	=	TRETTRT	=	TRTTRT	=	TRERT	=	TRRT.



To	simplify	this	expression	further,	one	needs	a	way	to	interchange	T	and	R.	We
already	know	that	T	(=	Cr)	doesn’t	commute	with	R.	However,	one	does	have
TR	=	CrR	(by	substitution)	=	Ar	(by	the	times	table	displayed	in	Figure	9)=	R2T
(by	the	table	displayed	above	as	Figure	15).	So	TR	=	R2T.

From	this	relationship,	remembering	that	T2	=	E,	one	also	finds,	first,	that	R	=
T(TR)	=	TR2T,	simply	by	multiplying	the	equation	on	the	left	by	T.	Then	one
multiplies	the	resulting	equation,	R	=	TR2T,	by	T	on	the	right,	to	obtain	RT	=
TR2T2	=	TR2.	The	equation	of	interest	is	between	the	first	and	last	terms	in	this
string	of	equalities,	namely	RT	=	TR2.	Between	this	equation	and	the	earlier
equation	TR	=	R2T,	one	knows	the	effect	of	interchanging	the	order	of	the
transformations	R	and	T,	moving	T	to	the	right.

These	formulae	provide	a	way	to	simplify	the	expression	to	one	of	the
expressions	in	the	above	table.	One	finds	TRRT	=	(TR)RT	=	(R2T)RT	=	R2TRT
=	R2(TR)T	=	R2(R2T)T	=	R2R2TT	=	RTT	(by	the	times	table)	=	RE	=	R.
Therefore,	RRRTTTRTTTTRT	=	R.	By	this	method,	any	string	of
multiplications	of	R	and	T	can	be	reduced	to	one	of	the	six	elements	in	the	table.

I	have	used	the	following	relationships:	R3	=	E,	T2	=	E,	and	TR	=	R2T.	These
three	relationships	completely	determine	the	structure	of	the	puzzle-piece
transformation	group,	also	known	as	the	group	of	symmetries	of	the	equilateral
triangle,	also	known	as	S3:	the	full	symmetric	group	on	three	objects.	As	a
mathematician	would	put	it,	S3	can	be	generated	by	two	generators	R	and	T
subject	to	three	relations	R3	=	E,	T2	=	E,	and	TR	=	R2T	(where	E	is	understood
to	be	the	identity	element	of	the	group).21	Three	rules	for	combining	the	two
generating	symbols	thus	replace	a	six	by	six	multiplication	table	and	are
sufficient	to	derive	the	entire	times	table	if	that	were	ever	needed.

This	is	not	the	only	available	technique	to	understanding	the	structure	of	a	group,
but	it	is	an	important	one.	And	it	illustrates	the	kind	of	approach	required	to
simplify	and	make	this	task	manageable.

Group	Representations

To	concretize	an	abstraction	is	to	consider	the	ways	that	it	applies	to	concretes,
to	consider	a	range	of	representative	or	important	referents	of	the	abstraction.



to	consider	a	range	of	representative	or	important	referents	of	the	abstraction.
Concretization	is	one	of	the	ways	that	one	ties	one’s	concepts	to	the	world.
Concretization	helps	answer	two	key	questions	about	any	particular	abstraction:
Namely,	“What	does	it	mean?”	and	“Why	does	it	matter?”

Concretization	is	at	least	as	important	in	mathematics	as	elsewhere.	And	it	is
especially	important	in	understanding	abstract	groups.	Indeed,	there	is	a	very
complex	specialty	devoted	to	this	pursuit.	It	is	called	the	theory	of	group
representations.

In	mathematics,	groups	arise	as	transformation	groups	acting	on	a	geometric
object	or	acting	on	a	mathematical	domain	consisting	of	quantities	or
measurements.	But,	qua	abstract	group,	the	particular	geometric	object,	system
of	quantities,	or	system	of	measurements	that	it	may	act	on	is	treated	as	an
omitted	measurement.	The	relationships	between	the	elements	of	the	group	do
not	depend	upon	on	any	particular	object	on	which	it	acts.	Leaving	this	detail
aside,	one	retains	only	the	distinctness	of	the	particular	transformations	and	the
laws	of	their	composition.

A	full	understanding	of	transformation	groups,	as	a	category	of	mathematical
domains,	involves	two	related	pursuits.	First,	a	categorical	investigation	requires
a	grasp	of	the	full	potential	range	of	essentially	distinct	abstract	groups.	This	is
the	classification	problem.	On	the	other	hand,	part	of	understanding	any	specific
abstract	group	is	to	understand,	in	some	terms,	the	potential	range	of	objects	to
which	it	can	be	applied	and	the	differences	in	those	applications.	One
investigates	and	classifies	both	the	systems	of	measurements,	of	a	particular
kind,	and	the	kinds	of	quantities	to	which	each	can	apply.

The	second	of	these	investigations	feeds	into	the	first.	To	understand	an
individual	group	is,	among	other	things,	to	be	able	to	compare	it	with	other
groups.

I	mentioned	the	classification	problem	for	finite	dimensional	vector	spaces	in
Chapter	7.	We	found	that	the	structural	difference	between	two	vector	spaces
reduces	to	a	single	characteristic,	namely	their	respective	dimensions.

The	case	of	finite	abstract	groups	is	far	more	complex.	And	part	of	that	problem,
in	regards	to	both	the	abstract	groups	and	the	quantities	that	they	measure,	is	to
decide	what	needs	to	be	distinguished	and	what	kind	of	variations	should	be
regarded	as	unimportant.



Understanding	the	ways	that	specific	groups	can	act,	as	transformation	groups,	is
one	key	to	their	classification.	Consider,	for	example,	the	group	of
transformations	of	an	equilateral	triangle	in	reference	to	the	geometric	shape
depicted	in	Figure	17:

Figure	17

This	is	a	double	tetrahedron;	the	two	tetrahedrons	are	divided	by	an	equilateral
triangle.

Suppose	that	one	transforms	the	triangle	with	vertices	A,	B,	and	C,	by	moving	it,
as	in	the	puzzle	piece	example.	When	one	moves	the	triangle,	the	entire	double
tetrahedron	moves	with	it.	More	specifically,	one	moves	the	figure	in	such	a	way
that,	in	the	end,	the	triangle,	ABC,	occupies	the	same	space	that	it	did	before.
When	the	transformation	is	complete,	the	entire	double	tetrahedron	occupies	the
same	space	that	it	did	before,	as	well.

Indeed,	every	placepreserving	transformation	of	the	triangle	is	a	placepreserving
transformation	of	the	double	tetrahedron	and,	conversely,	every	placepreserving
transformation	of	the	double	tetrahedron	is	a	placepreserving	transformation	of
the	triangle.	A	placepreserving	transformation	of	either	one	is	a	placepreserving



the	triangle.	A	placepreserving	transformation	of	either	one	is	a	placepreserving
transformation	of	the	other.	In	short,	the	symmetries	of	the	triangle	are	also,
precisely,	the	symmetries	of	the	double	tetrahedron.

There	is	no	essential	difference	between	the	placepreserving	transformations	(or
symmetries)	of	the	triangle	and	those	of	the	double	tetrahedron.	(I	omit
reflections	of	the	double	tetrahedron	from	consideration.)	Yet,	by	the	same
token,	on	a	more	concrete	level,	symmetries	of	an	equilateral	triangle	are	not
limited,	in	their	application,	to	the	triangle:	These	symmetries	also	apply,	as	in
this	example,	to	more	complex	geometric	figures	such	as	the	double	tetrahedron.
And	it	is	important,	in	the	appropriate	contexts,	to	do	justice	to	both
perspectives:	to	the	perspective	from	which	things	are	the	same	and	the
perspective	from	which	they	are	different.	Abstract	reasoning	does	not	mean	that
one	forgets	the	referents	of	the	abstractions;	conversely,	remembering	the
referents	does	not	mean	forgetting	the	scope	of	their	integrating	abstractions.

To	take	a	similar	example	that	will	be	important	later,	consider	the	cube	roots	of
1.
These	cube	roots	of	1	are,	specifically,	the	three	solutions	to	the	polynomial
equation	x3	–	1	=	0.	Factoring,	one	has,	(x	-	1)(x2	+	x	+	1)	=	0.	The	root
corresponding	to	the	first	factor	is,	obviously,	x	=	1.	According	to	the	quadratic
formula,	the	solutions	to	the	second	factor,	to	x2	+	x	+	1	=	0,	are	x	=	-1/2	+
(i/2)√3	and	-1/2	-	(i/2)√3	where	i	=	√(-1)	is	the	square	root	of	minus	1.	(One	can
verify	this	directly,	as	well.)
It	will	be	convenient	to	use	the	symbol	ω	to	designate	-1/2	+	(i/2)√3.	By	simply
multiplying,	one	finds	that	ω2	=	(-1/2	+	(i/2)√3)2	=	-1/2	-	(i/2)√3	and	ω3=	1.	In
other	words,	ω,	ω2,	and	ω3	are	all	cube	roots	of	1.22
By	either	direct	addition	or	by	simply	appealing	to	the	fact	that	ω	is	a	solution	of
the	equation	x2+	x	+	1	=	0,	one	also	has	ω2	+	ω	+	1	=	0.	So	the	cube	roots	of	1
sum	to	zero.	For	the	intrigued:	This	is	a	general	phenomenon.	For	any	positive
integer	n,	for	essentially	the	same	reason,	the	nth	roots	of	unity	sum	to	zero.
Finally,	there	is	the	well	known	operation	of	complex	conjugation	that	replaces
any	complex	number,	a	+	bi,	with	the	complex	number	a	–	bi.23	Clearly,	the
complex	conjugate	of	-1/2	+	(i/2)√3	is	-1/2	-	(i/2)√3.	Or,	in	my	terminology,	the
complex	conjugate	of	ω	is	ω2,	and	vice	versa.
A	graphical	perspective	of	complex	numbers	displays	the	real	numbers	as	the	x-
axis	and	places	the	complex	number	I	at	the	point	y	=	1	on	the	y-axis.	When	one
uses	complex	numbers,	in	this	way,	to	measure	the	plane,	one	refers	to	this



system	of	measurements	as	the	complex	plane.
With	this	geometric	application	of	complex	numbers,	one	finds	that	both	ω	and
ω2	lie	on	the	unit	circle.	To	see	this,	let	r	be	the	length	of	the	line	drawn	from
zero	(coordinates	(0,	0))	to	one	of	the	numbers	ω	or	ω2.	By	the	Pythagorean
theorem,
r2	=	(-½)2	+	(½√3)2	=	¼	+	¾	=	1.
The	value	of	r	given	by	this	formula	is	known	as	the	modulus	of	the	complex
number.	In	general,	the	modulus	of	a	complex	number,	a	+	bi,	is	√(a2	+	b2).	The
modulus	of	a	complex	number	z	=	a	+	bi	is	traditionally	written	|z|.24
It	is	well	known	that	the	modulus	of	the	product	of	two	complex	numbers	is
equal	to	the	product	of	their	moduli.25	To	see	this	directly,	calculate:

|(a	+	bi)(c	+	di)|2	=	|(ac	-	bd)	+	(ad	+	bc)i)|2	=	(ac	-	bd)2	+	(ad	+	bc)2	=	(a2	+	b2)
(c2	+	d2)	=	|a	+	bi|2|c	+	di|2

Geometrically,	one	represents	this	situation	as	in	Figure	18:
	

Figure	18

It	is	well	known	that	multiplication	by	a	complex	number	of	modulus	1	has	the
effect	of	rotating	the	complex	plane.	The	direction	of	that	rotation	is	counter-
clockwise	and	the	magnitude	of	the	rotation	is	the	angle,	with	respect	to	the
positive	real-axis	of	the	line	drawn	from	zero	to	the	complex	number	by	which



one	is	multiplying.26

In	particular,	the	effect	of	multiplication	by	ω	is	to	rotate	each	of	the	cube	roots
of	unity,	along	with	everything	else,	by	1200.	For	one	has	ω	×	1	=	ω,	ω	×	ω	=	ω2,
and	ω	×	ω2	=	1.	Every	multiplication	by	ω	rotates	the	complex	plane	and	the
third	such	multiplication	brings	the	cubes	roots	of	unity,	along	with	everything
else,	back	to	its	original	position.	Since	ω3	represents	a	rotation	by	3600,
multiplication	by	ω	is	one	third	of	that,	namely,	1200.

Notice	also	that	the	effect	of	complex	conjugation	is	to	leave	the	number	1	fixed
and,	more	broadly,	to	reflect	everything	in	the	complex	plane	with	respect	to	the
real	axis,	thus	interchanging	ω	and	ω2.

In	sum,	multiplication	byωactstopermutethecuberoots	of	1,	as	does	complex
conjugation.	The	first	is	a	rotation	and	the	second	is	a	transposition.	Together,
the	rotation	and	the	transposition	generate	a	group	of	permutations	of	the	cube
roots	of	unity.

Notice	that	the	circle	is	transformed	as	well.	The	rotations	rotate	the	circle,	while
complex	conjugation	reflects	it	about	the	real	(horizontal)	axis.	Together,
multiplication	by	ω	and	complex	conjugation	generate	a	group	of
transformations	of	the	circle.	It	is,	specifically,	a	group	that	measures	a	certain
kind	of	symmetry	embodied	in	the	above	diagram.	To	wit,	it	is	a	group	of
transformations	of	the	circle	onto	itself	that	preserves	the	set	of	points	{1,	ω,
ω2}.	The	transformation	group	preserves	the	place	occupied	by	the	circle,	as	well
as	the	place	of	a	particular	set	of	points	lying	on	that	circle,	while	moving	the
entire	circle	as	a	whole.

Furthermore,	every	one	of	these	transformations	constitutes	a	permutation	of
elements	in	the	set	{1,	ω,	ω2}.	Since	these	two	operations,	namely,
multiplication	by	ω,	and	complex	conjugation,	are	sufficient	to	generate	all	six
permutations	of	{1,	ω,	ω2},	this	group	of	transformations	is	none	other	than	S3.
One	can	see	this,	finally,	by	directly	relating	both	these	symmetries,	and	their
generators,	to	the	symmetries	of	the	equilateral	triangle.

Imagine,	then,	that	the	A	corner	of	the	equilateral	triangle	is	at	ω,	the	B	corner	is
at	ω2,	and	the	C	corner	is	at	1.	Then	multiplication	by	ω	has	the	same	effect	as	R
and	complex	conjugation	has	the	same	effect	as	T.	This	situation	is	captured	in



Figure	19:

Figure	19

Geometrically,	the	two	situations	are	identical.	But	the	use	of	complex	numbers
moves	that	example	to	an	algebraic	context,	capturing	the	geometric	symmetries
in	an	analytical	form.

So	far	I’ve	applied	S3	to	figures	whose	symmetries	are	completely	exhausted	by
symmetries	in	S3.	But	it’s	also	possible	for	S3	to	act	on	more	complex	figures
containing	yet	further	symmetries.	For	example,	Figure	20	depicts	a	slightly
more	complex	puzzle	block	than	my	original	example:



Figure	20

In	this	case,	every	solution	to	the	first	puzzle	is	also	a	solution	to	this	one.	But,
as	indicated	in	Figure	21,	there	are	an	additional	six	solutions,	as	well,	three	of
them	showing	the	green	side	and	three	of	them	showing	the	pink:

Figure	21

In	all,	there	are	twelve	different	permutations	and	the	full	transformation	group
has	twelve	transformations.	The	original	set	of	permutations,	S3,	is	a	subset	of
the	full	set	of	12	and	S3	is,	therefore,	a	subgroup	of	the	larger	group.

Yet	another	example	has	a	much	wider	significance.	I	return	to	the	group	of
transformations,	S3	that	I	started	with.	To	make	this	discussion	easier	to	follow,	I
use	the	generators	of	S3,	namely	R	(counter-clockwise	rotation)	and	T
(transposition	of	A	and	B).	In	the	last	section,	I	established	the	defining	relations
of	these	generators:	R3	=	E,	T2	=	E,	and	TR	=	R2T	(where	E	is	understood	to	be
the	identity	element	of	the	group).	In	terms	of	these	generators,	the



distinguishable	elements	of	the	group	are	E,	R,	R2,	T,	RT,	and	R2T.

Consider	a	set	of	six	marbles,	each	one	labeled,	in	Figure	22,	with	one	of	these
designations:

One	can	regard	these	labels	as	coded	instructions	for	permuting	the	marbles.
Assume	that	the	marbles	are	arranged	in	a	row	or	column.	Any	element	of	S3
determines	a	permutation	in	the	following	manner.	Multiply	the	transformation
named	on	each	marble,	on	the	left,	by	the	chosen	element	of	S3.	Then,	replace
the	marble	by	the	marble	labeled	with	the	resulting	element	of	S3.	The	result	is	a
permutation	of	the	marbles.

For	example,	applying	the	element	R	in	S3	yields	the	permutation	in	Figure	23:
	

Figure	23

Since,	for	example,	multiplying	T	on	the	left	by	R	results	in	the	group	element
RT,	the	marble	with	the	label	of	T	is	replaced	by	the	marble	with	the	label	of
RT.

Every	such	multiplication	is	reversible,	because	every	element	in	a	group	is
invertible.	Therefore,	the	mapping	is	one-toone.	Indeed,	if	a,	b,	and	c	are
elements	of	S3,	and	b	and	c	are	different	elements,	one	cannot	have	ab	=	ac.	For,
if	this	equation	held,	multiplying	the	equation	on	the	left	by	a-1	would	yield	b	=
c,	contrary	to	assumption.	Consequently,	applying	any	element	of	S3	in	this
fashion	yields	a	permutation	of	the	marbles.

As	a	second	example,	Figure	24	depicts	the	effect	of	applying	the	transposition
element	T:
Since	the	elements	R	and	T	generate	the	entire	transformation	group	S3,	every
transformation	by	elements	of	S3	of	the	set	of	marbles	can	be	resolved	into	a
series	of	transformations	by	R	and	T.	So	the	effects	of	T	and	R,	as	depicted



together	in	Figure	25,	are	enough	to	determine	this	set	of	permutations:

Figure	25

I	have	labeled	this	picture,	“Permutations	of	S3	by	S3,”	for	a	reason:	Nothing	in
this	discussion	depends	upon	the	particular	objects	to	which	these	labels	were
applied.	One	could,	by	the	same	token	permuted	boxes,	spoons,	or	any	other	set
of	six	objects	that	one	chose	to	distinguish	by	this	set	of	labels.

In	particular,	one	can	apply	these	permutations	directly	to	the	elements	of	S3.
Starting	with	this	observation,	there	are	a	number	of	points	worth	noting	about
this	example:
●	The	six	elements	of	S3	account	for	six	permutations	of	S3.

This	is	a	rather	small	subset	of	the	total	number	of	permutations	of	six	objects:
Recall	that	the	total	number	of	permutations	of	six	objects	is	6!	(=6×5×4×3×2×1
=	720).



=	720).

●	Nothing	about	this	discussion	required	knowing	anything	at	all	about	S3
beyond	its	set	of	elements	and	the	rules	for	multiplying	them.	The	argument
applies	to	any	abstract	group	for	which	the	elements	are	specified	and	for	which
either	a	set	of	relations	(as	in	this	case)	is	given	or	its	times-table	is	given.	How
the	group	multiplication	is	specified	does	not	matter.	It	suffices	that	one	has
specified	that	multiplication	for	any	two	elements	of	the	group.

●	In	conclusion,	any	abstract	group	can	be	realized	as	a	permutation	group
acting	on	its	elements,	or	acting	on	any	set	of	objects,	such	as	the	marbles	in	my
example,	that	have	been	distinguished	by	the	elements	of	the	group.

●	Or,	more	simply,	any	abstract	group	can	be	realized	as	a	transformation	group
of	permutations.	This	is	known	as	Cayley’s	Representation	Theorem.27

●	No	two	different	elements	of	the	group	produce	the	same	permutation.	One
says,	therefore,	that	Cayley’s	representation	is	a	faithful	representation.

Generally	speaking,	in	considering	a	mathematical	alternative,	one	may	not
know,	in	advance,	whether	any	specific	potential	alternative	will	ever	be
realized.	In	regards	to	a	particular	number,	for	example,	one	does	not	know	that
it	will	ever	be	needed,	but,	in	defining	the	number	system	as	a	system	of
measures,	one	has	provided	for	the	eventuality.	And	it	is	the	job	of	mathematics
to	provide,	in	advance,	for	such	eventualities	so	that,	when	they	are	encountered,
one	will	already	know	how	to	deal	with	them.	Keep	in	mind	the	presumption
that	one	has	identified	what	numbers	are,	has	identified,	in	general,	why
numbers	are	important,	and	has	identified	the	way	that	numbers	relate	to	each
other.	It	is	for	this	reason	that	one	is	able	to	provide,	and	properly	motivated	to
provide,	for	the	entire	range	of	numbers	in	advance	of	a	specific	identified	need
for	most	of	the	particular	numbers	in	the	system	of	measurements.

Similarly,	in	identifying,	in	some	form,	a	particular	abstract	group,	one	may	not
know,	in	advance,	whether	it	will	ever	be	needed.	But	it	is	valuable	to	anticipate
the	possibility.	First,	one	knows,	generally,	that	groups	of	transformations	are
important.	This	implies,	by	Cayley’s	Representation	Theorem,	that	abstract
groups	are,	in	general,	important.	One	knows	that	any	particular	abstract	group
belongs	in	the	list	of	reasonable	possibilities,	worthy	of	general	consideration.
Second,	granting	the	general	importance	of	finite	groups,	one	knows,	from	this
discussion,	how	any	particular	finite	group	would	relate	to	concretes.	For	in
understanding	finite	groups	as	permutations,	one	also	has	a	starting	point	to



understanding	finite	groups	as	permutations,	one	also	has	a	starting	point	to
investigate	each	finite	abstract	group	as	a	general	category	of	systems	of
measurement.

In	this	sense,	when	one	considers	a	particular	finite	abstract	group,	one	can	take
its	potential	applicability	to	the	world,	and	its	potential	importance,	as	a	given.

Understanding	that	any	abstract	group	can	act	as	a	group	of	permutations,	is	one
first,	small	step	on	the	road	to	classifying	finite	groups	and	their	representations.

Matrix	Representations	of	Finite	Groups

The	standard	theory	of	group	representations,	however,	takes	a	somewhat
different,	and	marvelously	productive,	turn.	The	mathematical	theory	is	quite
complex	and	well	beyond	the	scope	of	this	book.	However,	its	conceptual
underpinnings	are	illuminating	and	more	widely	accessible.

Once	again,	the	group	S3	can	serve	as	an	example.	Consider,	as	its	object,	the
vector	space	R3.	(Because	I	am	using	the	letter	R	to	designate	a	rotation,	I
distinguish	this	expression	from	my	earlier	use	of	that	letter	by	designating	the
real	number	line	as	R.)	Suppose	that	one	has	chosen	a	coordinate	system	for	R3,
that	one	has	chosen	an	x	axis,	a	y	axis,	and	a	z	axis.

These	are	three	axes	and	S3	is	the	permutation	group	of	three	elements.	So,	one
can	use	S3	to	study	the	permutations	of	the	x,	y,	and	z	axes.	Applying	these
permutations,	assume,	as	well,	that	these	permutations	carry	the	rest	of	the
vector	space	along	with	them,	just	like	the	example	of	the	double	tetrahedron.
Then	the	six	permutations	of	S3	are	all	represented	by	matrices	acting	on	R3.

In	particular,	assume	that	the	element	T	acts	on	R3	by	interchanging	the	x	and	y
axis	and	that	the	transformation	R	acts	on	R3,	in	a	counter-clockwise	fashion,	by
rotating	the	z	axis	to	the	x	axis,	the	y	axis	to	the	z	axis,	and	the	x	axis	to	the	y
axis	Then,	for	T,	one	has



because

The	first	two	of	these	equations	imply	that	the	matrix	T	interchanges	the	x	axis
and	the	y	axis.	The	third	equation	implies	that	the	matrix	T	preserves	the	z	axis.
Together	they	imply	that,	as	applied	to	any	vector,	the	matrix	T	will	interchange
the	first	two	coordinates	and	preserve	the	third.	In	other	words:

To	permute	the	axes	of	R3	is,	from	this
perspective,	to	permute	the	coordinates	of	vectors	in	R3.
	Secondly,	for	R,	one	has
	

because
	

These	relationships	can	be	verified	by	checking	the	matrix	multiplication.	They
imply,	in	turn,	that	the	matrix	R	rotates	the	x	axis	to	the	y	axis,	the	y	axis	to	the	z
axis,	and	the	z	axis	to	the	x	axis.	Consequently,	the	matrix	R	will	rotate	the
coordinates	of	any	vector	to	which	it	is	applied.	In	other	words:



Once	again,	to	rotate	the	axes	of	R3	is	to	permute	the	coordinates	of	any	vector
in	R3.	It	follows	that	any	action	on	the	vector	space	R3,	of	any	product	of	the
actions	of	R	and	T,	is,	at	the	very	same	time,	a	permutation	of	the	coordinates	of
vectors	in	R3.

One	can,	indeed,	start	from	this	perspective.	I	speak	generally	of	the	vector
spaces	Rn:	Any	transformation	of	vectors	in	Rn	that	acts	to	permute	the
coordinates	of	its	vectors	is	a	linear	transformation	that	can,	therefore,	be
represented	by	a	matrix.	To	specify	a	permutation	on	the	coordinates	of	a	vector
is	to	specify	a	matrix	that	acts	on	the	vector	space,	a	matrix	that	acts,	indeed,	to
permute	the	coordinates	of	the	vectors	in	the	vector	space.

Consider,	in	particular,	the	current	example.	One	finds,	by	performing	the
relevant	matrix	multiplications,	that	one	can	establish	the	entire	set	of	matrices
representing	elements	of	S3,	as	shown	in	Figure	26:

Figure	26

I	have	shown	that	every	finite	group	can	be	represented	as	a	permutation	group
and,	indeed,	that	the	so-called	Cayley	representation	is	a	faithful	representation
for	which	each	group	element	determines	a	different	permutation	than	any	other
group	element.	Consequently,	in	just	this	fashion,	for	a	sufficiently	high	value	of
n,	one	can	also	represent	any	finite	group	as	matrices	permuting	the	coordinates
of	vectors	in	Rn.	In	fact,	since	the	Cayley	representation	is	a	representation	of	the



group	on	itself,	the	value	of	n	corresponding	to,	and	guaranteed	by,	the	Cayley
representation	is	the	number	of	elements	in	the	group.

It	is	very	important	to	notice	a	number	of	things	about	this	S3	example:

1.	First,	there	is	a	complete	one-to-one	correspondence	between	the	elements	of
S3	and	the	associated	matrices	that	represent	its	action	on	R3.

2.	Each	of	these	matrices	is	invertible.
3.	Multiplication	of	these	matrices	corresponds	exactly	to	multiplication	of
elements	of	S3.
4.	In	particular,	the	identity	matrix	corresponds	to	the	identity	element	of	the
group	S3.
5.	As	a	consequence	of	the	third	point,	the	inverse	of	each	of	the	matrices
corresponds	to	the	inverse	of	the	corresponding	element	of	S3.	For	example,	the
inverse	of	the	matrix	corresponding	to	R	is	the	matrix	corresponding	to	R-1.
Since	the	inverse	of	R	is	R2,	that	matrix	corresponding	to	R-1	is	the	matrix
corresponding	to	group	element	R2.
6.	A	matrix	or	a	linear	transformation	on	a	vector	space	is	called	an
automorphism	if	it	transforms	the	vector	space	into	itself	and	is	invertible.	All	of
the	matrices	corresponding	to	the	action	of	the	Group	S3	on	the	vector	space	R3

are	automorphisms	of	the	vector	space	R3.

An	action	of	a	group	G,	as	automorphisms	of,	or	invertible	matrices	relating	to,	a
vector	space	V	is	called	a	group	representation	if	it	satisfies	conditions	3	and	4
(and,	therefore,	2	–	6).	More	specifically,	the	action	is	called	a	representation	of
G	on	the	vector	space.

A	representation	does	not	have	to	satisfy	the	first	condition.	A	group
representation	is	still	a	representation	if	two	group	elements	act	in	the	same	way.
For	example,	as	an	extreme	case,	if	one	associates	every	element	of	a	group	G	to
an	n	×	n	(read:	‘n	by	n’,	in	this	context)	identity	matrix,	the	result	is	a
representation	of	G,	albeit	a	trivial	representation.	For	the	product	of	the	two
identity	matrices,	corresponding	to	two	group	elements,	is	the	identity	matrix.
And	this	identity	matrix,	by	assumption,	is	the	matrix	that	corresponds	to	the
product	of	those	group	elements.

Matrix	representations	of	finite	groups	have	one	particularly	striking	property.



To	begin	with,	let	G	by	any	finite	group	and	let	g	be	an	element	of	G.	As	one
takes	successive	powers	of	g,	namely,	g,	g2,	g3,	…,	one	must	ultimately	find	two
group	elements	in	this	series	that	are	equal	because,	after	all,	G	has	a	finite
number	of	elements	and	so	there	are	only	a	finite	number	of	possible	values	in
this	series.	Therefore,	there	exist	distinct	numbers	n	and	m,	such	that	gn	=	gm.

It	follows	from	this	equation	that	there	is	a	positive	integer	q,	namely	the
difference	between	n	and	m,	for	which	gq	=	e.	If	for,	example,	n	>	m,	one	sees
this	simply	by	dividing	both	sides	by	gm.	If	p	is	the	smallest	positive	integer	for
which	gp	=	e,	one	says	that	the	group	element	g	is	of	order	p.

This	has	an	interesting,	and	far-reaching,	consequence	to	group	representations.
Suppose	given,	a	matrix	representation	of	G.	Suppose	that	an	n	by	n	matrix,	M,
corresponds,	in	this	representation	to	the	element,	g.	In	the	context	of	a	matrix
representation,	the	powers	of	M	correspond	to	powers	of	the	group	element	g
that	it	represents.	In	other	words,	for	any	positive	integer	n,	the	matrix	Mn

corresponds	to	the	group	element	gn.	In	particular	if	g	is	of	order	q,	then	the
matrix	M	must	satisfy	Mq	=	I,	where	I	is	the	identity	matrix.

One	can	put	it	this	way:	In	the	domain	of	n	by	n	matrices,	M	is	a	qth	root	of	the
identity	matrix	I.	Clearly,	this	is	true	in	general.	Any	matrix,	A,	representing	a
specific	group	element,	from	any	finite	group,	acting	on	a	vector	space,	will	be	a
root	of	unity.	That	is	to	say,	for	any	such	A,	there	exists	a	positive	integer	q	such
that	Aq	=	I.	Finally,	for	those	familiar	with	determinants,	I	want	to	mention	an
important	implication:	that	the	determinant	of	A	(a	number)	is	an	nth	root	of
unity,	for	some	positive	integer	n,	in	the	usual	sense.

For	this	reason,	one	should	expect	that	roots	of	unity	will	play	an	important	role
in	the	theory	of	group	representations.	And,	further,	since	complex	numbers	are
essential	to	the	study	of	roots	of	unity,	complex	numbers	also	play	a	key	role	in
the	theory	of	group	representations.

Irreducible	Representations

Classifying	group	representations	requires	a	building-block	approach.	If	one	can
identify	an	appropriate	class	of	building	blocks	and	determine	the	way	that	these
building	blocks	fit	together,	one	has	achieved	an	important	grasp	of	the	range	of
possible	group	representations.



possible	group	representations.

As	a	close	analogy,	when	physicists	search	for	the	elementary	constituents	of
matter,	e.g.,	elementary	particles,	and	study	the	ways	that	they	interact	and
combine,	they	are	finding	and	studying	building	blocks	and	the	way	that	these
building	blocks	fit	together.

And,	as	it	happens,	one	of	their	tools	is	the	mathematical	theory	of	group
representations.	Nor	should	this	be	surprising	to	those	who	understand	the
importance	of	fundamental	symmetries	in	physical	science.

In	general,	a	building	block	should	possess	some	kind	of	irreducibility.	To
analyze	a	complex	structure,	one	breaks	it,	in	some	particular	respect,	into
pieces.	As	one	proceeds	in	this	fashion,	one	ultimately	finds	that	further	analysis,
in	this	particular	respect,	can	be	carried	no	further.	From	the	perspective	of	this
particular	mode	of	analysis,	one	has	found	the	building	blocks.	Further	analysis
requires	a	separate	study,	from	a	different	perspective,	of	the	building	blocks.

In	the	case	of	group	representations,	these	building	blocks	are	called	irreducible
representations.	As	I	will	indicate,	an	irreducible	representation	captures,	in	a
particularly	revealing	way,	an	aspect	of	a	group’s	permutation	and	geometric
symmetries.

So	what	is	an	irreducible	representation:	irreducible	as	opposed	to	what?	To
understand	irreducible	representations,	one	must	first	identify	what	a	reduction
would	consist	of.	To	that	subject	I	turn.28

To	understand	what	a	reduction	consists	of,	it	is	helpful	to	first	understand	how
building	blocks	may	be	put	together.	So,	I	begin	by	proceeding	in	the	opposite
direction,	by	extending	representations	on	a	vector	space	V	to	representations	on
larger	vector	spaces	containing	the	vector	space	V	as	a	subspace.

In	the	last	section,	I	presented	a	representation	of	the	symmetry	group	S3	on	R3

and	I	will	further	develop	this	example.	Throughout	this	discussion,	I	will	look
at	that	action	as	a	permutation	of	the	coordinates	of	R3.	And	I	will	also
characterize	extensions	to	other	vector	spaces	in	terms	of	their	effects	on
coordinates.	To	recall,	the	S3	element	R	acts	on	vectors	in	R3	by	rotating	their
coordinates,	moving	the	third	coordinate	to	the	first	position,	and	T	acts	by
interchanging	the	first	two	coordinates.



Suppose	that	one	wants	to	extend	the	representation	of	S3	to	a	larger	vector
space	that	contains	the	vector	space	R3.	To	extend	a	representation	is	to	find	a
representation	on	the	larger	space	that	restricts	to	the	original	representation
when	restricted	to	the	original	smaller	subspace.	There	are	some	straightforward
ways	of	doing	so.

Consider	R4	as	a	first	example.	S3	acts	on	the	first	three	coordinates	of	R4by
permuting	them,	as	in	the	action	on	R3.	What	is	the	simplest	way	to	extend	this
action	to	R4?	Simply	leave	the	fourth	coordinate	alone!	In	this	way,	every	action
on	the	first	three	coordinates	is	automatically	extended	to	an	action	on,	to	a
permutation	of,	all	four	coordinates.

To	see	this	explicitly,	the	transformation	T	acts	on	vectors	in	R3	as	follows:	T(a,
b,	c)	=	(b,	a,	c).	To	extend	that	action	to	R4,	set	T(a,	b,	c,	d)	=	(b,	a,	c,	d).
Similarly,	extend	R(a,	b,	c)	=	(c,	a,	b)	to	R4	by	setting	T(a,	b,	c,	d)	=	(c,	a,	b,	d).
The	actions	of	other	elements	of	S3	on	R4	are	generated	by	taking	products	of	R
and	T.

Notice	that	this	particular	representation	on	R4,	by	explicit	intention,	leaves	the
fourth	coordinate	untouched.	If	follows	that	the	vector	subspace,	W,	consisting
of	vectors	(a,	b,	c,	0),	is	left	invariant	by	this	particular	action	of	S3	on	the	vector
space	R4.	The	action	of	S3	on	any	vector	in	W	is	a	vector	in	W.	To	put	it	another
way,	this	action	of	S3	on	the	vector	space	R4	reduces	to	an	action	of	S3	on	a
subspace	of	the	vector	space	R4,	namely	the	subspace	W	consisting	of	vectors	of
the	form	(a,	b,	c,	0).

We	have	extended	the	action	S3	to	an	action	on	R4,	but	that	very	action	can,	in
turn,	be	reduced	to	an	action	on	a	proper	subset	of	R4,	namely	the	subspace	from
which	it	was	extended	in	the	first	place.

As	in	the	case	of	R3,	one	can	express	the	action	on	R4	by	4×4	matrices	(read:	‘4
by	4	matrices’).	These	matrices	permute	the	coordinates	of	R4.	For	example,	to
permute	the	first	two	coordinates	in	R3	(the	action	of	T)	is,	when	extended	to	R4,
to	permute	the	first	two	coordinates	of	any	vector	in	R4.	And	to	permute
coordinates	is	to	permute	the	basis	vectors	corresponding	to	those	coordinates.



Finally,	notice	that	the	subspace	V	consisting	of	all	vectors	of	the	form	v	=	(0,	0,
0,	d)	is	also,	trivially,	invariant	(transformed	into	itself)	under	the	action	of	S3.
That	is,	for	any	vector	v	in	V,	Tv	=	v	and	Rv	=	v,	and,	therefore,	the	action	of
any	element	of	S3	on	v	is	to	multiply	it	by	1.	This	is	important	because	every
vector	in	R4	can	be	expressed	uniquely	as	a	sum	of	vectors	of	the	form	(a,	b,	c,
0)	+	(0,	0,	0,	d),	that	is	as	a	sum	of	vectors	from	these	two	invariant	subspaces	of
R4.	In	this	sense,	R4	is	a	sum	of	two	subspaces,	each	of	them	invariant	under	the
action	of	the	representation.	One	says	that	the	subspaces	decompose	the
representation.

To	qualify	as	a	reduction	of	a	representation,	it	is	enough	to	find	an	invariant
subspace.	But	it	turns	out,	and	one	proves,	that	such	a	decomposition	of	a
reducible	representation	is	always	possible.

One	need	not	stop	at	R4!	One	can	extend	the	action	of	S3on	R3,	in	exactly	the
same	way,	to	an	action	on	Rn.	Simply	leave	every	coordinate	in	Rn,	after	the	first
three,	in	place	under	every	action	by	elements	of	S3.

Such	an	action	is	reducible	in	the	same	way	that	the	extension	to	R4	was
reducible.	Specifically,	S3	acts	on	the	subspace	W	of	Rn,	for	which	all
coordinates	after	the	first	three	coordinates	are	zero	simply	by	permuting	the	first
three	coordinates	in	the	prescribed	manner.	And	the	reason	that	I	am	able	to	say
that	S3	acts	on	that	subspace	is	that	the	action	of	an	element	of	S3	on	any	vector
in	W	is	a	vector	in	W.	Again,	one	says	that	the	subspace	W	is	invariant
(transformed	into	itself)	by	the	action	of	S3	on	Rn.

Once	again,	one	decomposes	Rn	into	two	invariant	subspaces,	into	one	for	which
all	but	the	first	three	coordinates	are	zero	and	one	for	which	the	first	three
coordinates	are	zero.	The	representation	acts	as	the	identity	matrix	on	the	second
of	these	subspaces.

There	is	a	somewhat	more	interesting	extension	to	R6.	Apply	every	permutation
in	S3,	simultaneously,	to	both	the	first	three	coordinates	and	the	last	three
coordinates	of	any	vector	in	R6.

For	example,	the	action	of	T	on	R3	is	T(x1,	x2,	x3)	=	(x2,	x1,	x3).	The	extension



to	R6	is	provided	by	the	formula	T(x1,	x2,	x3,	x4,	x5,	x6)	=	(x2,	x1,	x3,	x5,	x4,	x6).

Once	again,	this	action	can	be	reduced	to	an	action	on	a	subspace	of	R6,	namely
to	the	subspace	W	of	vectors	of	the	form,	(x1,	x2,	x3,	0,	0,	0).	For	example,	T	acts
on	this	subspace	by	the	formula	T(x1,	x2,	x3,	0,	0,	0)	=	(x2,	x1,	x3,	0,	0,	0).	While
it	is	true	that	the	action	of	T	on	other	vectors	in	R6	is	more	interesting	than	this,
it	remains	true	that	the	subspace	W	is	invariant	under	this	action	of	S3	on	R6.
And,	once	again,	the	invariance	of	the	action	on	W	is	inherent	in	the	fact	that	this
particular	action	on	R6	was	designed	to	extend	an	action	on	W.

And,	of	course,	S3	acts,	in	a	completely	analogous	fashion,	on	another	invariant
subspace	of	R6,	namely	the	subspace	for	which	the	first	three	coordinates	are
zero.	Once	again,	R6	decomposes	into	a	sum	of	two	invariant	subspaces.

Not	all	actions	of	groups	on	vector	spaces	permute	their	coordinates.	But
consideration	of	those	actions	that	do	is	enough	to	indicate	the	general	pattern	of
the	way	that	representations	of	a	group	on	vector	spaces	can	be	combined	to
specify	still	more	complex	representations	of	larger	vector	spaces.

I	have	indicated	how	S3	can	act	to	permute	the	coordinates	of	R3.	It	can	also	act
to	permute	the	coordinates	of	R2.
I	define	such	a	representation,	as	follows:	Think	of	the	permutations	of	the
coordinates	of	R2	as	corresponding	to	states	of	the	triangle	puzzle.	In	one	state
the	green	side	is	showing.	This	state	corresponds	to	the	starting	positions	of	the	x
and	y	coordinates	of	vectors	in	R2.	In	the	other	state	of	the	triangle,	the	red	side
is	showing.	This	side	corresponds	to	permuting	the	x	and	y	coordinates	of
vectors	in	R2.	Define	the	action	of	T	on	R2	by	requiring	that	it	switch	the	x	and	y
coordinates	turning	the	vector	expression,	in	effect,	upside	down.
Next,	just	as	any	pure	rotation	in	S3	leaves	the	green	side	of	the	puzzle	piece
showing,	so	it	should	also	leave	the	x	and	y	coordinates	unchanged.	So	define
the	action	of	R	on	R2	to	be	the	trivial	action,	namely	the	identity	transformation.
Between	them,	these	actions	of	T	and	R	determine	an	action	of	S3	on	R2.
In	this	action,	any	of	the	transpositions	T,	RT,	or	R2T	will	switch	the	x	and	y
coordinates.	In	short,	any	of	the	group	elements	E,	R,	or	R2,	act	as	the	identity
matrix,	while	T,	RT,	and	R2T	all	act	as	the	matrix:



In	this	case,	certain	distinct	elements	of	S3,	for	example,	RT	and	R2T,	have	the
same	action	on	R2.	Each	transposition	permutes	the	two	coordinates.	This	is	the
first	non-trivial	example	of	this	phenomenon	that	we	have	seen.

This	example	is	no	coincidence.	It	is	not	an	accident	that	this	action	is,	in	effect,
an	action	of	the	quotient	group	that	I	discussed	earlier	in	the	chapter.	The	action
of	pure	rotations,	in	this	representation,	is	trivial,	corresponding	to	the	element	e
of	the	quotient	group.	What	remains	is	the	action	of	T,	corresponding	to	the
element	r	of	the	quotient	group.	This	action	of	S3	on	R2depends	only	on	the
equivalence	class	of	each	element.	Again,	any	of	the	transpositions	T,	RT,	or
R2T	multiply,	in	effect,	by	T;	rotations	multiply	by	1.

This	leads	to	another	interesting	action	of	S3	on	R5.	It	suffices	to	specify	that
action	for	R	and	T.	In	this	representation,	let	R	act	to	rotate	the	first	three
coordinates,	leaving	the	last	two	alone.	Next,	let	T	switch	the	first	two
coordinates	(as	its	action	on	R3)	and,	also,	the	last	two	coordinates	(as	its	action
on	R2).	These	actions	correspond	to	the	following	5×5	matrices:

This	last	example	indicates	a	more	general	pattern.	It	combines	a	permutation	on
the	first	set	of	coordinates	with	a	different	permutation	of	the	second	set	of
coordinates.

Once	again,	this	is	a	reducible	representation.	It	acts,	in	an	invariant	fashion,	on
the	subspace	W	of	vectors	for	which	the	last	two	coordinates	are	zero	and,	also,
on	the	subspace	U	for	which	the	first	three	coordinates	are	zero.

In	sum,	in	all	of	these	particular	examples,	the	extended	actions	of	S3	were	all
reducible	to	actions	on	the	extended	vector	spaces	for	which	all	of	the
coordinates	after	the	first	three	were	set	equal	to	zero.	A	non-trivial	extension



can	always	be	reduced	to	the	subset	from	which	it	originated.

More	generally,	a	representation	of	a	group	G	on	a	vector	space	V	is	reducible	if
there	is	a	proper	subspace	W	for	which	the	action	of	any	element	g	of	G	on	any
vector	w	within	the	subspace	W	results	in	a	vector	also	contained	in	W.	A	proper
subspace	is	a	subspace	that	is	not	equal	to	the	entire	vector	space.	Symbolically,
if	g	ε	G	and	w	ε	W	then	gw	ε	W.	(The	juxtaposition,	gw,	is	a	symbolic
expression	of	the	action	of	g	on	w.)

If	there	exists	no	such	reduction	of	a	representation	to	a	representation	on	a
subspace,	then	the	representation	is	said	to	be	irreducible.29

What	about	the	representation	of	S3	on	R3	that	started	this	discussion?	Is	this	an
irreducible	representation?	The	interesting	answer	is:	No!

Finding	irreducible	representations	is	a	very	complex,	though	very	interesting,
undertaking.	There	are	very	general	techniques	for	doing	so,	but	these
techniques	are	well	beyond	the	scope	of	this	discussion.	So	to	proceed,	I	will
simply	present	the	outcome	for	S3,	which	can	be	understood	without	regard	to
how	one	might	have	discovered	that	outcome	in	the	first	place.

First,	keep	in	mind	that	S3	is	generated	by	the	rotation	R	and	the	transposition	T.
R	acts	on	any	vector	in	R3	by	rotating	its	coordinates	and	T	acts	on	any	vector	in
R3	by	permuting	its	first	two	coordinates.	Notice	the	following:

1.	Both	R	and	T	preserve	the	sum	of	the	three	coordinates.	To	permute	three
coordinates	does	not	affect	their	sum.
2.	If	all	three	coordinates	of	a	vector	are	equal,	both	R	and	T	transform	the
vector	to	itself.	If	three	coordinates	are	equal,	permuting	them	has	no	visible
effect.

But	R	and	T,	together,	generate	S3	so	these	statements	apply,	as	well,	to	all
elements	of	S3.	Indeed,	one	sees	both	points	directly.	As	for	the	first,	all
elements	of	S3	permute	the	coordinates	of	vectors	in	R3	and,	therefore,	preserve
the	sums	of	those	coordinates.

As	for	point	2,	vectors	for	which	all	three	coordinates	are	equal	comprise	a
onedimensional	subspace	U	of	R3.	All	elements	of	S3	act	as	the	identity



transformation	on	U.	Clearly,	this	is	a	representation	of	S3,	namely	the	trivial
representation,	on	a	onedimensional	subspace	of	R3.

Now,	look	at	vectors	v	in	R3	for	which	the	sum	of	the	coordinates,	a,	b,	and	c,	is
zero.
Such	vectors	constitute	a	two-dimensional	subspace	V	of	R3.	Notice,	first,	that
the	sum	of	any	two	vectors	in	V	is	a	vector	for	which	the	sum	of	the	coordinates
is	zero.	It	is,	therefore,	a	vector	in	V.	Next,	observe	that	the	product	of	any
vector	in	V	by	a	number	is	a	vector	for	which	the	coordinates	sum	to	zero.	So	it
is	also	a	vector	in	V.	More	generally,	any	linear	combination	of	vectors	in	V	is	a
vector	in	V,	because	any	linear	combination	can	be	generated	from	a	sequence	of
products	and	sums	of	this	kind.	As	to	dimensionality,	one	can	freely	choose	any
two	coordinates.	The	third	is	forced	by	the	requirements	that	the	coordinates	sum
to	zero	for	all	vectors	in	V.	Finally,	we	have	already	observed	that	V	is	invariant
under	the	action	of	S3,	because	these	actions	do	not	affect	the	sum	of	the
coordinates.
Since	S3	restricts	to	an	action	on	a	subspace	of	R3,	the	action	of	S3	on	R3	is
reducible.
What	about	this	action	on	V?	Suppose	one	chooses,	as	a	basis	for	V,	the	two
vectors

One	notices	a	certain	level	of	symmetry	in	this	choice	of	basis	because	Tv1	=	v2
and	Tv2	=	v1.	However,	the	effect	of	R	on	these	two	basis	vectors	is	not
particularly	illuminating.	One	has

These	equations	for	R	and	T	certainly	confirm	that	V	is	invariant	under	the
action	of	elements	of	S3,	but	there	is	nothing	symmetric	about	this	outcome.
However,	this	is	the	best	one	can	do	without	using	complex	numbers.	And,	it’s



worth	exploring	what	complex	numbers	can	add	to	this	picture.

So	far,	I	have	not	discussed	the	use	of	complex	numbers	as	coefficients,	or
coordinates,	of	vectors	in	vector	spaces.	I	have,	without	explicit	discussion,
limited	my	discussion	of	vector	spaces	to	vector	spaces	“over	the	real	numbers,”
that	is,	to	vector	spaces	with	real	coefficients	and	coordinates.	But	the	use	of
complex	numbers	is	an	enormous	convenience	in	mathematics	and,	in	particular,
in	the	theory	of	irreducible	representations.

Primarily,	this	is	for	two	reasons,	one	geometric	and	one	analytic.	The	analytical
reason	is	that	any	polynomial	of	degree	n,	has	precisely	n	roots,	providing	that
one	permits	complex	numbers	among	those	roots	and	keeps	track	of	multiplicity.
If,	on	the	contrary,	one	insists	on	restricting	one’s	search	to	real	numbers	then
equations	such	as	x2	+	1	=	1	have	no	solutions	at	all.	This	is	relevant	to	this
discussion	because	polynomials	with	complex	roots	are	ubiquitous	in	the	study
of	matrices	and,	especially,	in	the	theory	of	group	representation.

Omitting	complex	numbers	would	be	more	than	just	a	technical	inconvenience.
In	general,	polynomials	and	their	roots	come	up	constantly	in	mathematics.	And
these	complex	solutions	have	application.	They	are	meaningful	and	important.
One	could	possibly	find	a	way	to	live	without	explicitly	using	complex	numbers,
but	it	would	be	incredibly	inconvenient!	And	any	such	attempt	would,	in	the
end,	involve	smuggling	in	a	disguised	or	reincarnated	version	of	complex
numbers.	In	substance,	complex	numbers,	whatever	one	might	call	them	or	how
one	might	represent	them,	are	unavoidable.

The	geometric	reason	derives	from	the	geometric	interpretation	of	complex
numbers	that	I	discussed	earlier.	Multiplication	by	i	=	√(-1),	from	a	geometric
perspective,	is	counter-clockwise	rotation	by	900.	Complex	numbers	provide	a
convenient	and	powerful	way	of	treating	angles	analytically	and	this	is	one	of
the	secrets	of	their	interest,	their	power,	and,	indeed,	their	ubiquity	in
mathematics.

Both	factors	are	at	play	in	the	theory	of	irreducible	representations.	First,	the	use
of	complex	numbers	provides	a	geometric	perspective	on	group	actions	–	as	we
saw	earlier	in	our	application	of	the	cube	roots	of	unity.	Indeed,	I	have,	since,
explained	the	importance	of	roots	of	unity	in	the	theory	of	group	representations.
But	every	non-trivial	root	of	unity,	every	root	of	unity	other	than	1	and	-1,	are
complex	numbers.	The	cube	roots	of	unity,	in	particular,	are	the	three	roots	of



the	polynomial	equation	x3	–	1	=	0.

Regarding	the	action	of	S3,recall	myearliernotation:ω=	1/2	+	(i/2)√3.	Consider
the	action	of	R	and	T	on	the	vectors	

These	vectorsbelongtoVbecause,asIpointedoutearlier,ω2+	ω	+	1	=	0:	The	sum	of
their	coordinates	is	zero.
One	has,	as	with	the	previous	basis	of	V,	Tv1	=	v2	and	Tv2	=	v1.	But	one	also	has

One	could	not	imagine	a	greater	symmetry	than	this.	The	transposition	matrix,	T,
switches	the	two	basis	vectors	by	switching	their	first	two	coordinates	and	the
rotation	matrix,	R,	rotates	the	coordinates	of	each.	And	this	rotation	of
coordinates,	by	R,	is	accomplished	analytically	in	the	simplest	possible	way:	one
multiplies	the	vector	by	a	complex	number.	The	vector	space	that	S3	is	acting	on
is	two-dimensional,	but	the	action	of	S3	is	determined	as,	and,	in	effect,
generated	by,	the	set	of	permutations	of	the	coordinates	of	a	single	vector,
namely,	v1.	The	action	of	S3	on	these	basis	vectors	is	a	transparent	reflection	of
the	symmetries	inherent	in	the	group	S3.

I	want	to	explore	this	just	a	little	further.	Recall	that	we	have,	throughout,
viewed	the	action	of	S3	as	permuting	the	coordinatesof	R3.	As	applied	to	the
vector	v1,	in	acting	on	that	vector,	S3	also	acts	to	permute	the	three	cube	roots	of
unity.	Three	of	these	actions,	the	rotations	(including	E),	accomplish	this
permutation	by	simply	multiplying	v1by	–	none	other	than	–	a	cube	root	of	unity.
The	other	three,	those	elements	that	involve	a	transposition,	transform	v1	to	a
multiple	of	v2	and,	again,	that	multiplier	is	a	cube	root	of	unity.	For	example,
RTv1	=	Rv2=	ωv2.

Moreover,	the	actions	on	v1	and	v2	are	totally	symmetric,	they	work	the	same
way.	The	rotations	act	on	v1	and	v2	by,	respectively,	multiplying	each	by	a	cube



root	of	unity.	The	transpositions	transform	each	basis	vector	to	a	multiple	of	the
other:	v2	to	a	multiple	of	v1and	v1	to	a	multiple	of	v2.

One	cannot	do	better	than	this	and	still	distinguish,	by	their	actions,	every
element	of	S3.	Two	dimensions	are	required,	and	are	sufficient,	to	fully	capture
the	symmetries	of	S3.

That	one	can	do	this	well	is	remarkable.	But	the	simplicity	of	this	picture
depends	totally	on	the	use	of	the	cube	roots	of	unity	which,	in	turn,	depends	on
the	incorporation	of	complex	numbers	into	the	analysis	of	group	representations
on	vector	spaces.

I	have	expressed	this	representation	on	a	particular	subspace	of	R3,	using	the
coordinates	of	R3.	One	can	also	express	this	representation	in	matrices	that
correspond	to	the	basis	of	V	consisting	of	vectors	v1	and	v2.	One	uses	the
relationships	Tv1	=	v2	and	Tv2	=	v1	for	T	and	relations	Rv1=	ω2v1	and	Rv2=	ωv2
for	R.	The	matrices	for	T	and	R,	corresponding	to	the	basis	consisting	of	v1	and
v2,	are:

The	representations	for	the	remaining
elements	of	S2	can	be	obtained	from	these	through	matrix	multiplication,	as
follows:
	

Figure	27

I	have	now	offered	two	irreducible	representations	of	S3.	The	first	was	the	trivial
action	on	R1,	in	the	form	of	the	vectors	in	the	onedimensional	subspace	U	of	R3
consisting	of	vectors	of	the	form	(a,	a,	a).	The	second,	I	have	just	finished
describing.	Have	I	provided	a	complete	list	of	irreducible	representations	of	S3?



No,	there	is	one	more,	but	it	is	a	simple	one.	Let	V	be	the	one	dimensional	vector
space	V	=	R1.	Define	a	representation	of	S3	on	V	by	defining	the	actions	of	R
and	T	as	follows:	For	any	vector	v	in	V,	let	Rv	=	v	and	Tv	=	-v.	In	this	action	the
group	elements	in	the	subgroup	generated	by	R	all	act	as	the	identity.	The
transpositions	all	act	by	multiplying	by	-1.	In	concrete	terms,	vectors	in	R1	have
only	one	coordinate.	They	all	look	like	(x)	where	x	is	a	number	and	(x)	is	the
vector	whose	only	coordinate	is	x.	According	to	the	formulas	stated	earlier,	R
and	T	act	on	(x)	by	R(x)	=	(x)	and	T(x)	=	(-x).

In	this	action,	rotations	are	unimportant;	only	transpositions	have	any	effect.	If
one	remembers	the	example	of	the	puzzle	piece,	one	keeps	track	of	which	side	is
facing	straight	up;	one	cares	about	the	flips.	But	rotational	state	doesn’t	matter.
The	trivial	action	of	R	corresponds	to	leaving,	unchanged,	the	side	facing
straight	up.	The	action	of	T,	multiplying	by	-1,	corresponds	to	a	reversal.
Transpositions	multiply	by	-1;	rotations	multiply	by	1.	Appropriately	if	one
applies	T	twice,	multiplying	twice	by	-1,	the	vector	returns	to	its	original	value.

Earlier	in	the	chapter,	I	introduced	the	idea	of	a	quotient	group,	the	group	of
transformations	in	S3	considered	without	regard	to	rotation.	It	is	this	aspect	of	S3
that	is	captured	by	this	final	representation	of	S3.

This	action	arises,	as	well,	from	a	slightly	different	represention,	one	more
closely	related	to	the	quotient	group.	Consider	the	action	on	R2	that	I	discussed	a
little	earlier.	Namely,	suppose	that	R	acts	trivially	on	R2,	while	T	permutes	the
coordinates.	In	this	representation,	even	T	acts	trivially	on	a	subspace	of	vectors,
specifically	on	vectors	in	the	subspace	U	for	which	the	two	coordinates	are
equal.	And,	since	both	generators,	R	and	T	act	trivially	on	U,	the	entire	group,
S3,	acts	trivially	on	U.

But	T	also	acts	invariantly,	yet	non-trivially,	on	vectors	in	the	subspace	V	of
vectors	with	coordinates	summing	to	zero.	To	see	this	concretely,	notice	that	all
vectors	in	V	are	multiples	of	the	vector

To	switch	the	coordinates	of	such	a	vector	has	the	effect	of	multiplying	that
vector	by	-1.	So	the	action	of	R	and	T	on	V	is	the	same	as	the	non-trivial	action,



just	discussed,	on	R1.	Like	the	previous	example,	transpositions	multiply	by	-1;
rotations	multiply	by	1.

We	already	saw	that	the	non-trivial	action	of	S3	on	R1	is,	essentially,	the	action
of	the	quotient	space	in	which	one	ignores	the	action	of	the	rotations.	It	amounts
to	that	action	because	only	transpositions	act	non-trivially	and	because	any	two
transpositions	in	S3	have	the	same	effect.	In	sum,	the	non-trivial	action	of	S3,	on
vector	spaces	of	dimension	1,	reflects,	the	structure	of	the	quotient	quotient	of
S3.

There	are,	then,	three	irreducible	representations	of	S3.	One	is	the	trivial
representation	on	a	vector	space	of	dimension	1	in	which	every	element	of	S3
acts	as	the	identity.	The	second	is	the	two-dimensional	representation	reflecting
the	full	set	of	symmetries	embodied	in	the	group.	And	the	third	is	the	non-trivial
onedimensional	representation	reflecting	the	symmetries	of	the	quotient	group.

This	concludes	my	extended	example	of	the	representations	of	S3.	My
presentation	of	group	representations	has	emphasized	three	broad	themes:

●	Abstract	finite	groups	are	always	realizable,	both	as	permutation	groups	and	as
transformation	groups	acting	on	vector	spaces.

●	An	important	key	to	understanding	the	structure	of	a	group	is	to	study	its
representations.
●	One	classifies	group	representations	by	identifying	their	basic	building	blocks
and	identifying	how	group	representations,	in	general,	relate	to	these	basic
building	blocks.

More	broadly,	a	group	is	a	system	of	measurements	of	symmetry.	But
identifications	of	symmetry	are	inherent	in	human	conceptualization.	Symmetry
of	some	sort	is	involved	every	time	one	forms	a	concept.	Whenever	one	can
isolate	a	specific	dimension	or	specific	constellation	of	dimensions	across	which
similar	units	differ,	one	has	identified	a	kind	of	symmetry:	One	has	identified	a
respect	in	which	different	things	can	be	regarded	as	interchangeable	and,	yet,	can
also	be	related	or	compared.	In	essence,	a	transformation	group	is	one	way	of
measuring	the	differences	between	things	that	are	similar	from	one	perspective,
yet	different	from	another	perspective.	And,	most	fundamentally,	that	is	what
accounts	for	the	ubiquity	of	transformation	groups	in	mathematics.



Conclusion

Mathematics,	as	Ayn	Rand	put	it,	is	the	science	of	measurement.	Measurement
is	the	key	to	understanding	mathematics.	To	understand	mathematics	as	the
science	of	measurement	is	to	understand	how	mathematics	relates	to	the	world,
to	understand	the	precise	sense	in	which	mathematics	is	about	the	world.

We	have	seen	aspects	of	this	theme	in	every	chapter.	We	learned	that	geometric
abstractions	provide	an	abstract	focus	on	the	objects	of	measurement.	Geometry
is	an	abstract	way	of	looking	at	and	studying	actual	objects	and	relationships	in
the	world.	It	is	about	those	relationships.
We	recognized	actual,	real	world	triangles,	circles,	lines,	etc.,	as	the	actual
objects	of	geometric	study.	Euclid’s	postulates	are	all	primitive	measurements.
And,	as	measurements,	we	must	remember	that	their	application	to	any	concrete
case	is	subject	to	the	precision	requirements	of	each	case.	Euclid’s	arguments	are
a	form	of	indirect	measurement,	are	recipes	for	a	series	of	abstract
measurements.
We	analyzed	magnitude,	geometrically,	as	an	object	of	numerical	measurement.
The	essence	of	the	Axiom	of	Archimedes	consists	in	an	implication,	probably
understood	by	Aristotle,	that	all	magnitudes	are	measurable.	We	observed	that
relationships	between	numbers	reflect	quantitative	relationships	in	the	world
among	the	quantities	that	they	measure.
Following	Euclid	we	learned	just	how	the	measurement	of	area,	and	the	indirect
measurement	made	possible	by	the	laws	of	geometric	proportion,	both	depend
on	the	properties	of	parallel	lines.
We	discovered	how	irrational	numbers	relate	to	the	world	and	why	are	they
needed.	We	identified	just	what	it	means,	in	real	world	terms,	to	say	that	a
Cauchy	sequence	converges	to	a	real	number	and,	in	just	what	sense,	the	real
number	system	is	complete.	And	we	sorted	out	the	right	and	the	wrong	of	the
constructions	by	Dedekind	and	Cantor.
We	found	a	reality-based	account	and	rationale	for	the	meaning	and	use	of	set
theory	in	mathematics,	emphasizing	the	importance	of	a	proper	hierarchy	of
mathematical	abstraction.	We	reviewed,	in	stark	contrast,	the	historical
development,	culminating	in	the	conventional	Zermelo-Fraenkel	axioms	of	set
theory.	And	we	examined	why,	despite	widespread	acceptance	of	an	incredible
floating	abstraction	as	a	purported	foundation,	mathematics	has	survived.
We	saw	how	the	measurement	perspective	helps	illuminate	and	integrate	our
understanding	of	vector	spaces	and	linear	algebra.



We	studied	a	realm	that	is	often	thought	to	have	little	or	no	relationship	to
quantity,	namely	group	theory.	We	saw	how	groups	arise,	why	they	are
important,	and,	in	just	what	sense	the	symmetry	that	they	measure	sits	at	the
heart	of	the	conceptual	process	itself.
Geometry	is	an	abstract	perspective	on	the	objects	of	measurement.	The	real
number	system	and	transformation	groups	are	systems	of	measurements.	A
mathematical	argument	is	a	series	of	abstract	measurements,	identifying
quantitative	relationships,	pertaining,	ultimately,	to	the	world.	Indirect
measurement	is	purpose	of	mathematics	and	the	source	of	its	power.
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